
Efficiency enhancement of single off-axis and multiple overlapping
beam reflectors using dielectric-covered focal plane array feeds

M. Ng Mou Kehn1

Received 6 August 2012; revised 3 December 2012; accepted 6 February 2013; published 1 March 2013.

[1] Reflector antennas fed by dense focal plane arrays (FPAs) are known for their high
aperture efficiency, low scan loss, and ability to achieve closely overlapping beams and
thus improved continuity in the field of scan. These benefits are possible because FPAs
comprise electrically small elements with diameters within half a wavelength, which
sample the focal plane fields to a high resolution. This work explores the prospects of
further enhancing the total efficiency of FPA-fed reflector systems by using dielectric
covers placed over FPA feeds composed of open-ended waveguides. The parameters
investigated are the permittivity and thickness of the dielectric layer. We will demonstrate
the ability of these covers to improve the overall efficiency of reflectors compared to that of
reflectors fed by uncovered FPAs, over several beam widths of scan for single steered
beams, as well as to enhance the individual constituent beam efficiencies of simultaneously
overlapping multiple beams.
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1. Introduction

[2] The last decade has seen massive growth in mobile
satellite and radio communications [Hwang, 1992]. Satellite
systems today provide a vast range of services within the
commercial and military sectors [Brisken et al., 1979;
Zaghloul et al., 1990;Wu et al., 1994]. Due to the high capac-
ity, mobility, and ever-changing geographical distribution of
modern users, there is a growing need to generate multiple
directive beams that are rapid, robust, and highly reconfigurable
[Egami, 1987]. Multiple-beam reflector (MBR) antennas are
attractive candidates for meeting this demand as they can be
launched into orbit to provide numerous spot beams as well
as contoured (shaped) footprints [Balling, 1987].
[3] There had been keen efforts to improve MBRs, such as

the use of dual offset dishes to reduce scan loss and cross-
polarization [Jorgensen and Balling, 1985]. The capacity
of communication satellite systems had been limited by the
decreasing amount of available bandwidth. A way around
this is to reuse the bandwidth by using spatially isolated
antenna beams and/or orthogonal polarizations [Kreutel
et al., 1977]. In a bid toward this, hundreds to thousands
of spot beams were considered in the work of Egami

[1999]. This underlines the rising importance of the ability
to generate highly efficient overlapping spot beams.
[4] Dense focal plane array (FPA) feeds for MBRs are

known for their ability to achieve high aperture efficiency,
low scan loss, and closely overlapping beams for extended
fields of continuous coverage. Comprising electrically
small elements with diameters up to half a wavelength, such
versatile array feeds can be excited according to any focal
plane field pattern corresponding to a diverse set of beam
configurations, be it a single scanned beam or simultaneous
multiple beams (closely overlapping or widely separated).
Using digital beam-forming networks, such FPA feeds are
able to provide rapid and adaptive beams that can be swiftly
adjusted to satisfy the needs of dynamically changing envi-
ronments. Hence, FPA feeds play an important advancing
role in today’s satellite technology.
[5] There has been a study which showed that dielectric

layers placed over FPAs comprising open-ended waveguides
can serve as effective impedance match tuners that signifi-
cantly improve the radiation efficiency of the feed [Ng Mou
Kehn and Shafai, 2009]. That work, however, only considered
axial reflector beams and did not take other subefficiencies
characterizing the entire FPA-fed reflector system into
account. This motivates further investigations of such dielec-
tric layers over FPAs, but now for improving the overall
efficiency encompassing all subefficiencies of the FPA-fed
reflector, not only for axial beams but also for off-axis ones,
including simultaneously overlapping multiple beams.
[6] The purpose of this paper is thus to look into the

prospects of further enhancing the performance of FPA-fed
reflectors by placing dielectric matching covers over the
FPA feed. Parabolic reflectors were treated, and the FPAs
considered here consist of open-ended sidewall loaded hard
rectangular waveguides (HRWs), the same type of element
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studied by Ng Mou Kehn and Kildal [2005]. The amplitude
uniformity and polarization linearity of the aperture fields
make such waveguides constitutionally suitable as FPA
elements. The lateral view of this sheathed waveguide array
is shown in Figure 1, and the perspective albeit out-of-scale
schematics of the entire FPA-fed reflector system for the two
contending configurations— one being the uncovered FPA
and the other the dielectric-covered version—are shown in
Figure 2. We will demonstrate the ability of dielectric covers
to improve the overall efficiency of reflectors over several
scan beam widths as compared to those that are fed by
uncovered FPAs.

2. Description of the Theory and Formulation:
An Overview

[7] With the exception of the embedded element analysis
provided in section 3, the mathematical details of the theories
and concepts behind the treatment of the present complex
reflector antenna system (comprising the dielectric-covered
waveguide FPA and the paraboloid itself) can be found in
published works by the author (references cited along the
way). But for completeness, textual descriptions of various
vital parts shall still be conveyed here in a logical order to
provide a big picture overview of the vast theoretical frame-
work that is not found anywhere else.

2.1. Dielectric Sheet–Covered Waveguide Array
Operated as Phased Array—Auxiliary for Treatment of
Arbitrarily Excited Finite Arrays

[8] The details of the analysis and formulation for treating
the waveguide array covered by a dielectric layer have been
presented by Ng Mou Kehn and Shafai [2009]. But for
completeness, the method is still textually summarized here.
It is first emphasized that the upcoming description pertains
to the solution of the dielectric-covered waveguide array
when operated as a conventional phased array, i.e., a single
fundamental Floquet mode (with an associated forcing wave
number) that excites the entire structure, pertaining to the
phase-steered beam angle.
[9] The moment method using spectral Green’s functions

for solving multilayer structures is employed. The core of
this latter approach lies in the so-called G1DMULT routine
[Sipus et al., 1998; Ng Mou Kehn et al., 2006], which is
self-developed. In addition to the forward incident fields of
the dominant waveguide mode, the aperture fields of the
waveguides are expanded as a sum of backward reflected
waveguide modal fields. In this way, the PEC equivalence
magnetic aperture current related to the aperture electric
fields is expanded into entire-domain trigonometric wave-
guide modal basis functions. Each basis current is then
Fourier transformed into a certain spectral basis current
whose radiated fields under the multilayer environment can
be acquired from G1DMULT. Due to the periodicity, in
addition to the fundamental Floquet mode defined by the
forcing wave number mentioned earlier, a discrete spectrum
of higher-order Floquet harmonic plane waves is radiated.
Upon summing up all these plane waves, the spatial fields
caused by any basis current are obtained. This shall then
be repeated for all other basis currents and the respective fields
are combined. In this way, the total fields (caused by the array
of magnetic current sources) in terms of the amplitude coeffi-
cients of the basis functions can be determined.
[10] These fields are then used to enforce the boundary

conditions within one unit cell, requiring the continuity of
the tangential magnetic field components over the waveguide
aperture. Galerkin weighting of the boundary conditions then
yields a system of equations that can be solved numerically
for the expansion coefficients. Consequently, the active
(phased array) reflection coefficient and embedded element
patterns along with their radiated powers can be obtained.
The concepts and theory behind the latter are given in section
3, thereby elucidating the importance of that section.
[11] The foregoing solution of the phased array scenario

can then be used for mutual coupling analysis, the theoreti-
cal details of which can be found in the work of Ng Mou
Kehn and Shafai [2008]. But briefly described here, by
repeatedly solving the above-described phased array scenario
for the active reflection coefficient over numerous phasings
(steered beam directions), which are then integrated over the
Brillouin zone, the embedded element mutual coupling coeffi-
cients may be acquired. This is based on the classic theorem
stating that the active reflection coefficient of the infinite
phased array and the coupling coefficient under the embedded
element scenario (EES) constitute a Fourier transform pair
[Amitay et al., 1972]. It is specified further that this coupling
coefficient relates the incident dominant (forward-traveling)
mode of the excited element to another generally different
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Figure 1. Lateral view of waveguide array covered by a
dielectric layer. The rectangular waveguides are sidewall loaded
by dielectric slabs, as shown, serving as hard waveguides.
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Figure 2. Waveguide FPA feeds for the (a) uncovered
reflector and (b) dielectric-covered reflector.
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(higher-order) backward-traveling mode of any other passive
element into which energy is seeped, including the excited
element itself (reflection loss). The treatment of arbitrarily
excited finite arrays may then ensue using these coupling
coefficients, whereby the power loss in any array element is
calculated by summing up the mutually coupled modal power
losses contributed by all surrounding elements as well as the
self-coupling loss, i.e., the reflection loss. Therefore, the solu-
tion of the infinite phased array scenario only serves as an
auxiliary step for treating the finite array. Also, as explained
by Ng Mou Kehn and Shafai [2008], there is an alternative
validation approach based on the superposition of
amplitude-scaled and phase-shifted embedded element
patterns according to the location of each element. From
both approaches, power balance is satisfied. This underlines
the pertinence of the EES, whose analysis is presented in
section 3. As mentioned earlier about the incident dominant
waveguide mode, it is reiterated that in the present study (for
arbitrarily excited finite FPAs in particular), the waveguide
elements are always assumed to be excited by the dominant
mode, being the LSE symmetric n=0 mode [Ng Mou Kehn
and Kildal, 2005] for inhomogeneously sidewall loaded
rectangular waveguides, which reduce to the TE10 mode of
homogeneous ones when the dielectric walls and the central
portion are of the samematerial. Such injected dominant modes
are y-polarized for this study. A set of higher-order modes
constitutes the backward-traveling waves inside each element.

