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Abstract—The quality of germanium (Ge) epitaxial film grown
directly on silicon (Si) substrate is investigated based on the
electrical properties of a metal-oxide-semiconductor capacitor
(MOSCAP). Different thermal cycling temperatures are used in
this study to investigate the effect of temperature on the Ge
film quality. Prior to high-k dielectric deposition, various surface
treatments are applied on the Ge film to determine the leakage
current density using scanning tunneling microscopy. The inter-
face trap density (D;;) and leakage current obtained from the
C-V and I-V measurements on the MOSCAP, as well as the
threading dislocation density (TDD), show a linear relationship
with the thermal cycling temperature. It is found that the Ge epi-
taxial film that undergoes the highest thermal cycling temperature
of 825 °C and surface treatment in ultraviolet ozone, followed
by germanium oxynitride (GeO,N,) formation, demonstrates
the lowest leakage current of ~ 2.3 x 107% A/em?® (at —2 V),
D;; ~ 3.5 x 10" em~2/V, and TDD < 107 em—2.

Index Terms—Germanium (Ge), interface state density, interfa-
cial layer, oxide.

I. INTRODUCTION

ILICON (Si) integrated circuits have reached the stage

whereby their performance growth is unlikely to depend
solely on geometrical scaling [1], [2]. Moving forward, it is
widely accepted that innovations such as new device structures
and new materials have to be integrated on silicon in order to
boost the performance of the transistors [3]. Germanium (Ge)
has emerged as a suitable material to augment the performance
of Si since it has a much higher mobility for both electrons
and holes [4]. However, Ge is known to exhibit poor interface
quality with high-k dielectrics [5], resulting in degraded carrier
mobility, high gate leakage current density (.J,;), and large
flatband voltage (V4 ) shift [4]. Hence, surface preparation and
interface control on the Ge surface prior to high-k dielectric
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deposition are a challenging issue that must be resolved in order
to realize Ge as a channel material. In addition, Ge integration
on Si substrate often results in a defective film due to a 4.2%
lattice mismatch, and hence, the threading dislocation density
(TDD) needs to be properly optimized.

Germanium oxynitride (GeO,N, ) is considered a promis-
ing interfacial layer for high-k/Ge gate stack since it has
better thermal and chemical stability and a higher dielectric
constant than native Ge oxides (both GeO and GeO,) [5],
[6]. In addition, the incorporation of nitrogen into Ge oxides
could reduce the potential of interdiffusion between the gate
dielectric and substrate and/or the gate electrode [7]. Thus,
nitride-based dielectrics can be used as an ideal buffer layer
for high-k dielectrics and as a gate insulator for Ge-based
FETs [8]. In an attempt to further improve the quality of the
high-k dielectric, ultraviolet (UV) ozone (UVO) was used to
directly oxidize sputtered Zr film to form ZrO» [9]. Interspersed
in situ room-temperature UVO annealing was applied to reduce
the leakage current of atomic-layer-deposited HfO, [10]. The
GeO;N, layer could be achieved by various methods such
as rapid thermal oxidation (RTO) and consecutive nitridation
[11], [12], pretreatment by an inductively coupled ammonia
(NH3) plasma source [13], plasma oxidation followed by
in situ plasma nitridation [14], and RTO followed by rapid
thermal nitridation (RTN) [7]. NHj3 is chosen because of its
ability to incorporate more nitrogen into the oxynitride film
than other nitridation agents [7]. In most of the reported works,
the oxynitride film was deposited on a Ge substrate. Hence,
high-quality GeO,N, can be obtained by LPCVD and RTN
at a relatively high temperature (600 °C and above). In the
case of thin Ge film grown on Si substrate (100) (i.e., Ge/Si),
using LPCVD or RTN would cause severe Ge/Si interdiffusion
that would degrade the quality of the deposited GeO,N,. We
report a simplified way to deposit GeO,N, on Ge/Si using
plasma-enhanced chemical vapor deposition (CVD) (PECVD).
The Ge/Si samples were first treated in UVO (300 s in O,
environment) prior to GeO,N,, deposition by PECVD in NH3
environment.

