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Abstract
We investigated experimentally non-paraxial contributions to the high-order far-field pattern of
large-area vertical-cavity surface-emitting lasers in order to explore by analogy the
momentum-space wave distributions of quantum billiards. Our results reveal that non-paraxial
contributions significantly influence the morphology of the high-order far-field pattern. A fast
reliable method is developed for transforming the experimental far-field patterns to the correct
Fourier transform of the corresponding near-field lasing modes. In this way we visualize the
momentum-space (p–q) wavefunctions of quantum billiards.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

The vertical-cavity surface-emitting laser (VCSEL) has been
identified as a promising light source for applications in short
distance communication, data transmission, and sensors [1, 2].
There has been intensive research on physical properties
of the VCSEL, including the optical feedback dynamics,
polarization, and transverse pattern formation [3–6]. Recently,
the analogy between the Helmholtz equation and the time-
independent Schrödinger equation has enables us to exploit
the transverse near-field patterns of oxide-confined VCSELs to
visualize the coordinate-space wavefunctions of 2D quantum
billiards with the same lateral shapes [7–10]. Quantum billiard
systems have been widely used to explore many striking
mesoscopic phenomena such as electron transport [11],
conductance fluctuations in quantum dots [12, 13], and the
diffraction in time effect [14].

Since the far-field pattern is the Fourier transform of

1 Address for correspondence: Department of Electrophysics, National Chiao
Tung University, 1001 Ta Hsueh Road, Hsinchu 30050, Taiwan.

the near-field pattern based on the paraxial approximation,
the momentum-space wavefunctions of 2D quantum billiards
can also be analogously observed with the high-order lasing
modes of VCSELs [8]. Generation of the higher-order
transverse modes can provide more interesting perspectives for
the exploration of the quantum–classical connection. However,
during the free-space propagation of the higher-order lasing
modes, non-paraxial contributions to the total wavevector k
may significantly influence the far-field patterns. Therefore,
it is essentially important to develop an appropriate correcting
method for extracting the momentum-space wavefunctions
from the experimental far-field patterns with the substantial
non-paraxial contribution.

In this work, we first exploit square-shape large-aperture
VCSELs to experimentally investigate the difference between
the low-order and high-order far-field transverse patterns.
Experimental results reveal that the high-order far-field
patterns display significant bowing toward the center of the
device. We define this effect as the pincushion curving of the
Fourier transform of the near-field wavefunction and we refer
to it as pincushion curving. We employ the stationary phase
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Figure 1. (a) Theoretically calculated coherent state |S1,1,0.55π
22,5,+ (x, y)|2 in a 2D square billiard; (b) the correspondence momentum space.

method [15] to confirm that the curving feature arises from
the non-paraxial contribution. Moreover, a useful mapping is
developed to recover the momentum-space wave patterns of
2D quantum billiards from the experimental far-field lasing
patterns. We further numerically explore the higher-order
eigenstates of equilateral triangular VCSELs to demonstrate
that the pincushion curving is a typical feature of the non-
paraxial contribution to the far-field patterns.

From the viewpoint of experimental measurements, the
motivation and significance of this research as well as relevant
materials can be more clearly appreciated. The observation
of near-field patterns of lasing modes inevitably requires a
re-imaging optics with sufficiently high numerical aperture,
whereas the far-field patterns can be directly measured without
any re-imaging optics by simply using a screen. It is
well known that the far-field pattern can be numerically
obtained from the experimental near-field patterns with the
diffraction theory. However, under the circumstances of a
strong non-paraxial contribution, it is scientifically important
to extract the information of the near-field pattern from the
experimental far-field pattern. Our work is aimed at developing
a straightforward procedure for mapping the experimental far-
field lasing pattern into the accurate Fourier transform pattern
of the near-field mode.