2.2. Dielectric Sheet–Covered Waveguide Array
Operated as FPA Feeds for Reflectors

2.2.1. Focal Plane Field Synthesis by Physical Optics
[12] Now that we have formulated the treatment of arbi-

trarily excited dielectric sheet–covered waveguide arrays, we
next need to know how this arbitrary excitation should be in
order for the array to serve as an FPA feed of a parabolic
reflector. This is determined by the conventional approach of
first synthesizing the fields arising on the focal plane of the
paraboloid due to an impingent plane wave arriving from a
certain direction (receive mode) using physical optics (PO).
When the FPA feed is excited according to this field distri-
bution (on transmit) via conjugate field matching, i.e., by
sampling the focal plane fields in a discretized and truncated
manner (by the treatment of arbitrarily excited finite arrays
as described above), the resultant reflector beam would
shine toward that direction of the incoming plane wave.
The details of the PO treatment have been provided by Ng
Mou Kehn and Shafai [2008]. It is worth mentioning that
although the focal plane fields of axial incidence take on
the approximate but closed form of the Airy ring pattern,
there is no likewise analytical function for describing the
focal fields of off-axis incidences. Also, it should be pointed
out that although the polarization of the incident plane wave
is either only x-polarized or y-polarized, the synthesized
focal plane fields contain both co-polar and cross-polar com-
ponents, with the latter in a smaller proportion. Hence, the
FPA elements have to be excited by modes that bear the same
polarization as the co-polar focal plane fields. For our present
case of y-polarized injected modes of waveguide elements, we
restrict the investigations to y-polarized incident plane waves,
although without loss of generality.
[13] To illustrate the mechanism for a parabolic reflector

with 60� half-subtended angle (or simply dish angle) and 5

m diameter at 10 GHz, Figure 3 shows the focal plane fields
due to y-polarized incident plane waves (xz plane of inci-
dence) along two directions (0� and 1�) synthesized by the
integration of the PO-induced currents over the paraboloid
surface. It is to be stated that only the amplitude levels of
the complex valued fields are plotted, omitting the phase
information, as this just aims to provide a visual feel of the
focal plane field distribution. The actual FPA sampling
would entail excitation of the array elements by the complex
field values. In addition, only the focal plane distribution of
the co-polar Ey field component is presented. The fictitiously
drawn rays and reflectors just serve to illustrate the skew of
the focal point under off-axis incidence and are not to scale.

Figure 3. Synthesized focal plane fields by PO integration
for 60� dish angle at 10 GHz for y-polarized plane wave
incidences: (a) axial incidence and (b) 1� off-axis incidence.
Amplitude levels are shown (without phase information).
Only the co-polar Ey field component is given and the xz
plane of incidence considered. Focal length F related to
diameter D and half-subtended angle θ as indicated.
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The beam angle (on transmit) or plane wave incidence angle
(on receive, for focal plane field synthesis) shall henceforth
be denoted by a, as indicated in Figure 3.
2.2.2. Off-axis Beam Efficiency: Integration Over Tilted
Focal Plane Based on Geometrical Optics Projection
2.2.2.1. Feed-radiated fields—superposition of element
patterns
[14] When dealing with conventional axial beams, the well-

known illumination, polarization, and phase subefficiencies
(see section 2.3) of the reflector are calculated by integrating
the focal plane fields using classic formulas [Kildal, 2000],
which are derived by geometrical optics (GO) ray tracing of
the feed-radiated fields. These latter emitted fields are, in our
FPA case here, obtained by summation of embedded element
patterns, with each amplitude scaled and phase shifted
according to its respective element location within the synthe-
sized focal plane field distribution outlined in section 2.2. Each
element pattern is calculated by the analysis presented in
section 3. Hence, the solution of the phased array scenario,
obtainable by the approach outlined in section 2.1, is a funda-
mental building block.
2.2.2.2. GO projection of fields onto tilted elliptical
aperture
[15] The abovementioned focal plane for axial beams is

perpendicular to the reflector axis, and the domain of inte-
gration for subefficiency calculations simply spans over the
circular area projected onto the focal plane by the paraboloid
along the axial direction. However, for off-axis beams, the
aperture over which the field integration is to be performed
is now tilted, squished into an ellipse, and perpendicular to
the oblique beam direction [Ng Mou Kehn and Shafai,
2008]. Therefore, the usual focal plane fields over the untilted
aperture (applicable only to axial beams) have to be projected
usingGO along the axial direction onto the new tilted elliptical
focal plane. This is what we call GO-ray continuation. The
details of these concepts are available in the work of Ng
Mou Kehn and Shafai [2008].
2.2.3. Treatment of Overlapping Beams by Superposing
Individual Off-axis Beams
[16] Where overlapping beams are concerned, the synthe-

sis of the focal plane fields to be sampled by the FPA can be
performed by simply superposing the separately synthesized
focal plane fields of the various beam angles involved. In
other words, the focal plane fields arising from the plane
wave arriving from any beam direction (on receive) are first
synthesized individually. Repeating for the other beam direc-
tions and then adding up the respective focal plane fields (in
both amplitude and phase, i.e., complex value addition) yield
the final focal plane field distribution, to be subsequently sam-
pled by the FPA in the usual discretized and truncated manner.
The synthesized focal plane fields for 0� and 1� overlapping
beams for a 60� paraboloid of 5 m diameter at 10 GHz are
shown in Figure 4a, whereas an example of FPA discretized
sampling is given in Figure 4b. Only the amplitudes of the
complex co-polar Ey field component are presented.
[17] As for the subefficiencies, it is noted that while each

configuration of simultaneous beams has certain decoupling
and spillover efficiencies, there is one set of aperture
subefficiencies (illumination, polarization, and phase effi-
ciencies; see section 2.3) for every constituent beam. The
calculation of these subefficiencies for each beam follows
the same integration of the GO fields projected onto the

tilted elliptical aperture as that for single off-axis beams
(as explained in section 2.2.2), but now this is repeated as
many times as there are overlapping beams, with each
GO-ray projection plus integration being performed over
the respective beam’s tilted aperture. Hence, although the
FPA-radiated fields existing over the untilted focal plane
aperture for a particular set of overlapping beams are fixed
and common to all beams, the fields existing over the respec-
tive tilted apertures are different for various beams, because
they are GO projected by different amounts.
2.2.4. Secondary Radiation from Reflector Aperture
[18] The ultimate radiation from the reflector antenna is

computed by simply integrating the usual untilted focal
plane fields (which are feed-radiated fields ray traced onto
the focal plane) using classic Fourier aperture theory [Kildal,
2000]. This method is applicable to all beam cases, being
valid for axial beams, single off-axis beams, and multiple
overlapping beams. These beam cases differ only in the exci-
tation of the FPA feed and thus the fields arising on the untilted
focal plane. It is asserted that the previously described integra-
tion of GO-ray projected fields over tilted apertures is solely
for calculating the aperture subefficiencies (see following
section) of off-axis beams and that it is not used for the
computation of the far-field secondary radiation pattern of
the reflector antenna.