In the first part of this paper, the leakage current of various
GeO,N,, layers (that are prepared with several methods) on
the Ge epitaxial layer grown directly on Si is studied us-
ing scanning tunneling microscopy (STM). Results from this
study are used to select the most appropriate interfacial layer
in the subsequent metal-oxide—semiconductor (MOS) capac-
itor (MOSCAP) fabrication. In the second part of this paper,
MOSCAP is fabricated by depositing AloO3 high-% dielectric
and TiN metal gate on the Ge epitaxial films (with GeO,N,
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interfacial layer) that are prepared at different postgrowth
thermal cycling temperatures. Based on the C-V and -V
measurements on the fabricated MOS, the electrical properties
of the gate stack such as interface trap density (D;;) (as deter-
mined by the conduction technique [15]) and leakage current
are obtained. The postgrowth cyclic annealing temperature on
the Ge epitaxial layer is found to have a positive effect on the
overall robustness and quality of the gate stack.

II. EXPERIMENTAL

Silicon wafers (diameter = 150 mm, p-type, resistivity =
4—10 Q- cm) were cleaned using RCA solution, dried, and
loaded into Ny-purged load—lock of the ASM Epsilon 2000
reduced-pressure CVD reactor. To initiate the growth, each
wafer was transferred to the growth chamber and baked in
hydrogen (Hz) at 1000 °C for 2 min to desorb the thin surface
oxide that was detrimental to the epitaxy process. The precursor
for Ge is germane (GeH,) diluted in hydrogen (Hsz) to a
concentration of 10%, and the carrier gas is Hs. The undoped
Ge film was grown using the three-step approach, and the
details can be found in the previous work [16]. In this approach,
thermal cycling was introduced after the epitaxy growth process
to enhance the surface mobility in an attempt to reduce the rms
roughness and the TDD of the Ge film [9], [16]. The thermal
cycling used in this study has a fixed lower bound temperature
(T1,) of 680 °C, and the upper bound temperature (Ty) was
varied from 725 °C to 825 °C in a step size of 25 °C. The
sample was held at T for 10 min, and this annealing cycle
was repeated eight times. No sample with Ty > 850 °C was
prepared as the Ge film quality was greatly degraded due to
excessive thermal budget [17].

Prior to surface treatment, the Ge/Si wafers were precleaned
by dipping the sample into dilute HF (1:20) solution at room
ambient, followed by six cycles of rinse and drain in deionized
water, and subsequently dried by IPA. Three Ge/Si samples
(T = 825 °C) were used in the surface treatment study.

1) The first sample (sample 1) was precleaned for 300 s
and immediately loaded into plasma-enhanced CVD
(PECVD) chamber. The chamber was pretreated at
300 °C with plasma at 200 W. The GeO,N,, was formed
by setting the process pressure at 400 mTorr in the NH3
environment, and the final thickness of GeO,N, was
estimated to be ~1.8 nm.

2) The second sample (sample 2) was identical to sample
1, except that the sample was first treated in UVO en-
vironment for 300 s. The sample was then loaded into
the PECVD chamber for NH3 plasma treatment, and the
estimated thickness of GeO,N, was ~2.5 nm.

3) In the third sample (sample 3), a thin GeOy layer of
~2.8 nm was grown between 400 °C and 450 °C for
10 min on the Ge surface using dry oxidation and then
loaded into PECVD chamber for NH3 plasma treatment
to form GeO,N,, and a thickness of 3.3 nm was obtained.