2. Coherent states in square quantum billiards

To begin with, we give a brief synopsis for the coordinate-space
and momentum-space representations of the coherent states in
a square billiard. The choice of the square-shape geometry
is motivated by a recent experiment where the wavefunctions
localized on classical periodic orbits were found not only to
be the persistent states in open square quantum dots but also
to be associated with the striking phenomena of conductance
fluctuations [12, 13]. For a square billiard with the vertices at
(±a/2, ±a/2) and (±a/2, ∓a/2), the quantum eigenstates
ψm̃,ñ(x, y) are given by [16]

ψm̃,ñ(x, y) = (2/a) sin
[
km̃ (x + a/2)

]
sin

[
kñ (y + a/2)

]
,

(1)

where kn = nπ/a (n = 1, 2, 3, . . .) and a is the length of the
square boundary. On the other hand, each family of classical
periodic orbits in a square billiard can be denoted by with three
parameters (p, q, φ), where p and q are two positive integers
describing the number of collisions with horizontal and vertical
walls, and the phase factor φ is in the range of −π to π that is
related to the wall positions of specular reflection points [16]. It
has been verified that with the Schwinger SU(2) representation
the coherent states associated with periodic orbits (p, q, φ) can
be analytically expressed as [16]

�
p,q,φ
N,M (x, y) =

M∑

K=−M

CM,K eiKφψq N+pK ,pN−q K (x, y), (2)

where N represents the order of the coherent state, CM,K =
1

2M

( 2M
M + K

)1/2
is the weighting coefficient, and

( n
k

) = n!
k!(n−k)!

represents the binomial coefficient. Note that the coherent
states obtained as a linear superposition of a few nearly
degenerate eigenstates have been verified to be the persistent
stationary states in real mesoscopic systems and to display
quantum interference features in the classical periodic orbits.

With the Fourier transform, the momentum-space
representation of the coherent states � p,q,φ

N,M (x, y) is given by

�̃
p,q,φ
N,M (kx, ky) =

M∑

K=−M

CM,K eiKφ

× {[F(kx; kq N+pK , a)− F(kx ; −kq N+pK , a)]
× [F(ky; k pN−q K , a)− F(ky; −kq N+pK , a)]} (3)

with

F (ki; kn, a) = e
ikn a

2
sin[(ki + kn) a/2]

(ki + kn)
, (4)

where ki (i = x, y) are the wavevectors in the x-direction
and y-direction, respectively. Note that the coherent
states �

p,q,φ
N,M (x, y) behave as traveling waves in the

transverse plane. The standing-wave representation is given
by S p,q,φ

N,M,±(x, y) = [� p,q,φ
N,M (x, y)±�

p,q,−φ
N,M (x, y)]/√2.

Consequently, the momentum-space representation of the
coherent states S p,q,±φ

N,M (x, y) is given by S̃ p,q,φ
N,M,±(kx, ky) =

[�̃ p,q,φ
N,M (kx, ky)± �̃

p,q,−φ
N,M (kx , ky)]/

√
2. Figures 1(a) and (b)
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Figure 2. Schematics of the VCSEL device structure and the experimental setup: (a) measurement of the near-field pattern and (b)
measurement of the far-field pattern.

Figure 3. Experimental patterns of a square-shape VCSEL obtained with the detuning of �ω/2π = 2.7 THz: (a) near-field pattern;
(b) far-field pattern.

illustrate the numerical patterns for the coordinate-space
wave patterns |S p,q,φ

N,M,+(x, y)|2 and the momentum-space wave

patterns |S̃ p,q,φ
N,M,+(kx, ky)|2, respectively, with the parameters

(p, q) = (1, 1), (N,M) = (22, 5), and φ = 0.55π . It can
be seen that the real-space wave pattern is concentrated along
a diamond-shaped classical trajectory in the transverse plane
(x–y) and the corresponding momentum-space wavefunction
exhibits high-intensity lobes at the corners of the aperture with
flower-like structure and relatively weak stripes connecting
them.