2.3. Subefficiencies of the FPA-Fed Reflector

[19] The final but important branch of the overview
presented here is the statement of the subefficiencies that are
used as figures of merit to characterize the FPA-fed reflector,
which are the ultimate quantities that have been computed
and are presented in section 4. The total efficiency of the
reflector system is expressed as

etot ¼ eapetotrad; (1)

where

eap ¼ espilleillumepolephaseeblock (2)

and

etotrad ¼ eradedecoup: (3)

The aperture efficiency eap comprises the usual spillover, illu-
mination, polarization, phase, and blockage subefficiencies
expressed by equation (2), whereas the total radiation effi-
ciency etotrad of equation (3) is composed of the conventional
radiation efficiency erad accounting for ohmic and dissipative
losses as well as the decoupling efficiency edecoup accounting
for mutual coupling losses. Where ideal lossless materials
are assumed, the radiation efficiency is unity, but generally
not the decoupling efficiency of the array. In the present inves-
tigation, this ideal lossless condition is assumed, i.e., erad = 1.

3. Embedded Element Analysis

[20] In spite of the preceding descriptive overview of the
entire conceptual framework and computational procedures
with references to published works of the author, the way to
obtain the fields under the EES, although already implemented
in the author’s previous works, entails high levels of subtleties
and has not yet been previously explained or reported. It is
thus the purpose of this section to present for the first time
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the mathematical details of the underlying concepts behind the
acquisition of the EES fields, which, as already emphasized
earlier, constitutes an extremely fundamental and vital part
of the analysis. Although the plain dielectric sheet cover is be-
ing investigated here, the case of a metallic patch array printed
on a dielectric board and placed over the FPA, the configura-
tion studied byNgMou Kehn and Shafai [2009], is considered
and assumed in the analyses to follow, which would not at all
affect the concepts to be relayed.

3.1. Fourier Transform and Mutual Coupling Concepts

[21] Let the spectral field (in kx, ky domain) radiated by the
metallic patch into the region above the periodic patch array
(z> zi�1; see Figure 1) be stated as

~~
E
! ex kx; ky

� � ¼ XNp

p¼1

ap
~
f
!~

p kx; ky
� ��eeG kx; ky; z > zi�1

� �
(4)

where ap is the amplitude coefficient of the pth basis function
expanding the patch electric current, with

~~
f
!

p kx; ky
� � ¼ ∬

x;yð Þ2patch

!
f p x; yð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

pth basis function
of patch current

e j kxxþkyyð Þdxdy (5)

being the two-dimensional (2D) Fourier transform of the pth
basis electric current fp(x, y) existing over the metallic patch
parallel to the xy plane (one printed on the top surface of the

dielectric slab within each unit cell; see Figure 1), and whereeeG kx; ky; z > zi�1

� �
is the spectral Green’s function (numerical

type, i.e., non-analytical) for multilayer structures, i.e., the
G1DMULT routine.
[22] Subsequently, the spatial domainfield is obtained through

the inverse transform that involves only a summation over spec-
tral components, i.e., discrete spectrum, due to the periodicity
of the structure along x and y. This is expressed as follows:

!
Eex x; y; z > zi�1ð Þ ¼ 1

dxdy

X
m;n

~~
E
! ex kx; ky; z > zi�1

� �
e j kxmxþkyny (6)
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Figures 3a and 3b, which show continuous and discretized amplitude levels (without phase information),
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in which the discrete spectral coordinates are given by

kxm ¼ k0 sinθ0 cosf0 þ 2mp=dx; kyn ¼ k0 sinθ0 sinf0 þ 2np=dy

where m and n are integers; θ0 and f0 are angular coordi-
nates defining the direction of the dominant Floquet modal
beam; dx and dy are the periods along x and y of the 2D
periodic structure, respectively; and k0 is the usual free space
wave number. Under the phased array scenario, (θ0, f0)
defines the steered main beam direction.
[23] When all elements are excited for the phased array

scenario beamed toward the direction defined by (kx0, ky0),
the electric current over the (u, v)th patch centered at (x= udx,
y= vdy) is written as

!
J uvð Þall udx � dx

2
< x < udx þ dx

2
; vdy � dy

2
< y < vdy þ dy

2

� �

¼
XNp

p¼1

a00 allð Þ
p

!
f p x� udx; y� vdy
� �

e j kx0udxþky0vdy

!f uvp x;yð Þ

(7)

which is valid only over the range of x and y values as
explicitly indicated in the argument (the current is zero
everywhere else). The spatial domain vector function fp(x
� udx, y � vdy) represents the pth basis current of the (0,
0)th patch that is translated by (x = udx, y= vdy) from the
origin. The untranslated basis current (u = v = 0) is the gener-
ating basis current function for the periodic basis current
function that spans throughout the entire array aperture.
The variables kx0 and ky0 are the usual dominant Floquet
harmonics pertaining to the steered main beam. The term
a00 allð Þ
p is the solved amplitude coefficient for the (0, 0)th
element under the phased array scenario steered to that
particular main beam. The superscript “all” denotes the all-
excited phased array scenario.
[24] Consequently, the current over the entire aperture

[�1< x<1,�1< y<1] can be expressed as a super-

posed sum of
!
J uvð Þall in equation (7) over all u and v element

indices, i.e.,

!
J �1<uv<1ð Þall
entire aperture �1 < x; y < 1ð Þ

¼
X1

u;v¼�1

!
J uvð Þall udx � dx

2
< x < udx þ dx

2
; vdy � dy

2
< y < vdy þ dy

2

� � (8)

[25] Now, let zuvp be the coefficient for the coupling from
the (0, 0)th excited waveguide element in fundamental mode
with index pin (the only one excited) to the amplitude coef-
ficient auvp of the pth basis function of the (u, v)th patch cur-
rent. Therefore, when only the (0, 0)th element is excited
(the rest passively match terminated), the current over the
(u, v)th patch can be written as

!
J uv sole 00ð Þ x; y; zi�1ð Þ ¼

XNp

p¼1

A00
pin
zuvp|fflfflffl{zfflfflffl}

auv soleð Þ
p

!
f p x� udx; y� vdy
� �

(9)

being the current over the (u, v)th patch when only the (0, 0)th
element is excited, with all the rest passively match terminated.
[26] By inversing the definition of zuvp , let z�uv

p be the
coefficient for the coupling from the solely excited (u, v)th

element in fundamental mode to the amplitude coefficient
a00p of the pth basis function of the (0, 0)th patch current.
Then, the reverse case of equation (9) is written as

!
J 00 sole uvð Þ � dx

2
< x <

dx
2
;� dy

2
< y <

dy
2
; zi�1

� �
¼

XNp

p¼1

Auv
pin
z�uv
p|fflfflfflffl{zfflfflfflffl}

a00 soleð Þ
p

!
f p x; yð Þ 2 0; 0ð Þthpatch (10)

being the current over the (0, 0)th patch when only the (u, v)
th element is excited by the (pin)th mode. It is again asserted
that this current function vanishes outside the range speci-
fied, i.e., outside the (0, 0)th patch.
[27] Therefore, superposing infinitely many (u, v)th cases

of equation (10) to obtain the current over the (0, 0)th patch
under the infinite phased array scenario when beamed to-
ward a certain direction defined by (kx0, ky0), we have (with
Auv
pin
set to unity for all u and v indices pertaining to a uniform

phased array)

!
J 00 allð Þ � dx

2
< x <

dx
2
;� dy

2
< y <

dy
2
; zi�1

� �

¼
X1

u;v¼�1

!
J 00 sole uvð Þ e j kx0udxþky0vdy

for phase diff between
u; vÞth andð0; 0ð Þth

¼
X1

u;v¼�1

XNp

p¼1

z�uv
p

!
f p x; yð Þe jkx0udxþky0vdy

¼
XNp

p¼1

X1
u;v¼�1

z�uv
p e j kx0udxþky0vdy

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

a00 allð Þ
p

!
f p x; yð Þ ¼

XNp

p¼1

a00 allð Þ
p

!
f p x; yð Þ

(11)

where a00 allð Þ
p is the amplitude coefficient of the pth basis

function of the (0, 0)th patch current under the all-excited
phased array scenario, which can also be inferred by
setting u = v = 0 in equation (7). Note the very important
exponential term that accounts for the phase shift between
the (u, v)th element and the (0, 0)th element (at zero
phase)—recall that in an infinite phased array scenario,
the variation (of either fields or currents) of every element
is the same in all elements, but with a phase difference
determined by the phasing of the elements (phase gradient
over the array) that determines the steered main beam
direction. This pertains also to the dominant Floquet mode
(kx0, ky0).
[28] Since this a00 allð Þ

p is scan dependent (under phased array

scenario), let us write it as a00 allð Þ
p Φx ¼ kx0dx;Φy ¼ ky0dy

� �
with expressed argument. Explicitly stating thisa00 allð Þ

p in equa-
tion (11),

a00 allð Þ
p Φx;Φy

� � ¼ X1
u;v¼�1

zuvp e
�j uΦxþvΦy (12)

where Φx= kx0dx, Φy = ky0dy.
[29] Therefore, the associated forward Fourier transform is