The leakage current of the aforementioned three samples
was measured directly by STM of RHK Technology UHV
3500. To fabricate the MOS capacitors, the surface treatment
described in sample 2 was used (the choice of this sample

Metal (TiN) ~100nm

Interface Layer, High-k, Al,03 ~10nm

Interface Layer, GeOyNy ~2.5nm

Fig. 1. Schematic of the final MOS capacitor used in this study.
will be apparent and is discussed in the next section). After
that, a high-k dielectric (Al;O3) with a thickness of 10 nm
was deposited by atomic layer deposition at a temperature of
250 °C. Finally, titanium nitride (TiN) of 150 nm was sputtered
onto the Al,O3 to form the metal contact. These samples were
then patterned and etched to form a metal gate contact for
electrical characterization. The size of these metal pads ranges
from the largest pad of 200 ym x 200 pm to the smallest pad
of 50 pm x 50 pm. Finally, the samples underwent a postmetal
gate deposition forming gas annealing at 300 °C for 30 min.
The schematic of the final MOS capacitor (MOSCAP) is shown
in Fig. 1. The MOSCAP samples were fabricated on undoped
Ge epitaxial films that were processed at different postgrowth
thermal cycling temperatures (from 77, to various 7).
Transmission electron microscopy (TEM) was used to
study the layers in the stack of TiN/Al,O3/GeO,N, /Ge/Si
and also to estimate the thickness of each layer. Both
capacitance—voltage (C-V') and current—voltage (I-V') mea-
surements were performed on the MOSCAP using the Cascade/
Suss Microtec PM8PS probe station with Keithley 4200-SCS
semiconductor characterization system. The C-V curve gives
direct information about the penetration of the field in the
semiconductor (minimum in accumulation, maximum in de-
pletion, etc.) and the related varying charges (majority and/or
minority carriers), hence allowing a direct assessment of the
field effect. The C'-V characteristic of the MOSCAP has been
widely used to characterize the semiconductor, oxide, and
Si—SiO; interface [18]. The interfaced state density (Dj;) can
be determined using the conductance method [15], and its value
can be expressed as

Dy~ 22 (Gp) (1)

where ¢ = 1.602 x 107'? and (G,/w)max is the measured
maximum conductance, and its expression will be defined next.
In this paper, the capacitance meter assumes that the device
consists of a parallel C),, — G, equivalent circuit. Assuming
that the series resistance is negligible, the equation of G),/w
can be written as

Gy WGy C2,
w G2 A w(Cox — Cp)?

2

where (., is the measured conductance, C,, is the oxide
capacitance, and C,, is the measured capacitance.
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(Column a) Scanning tunneling microscope images and their (column b) respective current mappings for (i) sample 1—GeO~N, (1.8 nm) on Ge/Si

(001), (ii) sample 2—GeO4; Ny, (2.5 nm) on Ge/Si(001), and (iii) sample 3—GeO; Ny (3.3 nm) on Ge/Si(001).
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Fig.3. Combined /-V plots and average leakage current for the three samples

are shown in (a) and (b), respectively.

III. RESULTS AND DISCUSSION

Fig. 2(a) shows the constant-current STM topography images
of samples 1, 2, and 3, respectively. During topography scan-
ning, a positive bias voltage was applied to the substrate of the
samples, and the preset tunneling current was held constant by
an electronic feedback circuit. Since the tunneling current was
controlled by the vacuum gap between the STM probe and the
dielectric surface, a change in the vacuum gap, due to surface
roughness/electronic variation when the probe was scanned
across the dielectric surface, gives rise to the contrast in the
topography image [19], [20]. The bright shades correspond to
locations where the STM probe retracts due to surface physical
protrusions or a local increase in I; due to electronic traps, in
order to maintain constant tunneling current. The morphology
and electronic effects can be distinguished via reference to the
corresponding current map [Fig. 2(b)] acquired via constant
imaging tunneling spectroscopy (CITS). During topography
scanning, the feedback loop was temporarily disabled to allow
the local current—voltage (I;—V) characteristic of the dielectric
to be measured by applying a voltage ramp [19]. An amorphous
structure with rms roughness values of approximately 275, 271,
and 280 pm is observed for samples 1, 2, and 3, respectively
[Fig. 2(a)(i)—(a)(iii)]. It should be mentioned that the rms value
does not reflect the real dielectric physical surface roughness

7
GeO,N,/Al,0,

1018.6 nm

2

Dislocations.