3. Experimental results

For VCSELs, the transverse order of the lasing mode depends
on the frequency detuning �ω = ω − ωc, where ω is
the emission angular frequency and ωc is the longitudinal
cavity resonance. Experimentally, we fabricated several
large-aperture square-shape VCSELs with different frequency
detunings to explore the far-field transverse patterns of higher-
order modes. Figure 2 depicts a top view of the VCSEL to
show the square aperture and the experimental setup for near-
field (figure 2(a)) and far-field (figure 2(b)) measurements.
The size of the oxide aperture was 30 × 30 μm2 and the
emission wavelength was designed to be around 800 nm. The
device structures of the oxide-confined VCSELs were similar
to those described by [6]. The VCSELs were placed in a

cryogenic system with a temperature stability of 0.1 K in the
range of 80–300 K. A power supply providing current with a
precision of 0.01 mA was utilized to drive the VCSEL. The
near-field patterns were measured by a charge-coupled device
(CCD) camera (Coherent, Beam-Code) with an objective lens
(Mitsutoyo, numerical aperture 0.9). The far-field pattern was
measured using a digital camera by directly projecting the laser
beam on a scattering paper screen at a distance about 20–30 cm
away from the VCSEL.

Figure 3 shows the near-field pattern and the corre-
sponding far-field pattern for the experimental lasing mode
obtained with the detuning of �ω/2π = 2.7 THz. It can be
seen that the experimental patterns agree very well with the
numerical results shown in figure 1 for the coordinate-space
and momentum-space wavefunctions of a square quantum
billiard. Next we generated a higher-order coherent state with
a larger detuning. Figure 4 shows the experimental near-field
pattern and the corresponding far-field pattern of the lasing
mode obtained with the detuning of �ω/2π = 6.9 THz. The
morphology of the near-field pattern (figure 4(a)) can be found
to be in good agreement with the theoretical result; however,
the far field (figure 4(b)) displays a significant pincushion
curving when compared with a mode of lower transverse order
(figure 3(b)). Experimental results reveal that the pincushion
curving in the far-field distribution is independent of the
pumping current in the range of 1.0–1.5 times the threshold

3
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Figure 4. Experimental patterns of a square-shape VCSEL obtained with the detuning of �ω/2π = 6.9 THz: (a) near-field pattern;
(b) far-field pattern.

level. Furthermore, the optical spectra indicate that the gray
area in the central part of the far-field patterns in figures 3 and 4
arises from the amplified spontaneous emission. Consequently,
the thermal lensing effect can be confirmed to be not the
major mechanism in the formation of the pincushion curving.
The origin of the present pincushion curving comes from the
non-paraxial contribution because the transverse wavevector kt

is no longer much smaller than the longitudinal wavevector
kz for very high-order modes of VCSELs. Therefore, the
non-paraxial contribution needs to be considered to obtain
an accurate correspondence between the far-field pattern of
high-order lasing modes of VCSELs and the momentum-space
wavefunctions of quantum billiards. In section 4 we exploit
the stationary phase method [15] to analyze the non-paraxial
contribution and to develop a fast procedure for recovering the
momentum-space wave patterns from the far-field patterns of
high-order lasing modes of VCSELs.

4. Theoretical analysis and the recovery method

The propagation of a monochromatic near-field distribution
u0(x, y) at z = 0 can be described in terms of a superposition
of plane waves [17]:

u(x, y, z) =
∫ ∞

−∞
dkx

∫ ∞

−∞
dky ũ0(kx, ky)e

i(kx x+ky y+kz z), (5)

where kz =
√

k2 − k2
x − k2

y , and ũ0(kx, ky) is the Fourier

transform of the near-field distribution u0(x, y). When the
Fraunhofer approximation is valid, the far-field distribution
with kz → ∞ can be shown to be [17]

u(x, y, z) = 2πk

iz
ei[k(x2+y2)/(2z)]eikz ũ0

(
k

x

z
, k

y

z

)
. (6)

Equation (6) indicates that the far-field pattern |u(x, y, z)|
is related to the Fourier transform pattern of the near-field
distribution |ũ0(kx, ky)| with the arguments of kx = kx/z and
ky = ky/z. When the non-paraxial contribution is significant,

the stationary phase method [15, 18–20] is usually employed
to derive the far-field distribution and this results in

u(x, y, z) = 2πkz

ir 2
eikr ũ0

(
k

x

r
, k

y

r

)
, (7)

where r = √
x2 + y2 + z2. As a consequence, the accurate

relationship between the far-field distribution and the Fourier
transform of the near-field distribution is given by equation (7)
instead of equation (6).