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
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zuvp ¼ 1

4p2

Zp
Φx¼�p

Zp
Φy¼�p

a00 allð Þ
p Φx;Φy

� �
e j uΦxþvΦy dΦxdΦy (13)

[30] Placing this expression into equation (9), with A00
pin

in
there set to unity (as we have considered uniformly excited
phased array, with unit amplitude) and since the x and y
coordinates are affected by neither the summation (over

basis function index p) nor the integration (with respect to
Φx and Φy), we are at liberty to arbitrarily define a new
primed coordinate system with origin at (x = udx, y= vdy),
thus yielding the following:

!
J uv sole 00ð Þ � dx

2
< x0 <

dx
2
;� dy

2
< y0 <

dy
2
; zi�1

� �

¼ 1

4p2
XNp

p¼1

Zp
Φx¼�p

Zp
Φy¼�p

a00 allð Þ
p Φx;Φy

� �
e juΦxþvΦy dΦxdΦy

!
f p x

0
; y

0
� � (14)

where fp(x0, y0) is the pth basis current of the (0, 0)th patch,
being the generating basis current function of the entire peri-
odic basis current function spanning over the whole array
aperture.
[31] Upon using equation (7) in equation (14), we get

!
J uv sole 00ð Þ � dx

2
< x

0
<

dx
2
;� dy

2
< y

0
<

dy
2
; zi�1

� �

¼ 1

4p2

Zp
Φx¼�p

Zp
Φy¼�p

!
J uv¼00ð Þall � dx

2
< x <

dx
2
;� dy

2
< y <

dy
2
;Φx;Φy

� �
⋯� e j uΦxþvΦy dΦxdΦy

8<:
9=;

(15)

[32] Now,
!
J uv¼00ð Þall has already been acquired via the

solution of the infinite all-excited phased array problem (as
described by Ng Mou Kehn and Shafai [2009]), and it is
expressed as follows:

!
J uv¼00ð Þall ¼ 1

dxdy

X
m;n

X
p

a00 allð Þ
p Φx;Φy

� �ee
f
!

p kxm; kyn
� �

e j kxmxþkyny (16)

where a00 allð Þ
p is the solved amplitude coefficient of the pth

RWG (after Rao, Wilton, and Glisson [Rao et al., 1982])
basis function expanding the patch electric current, as was
done by Ng Mou Kehn and Shafai [2009].
[33] Hence, with equation (16) placed into equation (15),

we obtain

[34] Let us next write the far-zone electric field radiated

by the patch current
!
J ap x

0
; y

0
; zi�1

� �
, under the EES,

in which the primed x and y coordinates in the argument
span over the entire aperture, as the following inverse
transform:

where

ee
J
!

ap kx; ky
� � ¼ Z1

y0 ¼�1

Z1
x0 ¼�1

!
J ap x

0
; y

0
� �

e�j kxx
0 þkyy

0
dx

0
dy

0
(19)

with

!
J ap x

0
; y

0
� �

¼
X
uv

!
J uv soleð Þ x

0
; y

0
� �

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
of equation 9ð Þ

e�j kxudxþkyvdy (20)

in which the exponential term accounts for the phase shift
from the (0, 0)th element with zero phase to the (u, v)th
one, pertaining to a phase-steered beam direction corre-
sponding to kx and ky.
[35] Placing equation (17) into equation (20), with an

inconsequential change in the sign of the exponent for the
inverse transform (discrete summation) adopting the more
common convention, we have

!
J uv sole 00ð Þ � dx

2
< x0 <

dx
2
;� dy

2
< y0 <

dy
2
; zi�1

� �
¼

¼ 1

4p2dxdy

Zp
Φx¼�p

Zp
Φy¼�p

X
m;n

X
p

a00 allð Þ
p Φx;Φy

� �ee
f
!

p kxm; kyn
� �

e j kxmxþkyny

" #
e juΦxþvΦy dΦxdΦy

( )
(17)

!
E far zone
EES xo; yo; zoð Þ ¼ 1

4p2

Z1
ky¼1

Z1
kx¼1

ee!
J ap kx; ky

� �� ~~!G kx; ky
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}ee!

E kx; ky; zo
� �

e j kxxoþkyyodkxdky (18)
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where the primed kx0 and ky0 correspond to the observation
direction under the EES.
[36] The k0x0 and k0y0 in the bracketed superscripts on the left

sides of these two equations signify that these currents existing
over the entire array aperture under the EES pertain to the
situation where the field observation (under the EES) is toward
that direction defined by these primed variables. Hence, there
will be different current distributions over the entire array ap-
erture for various field observation directions under the EES.
[37] Using the concept manifested by equation (21) and

then denoting eeGFw
patch as the spectral Green’s function for the

Fw field (F may be E or H, and w may be x, y, or z) radiated

by spectral electric current excitation
~~
f
!

p kxm; ; kyn
� �

(they are
the pth basis functions of the patch electric currents), both
under the multilayer scenario with the periodic patch array
present, any general field component Fw can be expressed as

where G denotes the spectral Green’s function having its
usual superscript notation for the field component involved
and the subscript representing the kind and location of the
source (“patch” here means electric current source over the
PEC patch). The bracketed subscript on the left side containing
k0x0 and k0y0 denotes that this field component under the EES
pertains to the situation where the field observation (under the
EES) is toward that direction defined by these primed variables.
[38] If we take the forward transform of equation (22), i.e., takeZ1!dx

2

x0 ¼�1!�dx
2

Z1!dy
2

y0 ¼�1!�dy
2

��ej k 0x0x0þk0y0y
0ð Þdx0

dy
0
throughout, we obtain

in which Ω has been introduced to represent

Ω Φx;Φy

� � ¼ Ωx Φxð ÞΩy Φy

� �
¼

X
p

a00 allð Þ
p Φx;Φy

� �ee
f
!

p kxm; kyn
� ��eeGFw

patch kxm; kyn; z
� �

;

(24)

which is a quantity that is scan dependent, i.e., varies as a func-
tion of θ and f via kx0 ¼ k0 sinθ cosf ¼ 2pf

ffiffiffiffiffiffiffiffiffi
m0e0

p
sinθ cosf

and ky0 ¼ k0 sinθ sinf ¼ 2pf
ffiffiffiffiffiffiffiffiffi
m0e0

p
sinθ sinf . The depen-

dence on Φx= kx0dx and Φy= ky0dy is assumed separable, as
shown.
[39] Note the reduction of surface integration limits to

cover only the unit cell � dx
2 ≤x

0≤ dx
2 ;� dy

2 ≤y
0≤ dy

2 of the (uv)
th element. Also, observe the incorporation of primes to
the kx0 and ky0 quantities lying outside the integration with

respect to Φx = kx0dx and Φy= ky0dy so as to distinguish them
from the integration variables (unprimed). With further
rearrangement, swapping prime and unprimed coordinates,
and applying the well-known identity, we have

X1
r¼�1

e jr c�c
0
¼ 2p when c ¼ c

0

0 otherwise
¼ 2pd c� c

0



describing both 1⇌ d and the shifting properties of the
Fourier transform. With further use of another well-known
result,

!
J

k
0
x0 ;;k

0
y0ð Þ

ap x; yð Þ

¼ 1

4p2dxdy

X
uv

Zp
Φx¼�p

Zp
Φy¼�p

X
m;n

X
p

a00 allð Þ
p Φx;Φy

� �ee
f
!

p kxm; kyn
� �

e�j kxmxþkyny

" #
e j uΦxþvΦy dΦxdΦye

�j k
0
x0udxþk

0
y0vdy

( )
(21)

FEES
w k0 x0;k

0
y0ð Þ x; y; zð Þ ¼

¼ 1

4p2dxdy

X
uv

X
m;n

Zp
Φx¼�p

Zp
Φy¼�p

X
p

a00 allð Þ
p Φx;Φy

� �ee
f
!

p kxm; kyn
� ��eeGFw

patch kxm; kyn; z
� �" #

⋯� e�j kxmxþkynye j uΦxþvΦy dΦxdΦy

8><>:
9>=>;e�j k

0
x0udxþk

0
y0vdy

(22)