N

Fig. 4. Cross-sectional TEM bright field images show (a) the gate stack
of TiN/Aly03/GeO;N, /Ge/Si and (b) the close-up view of TiN/Al;O3/
GeO;N, /Ge. The Ge epitaxial film is prepared with a postgrowth thermal
cycling temperature of 825 °C.
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Fig. 5. XPS depth profile shows the distribution of Ge, C, O,Ti, N, and Al
along the TiN/Aly03/GeO, N, /Ge gate stack. The artificial Ge signal in the
TiN is most likely due to the larger X-ray spot size than the TiN pattern which
results in the detection of background Ge signal.

since a local leakage site may induce the probe retraction too.
The corresponding current map for sample 1 [Fig. 2(b)(i)]
shows numerous scattered bright shades within the dark back-
ground. The bright shades represent the high-current-leakage
sites, while the dark regions represent the least current leakage
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Fig. 6. C-V characteristics of MOSCAPs for (a) sample725 (T = 725 °C), (b) sample750 (T = 750 °C), (c) sample775 (T = 775 °C), (d) sample800
(Tg = 800 °C), and (e) sample825 (Tx = 825 °C). The measurements are collected at frequencies and bias voltages ranging from 10 kHz to 1 MHz and —2 to

1.5 V, respectively.

sites. A decrease in the number of bright shades is observed
in the current map for sample 2, as shown in Fig. 2(b)(ii).
Sample 3, on the other hand, exhibits the lowest density of
bright shades in the corresponding current map [Fig. 2(b)(iii)].
The tunneling spectra extracted at the bright shades of respec-
tive samples are shown in Fig. 3(a). The tunneling spectra are
observed to converge at V; =5 V due to the normalization.
Since electron is most sensitive to the barrier height at the inter-
face of electron injection [20], the tunneling current at negative
bias regime represents the electrical state at GeO,N, /Ge/Si
substrate interface. It is noted that sample 1, with the thinnest
GeO,N,, has the highest leakage current, while sample 3, with
the thickest GeO,N,, shows the least leakage current. The leak-
age current averaged over the scan area of 100 nm x 100 nm
shows a similar observation [Fig. 3(b)].

These results show that sample 2 with an additional UVO
treatment prior to GeO,N,, formation has a lower leakage cur-
rent than sample 1 because of the formation of thicker interface

layer and lower rms roughness. Sample 3 with GeOs deposi-
tion prior to NH3 plasma exposure has the thickest interface
layer and highest rms roughness, and hence, the lowest current
leakage is expected. The drawback of fabricating sample 3
is the long processing time in the furnace, and the thickness
of ultrathin oxide is uncontrollable. Hence, for subsequent
MOSCAP fabrication, the method described in sample 2 is
used. UVO is attractive as it is nontoxic, and the process is
carried out in nonvacuum room ambient.

The cross-sectional bright field TEM image in Fig. 4(a)
shows that the Ge epitaxial film annealed at a Ty of 825 °C
has a thickness of ~ 1 ym. The TEM also shows the presence of
misfit dislocations closer to the Ge/Si interface, and threading
dislocations in the film are clearly seen. The close-up TEM
image in Fig. 4(b) shows that GeO,N, with a thickness of
~2 nm is formed prior to ~10 nm of Al;O3 deposition. As
shown in Fig. 4(b), there is no delamination of the films
at the interface between GeO,N,/Ge and AlyO3/GeO,N,,
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because the surface treatment has provided a suitable surface
for dielectric layer deposition. The XPS depth profile of each
element from the top surface of the sample from Fig. 4 is shown
in Fig. 5. The etch depth is relative as it is calibrated to the etch
rate of SiO, under the bombardment of Ar ion. Nevertheless,
the chemical composition of each layer corresponds to that of
the fabricated TiN/Al;O3/GeO, N, /Ge gate stack. There is no
evidence of severe intermixing, hence verifying that the process
steps are within the allowable thermal budget.