We used equations (2) and (7) to calculate the near-field
and far-field VCSEL patterns and to show the analogy between
them and the trajectories of the coherent states of square
billiards with different orders N . Figure 5 shows the calculated
results for the near-field patterns |S p,q,φ

N,M,+(x, y)|2 with different
orders of N = 20, 30, and 40 (figures 5(a)–(c)) and the
corresponding far-field patterns (figures 5(a′)–(c′)). The values
of the parameters used in the calculation are (p, q) = (1, 1),
M = 5, and φ = 0.55π . It can be seen that the influence of
the non-paraxial contribution leads to the pincushion curving in
the far-field pattern with respect to the Fourier transform of the
near-field distribution. The higher the transverse order is, the
more curved the far-field pattern becomes. This result enables
us to confirm the origin of the experimental patterns shown in
figure 4. Since the far-field patterns of the VCSEL’s lasing
modes can be straightforwardly observed, it is practically
useful to develop a transform procedure for recovering the
momentum-space wave patterns from the experimental far-
field patterns.

Equation (7) reveals that the far-field pattern |u(x, y, z)|
beyond the paraxial approximation is related to the Fourier
transform pattern of the near-field distribution |ũ0(kx, ky)| with
the arguments of kx = kx/r and ky = ky/r . In other
words, the experimental far-field pattern |u(x, y, z)| can be
used to obtain the Fourier transform pattern of the near-field
distribution |ũ0(kx, ky)| via the change of the arguments of
x = kxr/k and y = kyr/k. However, since the variable
r is a function of the variables x and y, the expressions
x = kxr/k and y = kyr/k cannot be applied directly. For
solving this problem, we use the asymptotic property of the
free-space propagation to obtain the identity r/k = z/kz =

4
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Figure 5. Numerically calculated near-field patterns of resonance modes with transverse order: (a) N = 20, (b) N = 30, (c) N = 40, and
((a′)–(c′)) the corresponding far-field patterns obtained by using the stationary phase method.

Figure 6. Reconstructed pattern for the far-field pattern shown in
figure 4(b), to correspond to the Fourier transform pattern of the
near-field distribution shown in figure 4(a).

z/
√

k2 − k2
x − k2

y . With this identity, the expressions x =
kxr/k and y = kyr/k can be given as

x = kx z

/√
k2 − k2

x − k2
y (8)

and

y = kyz

/√
k2 − k2

x − k2
y. (9)

As a result, the Fourier transform pattern of the near-field
distribution |ũ0(kx, ky)| can be straightforwardly obtained
from the experimental far-field pattern |u(x, y, z)| with the
change of the arguments as in equations (8) and (9). Note
that the far-field distribution intrinsically represents an angular
field distribution that is essentially independent of the distance

from the source. Equations (8) and (9) clearly reveal that the
relationship between the transverse momentum (kx, ky) and the
screen position (x, y) for recording the experimental far-field
amplitude is not a linear mapping. It can be easily found that
only when the non-paraxial contribution is negligible, i.e. k2 �
k2

x,y , can the screen position (x, y) be linearly mapped to the
specific transverse momentum (kx, ky). To the best of our
knowledge, this is the first time that a useful mapping has been
developed for obtaining the Fourier transform pattern of a near-
field distribution from a corresponding far-field pattern that is
subject to the influence of a non-paraxial contribution.