FEES
w k

0
x0; k

0
y0

� �

¼ 1

4p2dxdy

X
uv

Zdy2
y0 ¼�

dy
2

Zdx2
x0 ¼�

dx
2

X
m;n

X
p

Zp
Φy¼�p

Zp
Φx¼�p

Ω Φx;Φy

� �
e�j kxmxþkynye j uΦxþvΦy½ �dΦxdΦy

8><>:
9>=>;⋯

⋯� e�j uk
0
x0dxþv k

0
y0dy½ �eþj k

0
x0x

0 þk
0
y0y

0
dx

0
dy

0

(23)
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Zc
2

w¼�c
2

e j2ppdw
wdw ¼ cdp0 ¼ c when p ¼ 0

0 otherwise




and using equation (24) form= n=0, we obtain the following:

[40] Hence, the strength of the Fw field component of
the dominant (0, 0)th Floquet modal plane wave
(where main beam is “mb”) of the infinite phased array

pertaining to a certain kx; ; ky
� � ¼ kx0; ; ky0

� � ¼ kmbx ; kmby

� �
¼

k0 sinθmb cosfmb; k0 sinθmb sinfmbð Þ is also the Fourier-

transformed spectral domain field component eeFw kx; ky
� �

under the EES, being the amplitude of the (kx, ky)th spectral
plane wave component. It is equation (25) that is the ultimately
computed quantity used in equations (30) and (31) for the
radiated fields under the EES.

3.2. Embedded Element Radiation

[41] Referring to the work of Sipus [1997] on far-field
calculations using PEC equivalence involving equivalent
magnetic current source aperture, we write the following
PEC equivalent magnetic current located at z = zap just above
the PEC patch array (see Figure 1):

!
M EES

eq x0; y0; z0 ¼ zap
� � ¼ !

EEES x
0
; y

0
; z

0 ¼ zap
� �

� ẑ

¼ x̂ EEES
y k0 x0;k

0
y0ð Þ x

0
; y

0
; z

0 ¼ zap
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
of equation 22ð Þ

þŷ �EEES
x k 0 x0 ;k

0
y0ð Þ x

0
; y

0
; z

0 ¼ zap
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
of equation 22ð Þ

26664
37775

(26)

[42] The electric field components on the right side are those
of equation (22). From the work of Sipus [1997], the far field is

!
EEES
far r; θ;fð Þ ¼ �2

jke�jkr

4pr

Z1
y0 ¼�1

Z1
x0 ¼�1

½
!
M EES

eq x
0
; y

0
zap

� �
� r̂ θ;fð Þ�e j kxx

0 þkyy
0 þkzzapdx

0
dy

0

(27)

where the factor 2 at the front is due to imaging. The integra-
tion spans over the entire source aperture located at z = zap
with infinite extent along the transverse x-y plane. The wave
numbers are

kx ¼ k sinθ cosf; ky ¼ k sinθ sinf; kz ¼ k cosθ (28)

where (θ, f) are the angular coordinates of the observation
direction under the EES.
[43] Placing equation (26) in equation (27),

!
EEES
far r; θ;fð Þ ¼ � jke�jkr

2pr
e jkzzap

Z1
y0 ¼�1

Z1
x0 ¼�1

EEES
y

�EEES
x
0

0@ 1A

�
sinθ cosf
sinθ sinf
cosθ

0@ 1Ae j kxx
0 þkyy

0
dx

0
dy

0

(29)

[44] Using θ̂ ¼ x̂ cosθ cosfþ ŷ cosθ sinf� ẑ sinθ and
f̂ ¼ �x̂ sinfþ ŷ cosf , the θ and f components of this
far-zone electric field under the EES can be expressed sepa-
rately as follows:

EEES
θ r; θ;fð Þ ¼ e�jkr

r
GEES

θ θ;fð Þ

¼ jke�jkr

2pr
ejkzzap

h eeEEES
x kx; ky; zap

� �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
of equation 25ð Þ

cosfþ eeEEES
y kx; ky; zap

� �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
of equation 25ð Þ

sinf
i

(30)

EEES
f r; θ;fð Þ

¼ e�jkr

r
GEES

f θ;fð Þ ¼ � jke�jkr

2pr
e jkzzap

eeEEES
x kx; ky; zap

� �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
of equation 25ð Þ

cosθ sinf� eeEEES
y kx; ky; zap

� �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
of equation 25ð Þ

cosθ cosf

2664
3775

(31)

in which theeeEEES
w kx; ky; zap

� �
(w is x or y) is from equation (25).

[45] Hence, the essence here is that any certain far-field
observation direction (θ, f) under the EES determines a
certain spectral component (kx, ky) [defined in equation
(28)] of the aperture electric field (related to the PEC
equivalent magnetic current source sheet), also under
the EES. As asserted earlier, just after equation (25),
this spectral (kx, ky) component of the E field (say,
the Ew component) under the EES is simply the strength
of that Ew field component of the dominant (0, 0)th
Floquet modal plane wave (main beam) of the infinite
phased array that is steered toward a certain main beam di-

rection (θmb, fmb), with kx; ky
� � ¼ kx0; ky0

� � ¼ kmbx ; kmby

� �
¼

k0 sinθmb cosfmb; k0 sinθmb sinfmbð Þ:

eeF EES
w kx; ky; z

� �
¼ 1

dxdy

X
p

a00 allð Þ
p Φx ¼ kxdx;Φy ¼ kydy

� �ee
f
!

p kx; ky
� ��eeGFw

patch kx; kyz
� �þ ⋯

⋯þ 1

dxdy

X
pqr

A00 allð Þ
pqr Φx ¼ kxdx;Φy ¼ kydy

� �eeg! pqr kx; ky
� ��eeGFw

apert kx; kyz
� � (25)
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[46] Subsequently, by basic Poynting’s power theorem,
the total power radiated out into the half-space above the
periodic patch array under the EES is

PEES ¼ 1

2�

Z2p
f¼0

Zp=2
θ¼0

GEES
θ θ;fð Þ�� ��2 þ GEES

f θ;fð Þ
��� ���2 sinθdθdf (32)

where � ¼ ffiffiffiffiffiffiffi
m=e

p
is the well-known intrinsic wave imped-

ance of the medium above the array (typically vacuum).

4. Numerical Results and Discussion

[47] All numerical results presented herein for the dielec-
tric-covered HRW array were generated by the moment
method code developed according to the analysis and formu-
lation just described. The computed data for HRW arrays
without any form of cover were also obtained by the code
constructed by Ng Mou Kehn and Kildal [2005].

4.1. Universal Conditions

[48] The fixed conditions that apply throughout the numer-
ical investigations are first declared. A constant frequency of
10 GHz is considered and a square unit cell is studied, for
which the periods dx and dy along x and y, respectively, are
both equal to half a wavelength, i.e., 15 mm. The dimensions
along x and y of the likewise square elemental waveguide
aperture are lx=0.98dx= ly=0.98dy.

[49] The 10 GHz frequency is also the TEM frequency of
the HRW elements. Hence, the waveguides are operated at
the hard condition [Ng Mou Kehn and Kildal, 2005]. The
ratio of the side slab thickness (any of the two slabs) to the
total waveguide width is maintained at 1:40 throughout. In this
way, the linearly polarized aperture fields over the dominant
central air region are uniform in amplitude, thus providing
“clean” elemental samplers of the focal plane fields.
[50] A subarray population of 21� 21 is used in the sam-

pling of the focal plane fields corresponding to the various
beam angles. As explained in section 2.2.1, these focal plane
fields are synthesized by integration of the PO currents arising
on the paraboloid surface, which are induced by the incident
plane waves (on receive) along the respective beam directions
(on transmit). In the present study, a paraboloidal reflector
with a half-subtended (dish) angle of 60� and a diameter of 5
m is considered. An additional tier of “dummy” (unexcited)
elements comprising a four-element-thick track surrounding
the periphery of the square excited portion (21� 21) of the
array is included in the analysis. By taking the coupled powers
(especially from the excited edge elements) lost into these
dummy boundary elements into account, the accuracy in the
behavior of the excited elements near the edge of the subarray
is improved. Hence, the total number of elements that are
actually calculated, including both excited and non-excited
ones, is 29� 29.
[51] For off-axis beams, the synthesized sets of concentric

focal plane field rings are displaced from the focal point of
the paraboloid. In the present study, the geometric centers

Figure 5. Each subplot gives the variation of a certain subefficiency (or total efficiency for the last one)
with beam angle at various (er, d) slab cases corresponding to its own global maximum as well as the
global maxima of the other subefficiencies. This figure is for the 60� half-subtended angle of a parabolic
reflector.
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of the 21� 21 FPA feeds and those of the various sets of
displaced focal plane field rings (corresponding to different
beams) are always made to coincide.

4.2. Dielectric-Covered Versus Uncovered FPAs

[52] The parameters of the dielectric layer investigated
here are relative permittivity and thickness (er and d, respec-
tively, in Figure 1). Two categories of results are presented
separately, one for single scanned beams and another for si-
multaneously overlapping beams. For the latter category,
two beams are considered in this work.
4.2.1. Single Scanned Beam
[53] An optimizationwas conducted over the two aforemen-

tioned dielectric sheet parameters (er and d) on the computed
subefficiencies of the 60� paraboloid with a 5 m diameter
fed by an HRW FPA covered with dielectric sheets having
those attributes within the parametric search space for various
beam angles (a =0�, 1�, 2�, and 3�). Each subplot in Figure 5
gives the variation of a certain subefficiency (edecoup, espill,

eillum, epol, or eap) as well as the total efficiency etot (the last sub-
plot) with beam angle, with each trace pertaining to a certain
(er, d) slab case corresponding to either its own optimal value
or that associated with the maximum of any of the other three
subefficiencies. Findings from this optimization interestingly
reveal that, with the sole exception of the phase subefficiency,
when a certain subefficiency is globally maximum under a
certain slab configuration (er, d) for a particular beam angle,
it is also optimal with that same dielectric sheet for all other
considered beam angles, as the legends in all subplots in
Figure 5 show. Particularly, for the total efficiency [equation
(1)] in the last subplot, being the ultimate performance indica-
tor, there is an optimum slab configuration of (er = 2.25,
d=2.75 mm) that is universal to all investigated beam angles.
In addition, most intriguingly, this optimum dielectric cover
coincides with that of the decoupling efficiency edecoup
[of equation (3)], as evidenced by the last two subplots in
Figure 5. This indicates the intimate connection between the
overall performance and the decoupling efficiency (more on
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Figure 6. (a) Variation of subefficiencies with beam angle for a dielectric-covered 21� 21 HRW FPA
for the three best (er, d) combination pairs. (b) Improvement of subefficiencies by the three best slab-cov-
ered FPAs as compared to uncovered FPAs for a range of beam angles. (c) Fractional degradation of
subefficiencies with respect to axial level.
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this later). By mere inspection of the plots for the decoupling
and polarization subefficiencies (edecoup and epol), it is readily
observed that the use of dielectric sheets taking on the (er, d)
configuration pertaining to the maximum value of either the
spillover subefficiency or the illumination subefficiency results
in a drastic fall in both edecoup and epol. As for the illumination
subefficiency, it is also easily seen that it suffers severe degra-
dation when the slab cover assumes the (er, d) configuration of
the maximum spillover subefficiency. Only the spillover
subefficiency is not adversely affected by a dielectric layer
associated with the maximum illumination subefficiency,
although this is inconsequential, since as long as a slab cover
exacerbates just any single subefficiency, it compromises the
entire overall performance (total efficiency). Therefore, under
no circumstance should the dielectric sheet take on the (er, d)

configuration of the maximum spillover or illumination
subefficiency.
[54] On the contrary, operating under slab conditions cor-

responding to the maximum values of either the decoupling
subefficiency or the polarization subefficiency does not give
rise to an overly detrimental performance of any of the other
three remaining subefficiencies. This is even in spite of the
fact that the spillover subefficiency instead sustains the two
strongest declinations from its maximum value when the
slab cover takes on (er, d) conditions linked with the maxi-
mum decoupling and polarization subefficiencies, simply
because this loss in spillover efficiency is only by amounts
within just 2% (see the narrow vertical axis range of the
spillover efficiency plot), thus not having any significant
impact. An interesting observation is that the beneficial
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effects of operating under slab conditions pertaining to the
maximum decoupling and polarization subefficiencies are
rather similar, in that they both give rise to comparably high
performance levels of all subefficiencies, not only for the other
two subefficiencies (spillover and illumination) but also for
the one (decoupling or polarization) other than themselves.
But even so, the decoupling efficiency is still found to emerge
as the more pertinent of the two, wielding a stronger influence
than the polarization efficiency, thereby being the ultimate
solitary factor that vitally dictates the overall efficiency perfor-
mance of the parabolic reflector fed by an HRW FPA covered
with a dielectric sheet. This is better appreciated by the last
subplot in Figure 5 for the total efficiency as the vertical axis
quantity, in which the fact that the decoupling efficiency is still
superior to the polarization efficiency in promoting the total
efficiency is evident. Employing a dielectric slab for optimal po-
larization efficiency is still inferior to using one for maximum
decoupling efficiency, which (the latter slab) in fact shares ex-
actly the same set of sheet parameters (er = 2.25, d=2.75 mm)
with the optimum total efficiency. Operating under slab condi-
tions for optimum polarization efficiency nonetheless yields
the second best performance, as conveyed by the last subplot
in Figure 5 for the total efficiency. The devastating effects of
using dielectric covers in connection with the highest spillover
or illumination subefficiency on the overall performance are
also clear fromFigure 5, just as what had been discussed. At this
juncture, we can loop back to the statement made earlier about
the close ties of the decoupling efficiency with the total effi-
ciency. The decoupling efficiency is thus singularly responsible
for the general performance of the dielectric-covered HRW
FPA-fed reflector, and maximizing it translates to the optimal
overall health of the antenna system.
[55] Singling out the best performing case of (er = 2.25,

d= 2.75 mm) and two other closely competing ones, namely,
(er = 3.25, d= 1.25 mm) and (er = 4.25, d = 0.75 mm), the
comparisons of their various subefficiencies with those of
their uncovered counterparts are given in Figure 6a. As can
be clearly seen, these best dielectric slab performers all

provide overall efficiencies that are superior to those of the
uncovered FPAs, for all beam angles. This constitutes an
important finding: when a dielectric layer improves the
performance of a certain beam angle, it also does so for all
other beam angles. This elevates the advantages and
desirability of such FPA covers. For near-axial beams (small
beam angles), the optimal dielectric cover raises the total
efficiency of the uncovered FPA by around 0.3 dB, but even
more (beyond 0.4 dB enhancement) for larger beam angles
(3� in our case; see Figure 6b). Therefore, we have demon-
strated the ability of dielectric covers to improve the overall
efficiency of FPA-fed reflectors, not only for one beam but
over a range of beam angles, and their advantage over
uncovered FPAs becomes stronger with off-axis scanning.
[56] The differential performance with beam angle is now

presented. Figure 6b conveys the improvement of all
subefficiencies by the three best performing slab-covered FPAs
over their uncovered counterparts, being simply the difference
in decibel levels in Figure 6a. As can be seen, depending on
which subefficiency is being considered, the aforementioned
order of (er = 2.25, d=2.75 mm), (er = 3.25, d=1.25 mm), and
(er = 4.25, d=0.75 mm) could be in either descending order or
ascending order of performance. It is however the total
efficiency that ultimately matters, which cannot be deduced
from looking at just one or even a few subefficiencies. Instead,
all subefficiencies contributing to the overall performance of the
FPA-fed reflector system must be taken into account, as has
been done here. As asserted earlier, the decoupling efficiency
is found to play the primary role in dictating the optimal slab,
thus highlighting its utmost importance. Focusing on the last
subplot in Figure 6b on the total efficiency, it is evident that
the benefit of all dielectric covers becomes intensified as the
beam angle increases (seen by the positive sloping), with the
best cover (er = 2.25, d= 2.75 mm) providing the greatest
advantage, attaining an impressive 0.44 dB or 11% enhance-
ment upon the 3� beam.
[57] The fractional degradation of the various subefficiencies