Applying the arguments of equations (8) and (9) to
the experimental result shown in figure 4(b), the accurate
Fourier transform pattern of the near-field distribution shown in
figure 4(a) can be numerically reconstructed and it is depicted
in figure 6. It can be seen that the pincushion curving of the
original far-field pattern is almost completely eliminated. The
morphology of the reconstructed pattern agrees very well with
the momentum-space distribution of the coherent state shown
in figure 1(b) with the transverse order of N = 36. In order
to analyze quantitatively the correlation of these patterns, we
calculate the spatial correlation function which is given by

g (�τ ) = 〈 f1 (�r + �τ ) f2 (�r)〉 , (10)

where f1(�r + �τ ) and f2(�r) are normalized functions with the
variable of position. Two functions are highly related to each
other when g(�τ ) approaches the value of 1. Substituting the
normalized reconstructed wave pattern and the momentum-
space distribution of the coherent state with the transverse
order of N = 36 into equation (8), we can obtain the value
of 0.837. The calculated result reveals that the two patterns are
highly correlated.

In addition to square billiards, the equilateral triangular
structure is a classically non-separable but integrable system
which also plays an important role in quantum billiards.
Recently, various high-order modes of equilateral triangular
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Figure 7. Numerically calculated wave patterns of eigenstates of an equilateral triangular VCSEL with transverse order: (a) (m, n) = (5, 58),
(b) (m, n) = (5, 78), (c) (m, n) = (5, 98), and ((a′)–(c′)) the corresponding far-field patterns obtained by using stationary phase method.

VCSELs have been investigated via controlling device
temperatures [7]. It was confirmed that the near-field patterns
of these high-order modes display the wavefunctions of
equilateral triangular quantum billiards [7, 21]. Therefore,
it is useful and pedagogical to elucidate the influence of the
non-paraxial contribution to the high-order far-field pattern of
VCSELs with optical apertures having an equilateral triangle
shape.

For an equilateral triangular billiard with the vertices
at (0, 0), (a/2,

√
3a/2), and (−a/2,

√
3a/2), the quantum

eigenstates 	±
m,n(x, y) are given by [21]

	±
m,n (x, y) =

√
16

a23
√

3

{
e±i(m+n)(2π/3a)x sin

[
(m − n)

2π√
3a

y

]

+ e∓i(2m−n)(2π/3a)x sin

[
n

2π√
3a

y

]

− e∓i(2n−m)(2π/3a)x sin

[
m

2π√
3a

y

]}
(11)

with 2n � m (m = 1, 2, 3, . . . ; n = 1, 2, 3, . . .), where
m and n represent the order of the eigenstates and a is
the side length of the equilateral triangle. Equation (11)
is the representation of the traveling-wave eigenstates. The
standing-wave representation of the eigenstates can be given by
S±

m,n(x, y) = 	+
m,n(x, y) ± 	−

m,n(x, y). The wave patterns of
the eigenstates are generally confirmed to display honeycomb
patterns [7]. To explore the influence of the non-paraxial
contribution, we used equations (2) and (7) to calculate the
near-field and far-field patterns for the lasing modes S±

m,n(x, y)
of VCSELs with different transverse orders. Figure 7 shows
the numerical wave patterns |S+

m,n(x, y)|2 (figures 7(a)–(c))
and the corresponding far-field patterns (figures 7(a′)–(c′)) with
the transverse order of (m, n) = (5, 58), (m, n) = (5, 78),
and (m, n) = (5, 98). As seen in figure 5 for the case of
square billiards, the non-paraxial contribution causes the far-
field patterns to display the feature of pincushion curving. To

sum up, the characteristic of pincushion curving is a typical
sign of a non-paraxial contribution to the far-field patterns.

5. Conclusion

In conclusion, we have experimentally investigated the
difference between the low-order and high-order far-field
transverse patterns of VCSELs with a square-shape aperture. It
was experimentally found that the high-order far-field patterns
displayed the feature of pincushion curving with respect to
the Fourier transform of the near-field wavefunction. We have
theoretically confirmed that the pincushion curving arises from
the non-paraxial contribution. On the basis of the stationary
phase method, we have developed a fast procedure for
obtaining the Fourier transform of the near-field patterns from
the experimental far-field patterns, for accurately visualizing
the momentum-space wavefunction of 2D quantum billiards.
Finally, we have also analyzed the influence of the non-paraxial
contribution for equilateral triangular VCSELs to confirm that
the pincushion curving of the far-field pattern is a typical
feature in high-order transverse modes.
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