with respect to the level of each respective axial beam due to
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Figure 8. (a) Total efficiency plotted against relative permittivity er and depth d of the dielectric sheet for
overlapping beam angles a = 1� and 2�; left: 1� beam, right: 2� beam. The global maxima of 45.5071395%
and 45.1062526% correspond to the 1� and 2� beams, respectively, both at (er = 2.25, d= 2.75 mm). (b)
Aperture efficiency plotted against relative permittivity er and depth d of the dielectric sheet for
overlapping beam angles a= 1� and 2�; left: 1� beam, right: 2� beam. The global maxima of
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The global maximum of 96.9745% at (er = 2.25, d=2.75 mm) coincides with that of the total efficiency as
well as the total and decoupling efficiencies of all other investigated beam pair angles.
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beam scanning is provided in Figure 6c. Like before, whether
the uncovered FPA or slab-covered version performs better de-
pends on which subefficiency is looked at. For the total effi-
ciency, it is found that all dielectric-covered FPAs sustain less
relative losses than their uncovered versions as the beam angle
increases. The best slab (er = 2.25, d=2.75 mm) again offers the
least deterioration, falling to only �0.115 dB or 97.4% of
the axial beam efficiency upon the 3� beam as opposed to
the �0.174 dB or 96.1% drop suffered by the uncovered
FPA. In other words, the sheath “slows down” the degrada-
tion with increasing beam obliquity as compared to the
case without it. Hence, the dielectric-covered configuration
is not only better than its unshielded counterpart for
every beam angle but also superior in terms of deterioration
rate with the beam angle. All these studies thus show that
when an optimal dielectric cover is found, it also performs
the best in terms of differential performance, which is an
excellent aspect.
[58] The co-polar directive gain plots of the parabolic

reflector fed by the best (er = 2.25, d = 2.75 mm) and among
the poorer (er = 9.25, d= 3.25 mm) performing dielectric
covers for the four beam angles (0�, 1�, 2�, and 3�) are
presented in Figure 7. These secondary field patterns are
generated by Fourier integration of the aperture fields
obtained via GO projection of the primary FPA feed–
radiated fields. It is noted that the Fourier integrations are
performed over the usual untilted focal plane aperture
(perpendicular to the reflector axis), even for off-axis beams
(the tilted elliptical aperture concept described in section
2.2.2.2 is only for the calculation of the subefficiencies).
These patterns are computed in the azimuthal plane
containing the steered beams (f = 0 here). As clearly seen
from these radiation patterns, the various main lobes are
reproduced very accurately toward the respective beam
angles. The main beam levels of the best slab performer
are all close to (just less than 1 dB below) the 54.4 dBi
theoretical maximum directivity (for the present 167l meter
paraboloidal diameter), in view of the high total aperture
efficiencies, all about �0.65 to �0.75 dB, both also being
less than 1 dB (see the best performer in Figure 6a). On
the other hand, the weakly performing dielectric cover
selected for comparison gives main beam gain levels of
around 47 dBi, being 7.4 dB below the theoretical maxi-
mum. This concurs well with its approximate �7.25 dB
(�19%) total efficiency for all four beam angles [for this
(er = 9.25, d= 3.25 mm)]. This aspect accentuates the
remarkable correctness and thus astounding beauty of the
entire theoretical framework laid out in sections 2 and 3
from which these computed results are generated—that the
efficiencies computed by field integration of the focal planes
[tilted (oblique beams) or untilted (axial beams)] and by
calculation of the FPA feed–radiated powers would be so
profoundly coherent with the secondary radiation pattern
of the reflector generated by Fourier aperture integration of
the (untilted) focal plane fields, a phenomenon that is
certainly difficult to achieve without immense integrity of
the formulated theories and concepts. This result exemplifies
how vital it is to include the decoupling efficiency for
complete and accurate characterization of the total antenna
system, as we have aptly done here. Because had it been
otherwise, e.g., only the conventional aperture subefficiencies
of reflectors were considered, an incorrect quantification of the

performance would result, showing up as discrepancies in
drop levels in the radiation patterns of the reflector.
4.2.2. Overlapping Dual Beams
[59] We have shown that dielectric covers placed over

FPA feeds of parabolic reflectors are able to enhance the
total efficiency of single steered beams. We now proceed
to explore the prospects of such layers in improving the
performance of simultaneously overlapping multiple beams
as well. A similar optimization procedure was performed
on the various subefficiencies and the total efficiency of
various pairs of overlapping beams over er and d. As
explained in section 2.2.3, each beam of every pair has its
own total efficiency and separate set of subefficiencies,
except for the decoupling and spillover efficiencies that are
shared by both beams. Here the same 60� paraboloid with
a 5 m diameter is fed by dielectric-covered FPAs excited
(in a truncated and discretized manner) according to the
superposed focal plane fields synthesized from the respec-
tive pair of incident plane waves associated with the two
beam directions, as explained in section 2.2.3. The various
beam pairs investigated are permutations of 0�, 1�, 2�, and
3�, hence a total of six cases. Figures 8a, 8b, and 8c give
the contour plots of the total, aperture, and decoupling effi-
ciencies, respectively, versus the relative permittivity er and
depth d of the dielectric cover, for the 1� and 2� beam pair,
just as the selected case for illustration. In each of the former
two figures, the subplots to the left and right are, respec-
tively, for the 1� and 2� beams. The optimal efficiency value
is also indicated along with its associated slab conditions
(er, d) in each contour plot. The results for the other five
beam pair cases, namely, 0� and 1�, 0� and 2�, 0� and 3�,
1� and 3�, as well as 2� and 3�, are not presented due to space
limitation and because they look similar from the perspective of
the contour plots. Textually describing the results, it has been
found that for any beam pair, the maximum total efficiencies
of both beams interestingly occur at the same optimum
dielectric cover (er = 2.25, d=2.75 mm). Amazingly, all
investigated pairs of overlapping dual beams share that same
common optimum dielectric sheet, being er = 2.25 and
d=2.75 mm, that produces the maximum total efficiency for
both beams of every pair. More fascinatingly, this optimal slab
configuration is exactly the same as that of all solitary beams
considered in section 4.2.2. In addition, just as is the case for
single steered beams, the slab conditions pertaining to optimum
decoupling efficiencies for all beam pairs are exactly the same
as those that yield the optimal total efficiencies for both beams
of the pair—in the same way as how the decoupling efficiency
plays the predominant role in dictating the combined perfor-
mance for solitary beams. This again elucidates the momentous

Table 1. Aperture and Total Efficiencies of Various Pairs of
Overlapping Beams for Uncovered FPA Feed for Dual-Beam
Reflectors

a eap (dB) etot (dB)

0� and 1� �3.465 �3.455 �3.913 �3.903
0� and 2� �3.813 �3.900 �4.207 �4.294
0� and 3� �3.635 �3.905 �4.067 �4.336
1� and 2� �3.495 �3.515 �3.941 �3.961
1� and 3� �3.847 �3.976 �4.249 �4.378
2� and 3� �3.555 �3.585 �4.002 �4.032
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effect of the decoupling efficiency on the overall performance,
such that optimizing it translates to the maximization of the to-
tal efficiency, this time not only for just one beam but for both
overlapping beams.
[60] It is observed from these results that for all except the

decoupling subefficiency that is shared by both beams, the
various efficiencies of the two individual beams are approx-
imately equal at all slab conditions (er, d) for every beam
pair. In addition, it is seen that the optimum total and
aperture efficiencies of the larger beam angle for every pair
are generally slightly lower than those of the smaller one,
which is as expected. Furthermore, upon comparing with
the numerical data of the single scanned beam study in the
preceding subsection for corresponding (er, d) cases, the
total efficiencies of the two constituent beams for each beam
pair are found to be about 3 dB less than the total efficien-
cies of the respective solitary beams. Hence, a drop in the
total efficiency by approximately 3 dB is generally
sustained when an overlapping beam is added, since about
half the injected energy is channeled into the other beam.
Seen in another way, this fall is also as expected of the
usual loss in gain with beam broadening when the main
lobes of closely overlapping beams merge. The correspond-
ing efficiency data for the same beam pairs radiated by the
same 60� paraboloid of 5 m diameter but fed by uncovered
FPAs are provided in Table 1. In addition to this optimal
dielectric sheet, two other (er, d) cases that provide among
the greatest improvements are those of er = 3.25 and
d = 1.25 mm as well as er = 4.25 and d = 0.75 mm. Extracting
these cases, the enhancement is better presented graphically
in Figures 9a–9c.

[61] Figure 9a shows the decoupling and spillover effi-
ciencies of dual beams generated by the same 60� parabolic
reflector of 5 m diameter fed by dielectric-covered FPAs for
various beam pairs. As asserted in section 2.2.3, these two
subefficiencies are shared by both constituent beams of any
particular pair. The other subefficiencies of the aperture effi-
ciency as well as the total efficiency are presented in
Figures 9b and 9c for the smaller and larger beam angles of
each beam pair, respectively. As explained in section 2.2.3,
there is a set of aperture subefficiencies for every individual
beam of each multiple (dual here) beam configuration. It can
be observed from these figures that the dielectric covers can
indeed significantly improve the total efficiencies of both
constituent beams of all considered beam pairs as compared
to those of the corresponding uncovered FPAs. Particularly, the
enhancement for the best performer (er = 2.25, d=2.75 mm)
is about 0.5 dB for every beam pair. As already explained, it is
remarkable that the optimal dielectric cover configuration
for overlapping dual beams is the same as when only a
single steered beam is radiated, as seen from Figure 6.
Hence, when the dielectric cover is optimized for single
beam steering, it is also optimal for overlapping beams,
which is greatly advantageous. This marks a vital discov-
ery. Also, as asserted, it is shown that once a certain dielec-
tric layer (of certain er and d values) improves a beam pair
(over the uncovered FPA counterpart), it also improves
several, if not all, other beam pairs. This is also a key finding
and further escalates the benefits offered by such dielectric
covers placed over FPA feeds. As a final observation, when
the angular separation between the beam pair is large, all aper-
ture subefficiencies [of equation (2)] except the decoupling
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Figure 10. Co-polar directive gain patterns of various beam pairs for a 60� paraboloid of 5 m diameter
fed by FPAs covered by a dielectric layer with (er = 2.25, d= 2.75 mm) for the best performer and with
(er = 5.25, d = 3.75 mm) for the worst performer corresponding to circle and cross markers, respectively.
The difference in directivity (toward beamed angle) between the best and worst performers equals the dif-
ference in their total efficiency.
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efficiency of every constituent beam degrade as compared to
when the beams are close together. This is exemplified by
the dips and peaks in Figures 9b and 9c as well as the right
side plot in Figure 9a for the spillover subefficiency. The
decoupling efficiency of the left plot in Figure 9a is found
to be unaffected by the beam separation. Therefore, we have
demonstrated and uncovered another important finding:
closely separated beams generally perform better than
widely separated ones.
[62] The co-polar directive gain patterns of various beam

pairs are presented in Figure 10 for both the best (er = 2.25,
d= 2.75 mm) and among the worst (er = 5.25, d= 3.75 mm)
performing dielectric covers. The six beam angle pairs are
0� and 1�, 0� and 2�, 0� and 3�, 1� and 2�, 1� and 3�, as well
as 2� and 3�. As seen, the dual main beams are accurately
produced along the two directions for every pair. The
approximately 3 dB drop from the solitary main beam levels

(about 54 dBi) in Figure 7 to around 51 dBi can be observed,
as explained earlier to be coherent with efficiency loss asso-
ciated with beam broadening and channeling of about half
the injected power into the other beam. Also, as is the case
for the single beams in Figure 7, the drop of about 5 dB in
the main beam levels (for both beam angles, still in Figure 7)
of any beam pair from the best to worst covers is approxi-
mately equal to the difference in the total efficiency between
those two dielectric layers: drop in etot from around �3.7 dB
for the best sheet to about �8.7 dB for the worst. All these
consistently logical phenomena serve as further validation
of the work.
[63] The co-polar and cross-polar contour gain patterns of

the overlapping 0� and 1� as well as 0� and 2� dual beams
are presented in Figure 11. As before, these levels are shown
with respect to the isotropic radiated power. It is clearly seen
how the two strong lobes are accurately produced. Like

(bi) Co-polar, 0 & 2 deg (bii) Cross-polar, 0 & 2 deg

(ai) Co-polar, 0 & 1 deg (aii) Cross-polar, 0 & 1 deg

Figure 11. Contour gain plots with respect to the isotropic radiated power for the co-polar and cross-
polar patterns: for (a) 0� and 1� and (b) 0� and 2� overlapping beams, for a 60� paraboloid with a 5 m
diameter, fed by a dielectric-covered 21� 21 FPA at 10 GHz, with dx = dy= l/2. For both beam pairs,
the best performing cover (er = 2.25, d = 2.75 mm) is considered.
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previously, the four diagonal cross-polar lobes surrounding
each constituent main beam can be noticed. The peak cross-
polar levels are again noted to be at least around 20 dB below
the maximum co-polar levels of their respective main beams.
[64] The reasons why dielectric-covered FPA feeds can

achieve efficiency enhancement of single off-axis and multi-
ple overlapping beam reflectors are two pronged. First, the
decoupling efficiency has been found to be the most crucial
and singularly influential factor on the overall performance
(see Figure 5), demonstrating the greater importance of
operating at the maximum of the decoupling efficiency than
optimizing any other subefficiencies. It encompasses mutual
coupling and reflection losses throughout the FPA. Hence,
the dielectric slab serves as a form of impedance matching
layer. Second, the dielectric cover opens up to infinite
degrees of freedom with unlimited possible combination pairs
of slab parameters (er, d), in stark contrast to just one specific
condition (er = 1, d=1) for the case without any slab cover.

5. Various Reflector Configurations

[65] In addition to the specific case of parabolic reflectors
studied in the preceding section, having a half-subtended
angle of 60� and a diameter of 5 m, various other configura-
tions shall be investigated in this section. Specifically, permu-
tations of dish angles of 30�, 45�, and 60� in connection with
diameters of 2.5, 5, and 7.5 m are also studied. The same FPA
properties as before are retained here, as in the same 21� 21
array population of half-wavelength-sized unit cells
encompassing identical radiating apertures, with the same
buffer elements surrounding the excited portion of the array.

[66] Figure 12 presents several graphs of the optimum
total efficiency with beam angle for various combinations
of dish angle and diameter. Each subplot in the upper row
gives the variation of the maximum total efficiency with
beam angle for a certain dish diameter, each trace within
it pertaining to a particular dish angle, with its associated
(er, d) dielectric slab condition as indicated. The same data
are replotted in the lower row of graphs in the same figure,
but with the dish diameters and angles swapped, i.e., each
subplot in the lower row is for a certain dish angle, with
every parametric trace corresponding to a certain diameter.
Astoundingly, a universal optimal er = 2.25 is observed,
regardless of the dish angle and diameter. The upper row
plots reveal that the optimum slab depth rises with increas-
ing dish angle. The plots in the lower row demonstrate the
invariance of the optimum slab conditions with the dish
diameter for any dish angle. This means that the optimal
dielectric cover varies only with the dish angle (particularly,
only its depth rises with it) and does not depend on the
diameter. This marks yet another monumental discovery.

6. Conclusions

[67] The growing prospects that FPA feeds have on
enhancing the performance of modern reflectors play an im-
portant role in the progress of satellite communications and
radiotelescope technology. Due to the obvious benefits of
retaining a single stationary reflector antenna, such robust
feeds offer strong advantages in terms of scan range, continu-
ity of enlarged field of coverage, ability to provide services to
widely separated locations on earth, and flexibility in achiev-
ing rapidly varying contoured footprints. For these reasons, a
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Figure 12. Each subplot in the upper row gives the variation of optimum total efficiency with beam an-
gle for a certain dish diameter, each trace pertaining to a particular dish angle, with its associated (er, d)
dielectric slab condition as indicated. The same data are replotted in the lower row of graphs, but with
swapping dish diameters and angles, i.e., each subplot for a certain dish angle, with diameter as a paramet-
ric trace. The universal optimal er = 2.25 was discovered, regardless of dish angle and diameter. The upper
row reveals increasing optimum slab depth with increasing dish angle. The lower row shows invariance of
optimum slab conditions with dish diameter for any dish angle.
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dedicated investigation into ways of further improving the
capabilities of FPA feeds is justified. This work has looked
into and successfully demonstrated the ability of dielectric
covers placed over FPA feeds comprisingwaveguide elements
to achieve improved total efficiencies of single steered as well
as multiple overlapping beams, as compared to those of
uncovered FPA feeds. It is shown that the decoupling effi-
ciency of the FPA feed is an important factor for complete
and accurate characterization of the entire FPA-fed reflector
system. Furthermore, we have aptly emphasized the impor-
tance of considering not only one or a few subefficiencies
but the entire set constituting the total efficiency. Another
significant finding is that when a dielectric cover is optimal
for a single steered beam, it also performs the best for multiple
overlapping beams. In addition, whenever a slab cover
enhances a pair of beams, it would also improve other
pairs. All these provide vast benefits. An important aspect
learned is that beams close together generally perform better
than widely separated ones. Finally, a bandwidth study shows
that the performance enhancement afforded by dielectric covers
could enjoy bandwidths that could reach as high as nearly 10%.

[68] Acknowledgment. This work was supported by the National Sci-
ence Council of Taiwan.
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