The C-V characteristics of the MOSCAP for frequency
ranging from 10 kHz to 1 MHz for sample725 (T = 725 °C),
sample750 (T = 750 °C), sample775 (T = 775 °C), sam-
ple800 (T = 800 °C), and sample825 (T = 825 °C) are
summarized in Fig. 6(a)—(e), respectively. Even though the
Ge layer is not intentionally doped during epitaxial growth,
a p-type behavior is clearly seen. This observation is a result
of background doping due to the residual boron in the CVD
reactor. In addition, the valence band offset between Ge and
Si favors hole accumulation in the Ge layer. At low frequency
(LF), between 10 and 100 kHz, bumps are clearly observed
in the C-V plots due to weak inversion of minority carrier
response behavior [11], [21], [22]. Ge is a low-bandgap semi-
conductor, and at low frequencies, Ge/Si MOSCAP would show
an admittance contribution due to the presence of interface traps
at the midbandgap. This contribution results in a significant
exchange of carriers between traps and both the majority and
minority carrier bands at the measured frequencies, typically
within the range of 1 kHz—1 MHz [11]. This exchange of car-
riers results in an increase in the capacitance as weak inversion
response that causes the typical bump in the LF C-V. At a high
frequency (HF) of 1 MHz, frequency dispersion is observed for
all the samples, and the measured accumulation capacitance
(Cox) is lower than that at LF. Since the semiconductor layer
consists of an undoped Ge film on a p-type silicon substrate
(resistivity of 4-10 €2 - cm), the carriers in the undoped Ge film
might be unable to follow the frequency of the bias voltage
even at accumulation. Another possibility may be due to the
dislocations introduced along the Ge/Si interface during the Ge
epitaxial growth [16] as these could form interface traps along
the dielectric/Ge and Ge/Si interfaces that leads to the slow
response in the HF and affects the measured capacitance.

As Ty increases from 725 °C to 825 °C, the C-V curves
exhibit a progressive shift to the right. The midgap voltage
(Vinidgap) becomes more positive from —0.41 to 0.36 V (as
indicated on the 10-kHz C-V curve), and correspondingly, the
flatband voltage (Vpp) increases from —0.75 to 0.25 V. As
shown in Fig. 7, both the Vrp and Viniqgap are proportionally
dependent on T;. Since the Ge thickness is not a strong factor
contributing to the changes in Vpp [22] and the MOSCAP
fabrication conditions are identical in all samples, the shift
is most likely caused by the change in 7 which plays a
significant role in the density of TDD in the final Ge film. As
Ty increases, a better dielectric/Ge interface with a lower fixed
charge is obtained, and this is reflected in the Vg shift.

The G, /w value is plotted as a function of frequency f in
Fig. 8 for all Ty values used in this experiment. The plots
show distinct peak values at around ~20 kHz, which agree with
previously reported observation [23]. Based on these peak val-

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 60, NO. 1, JANUARY 2013

" loa
;0.2
<
3
S 00 &
£ s
=
-0.2
L 0.4

775 800 825
T4 (C)

725 750

Fig. 7. Vig and Vinidgap for different T values. As shown, both Vg and
Vinidgap vary linearly with T

3.0' L o
—=—725C
2.54 —— 75000
—a—775°C
2.04 —v—800°C
1 ——825°C

Gple (107 Flem®)

400 600 800

Frequency (kHz)

0 200 1000
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ues, the interface state density D;; is obtained using (1) for all
samples annealed at T between 725 °C and 825 °C. The TDD
and D;; values are summarized for all 7 values in Fig. 9. The
TDD values are obtained from optical microscope observation
after chemical etching on the Ge samples as described in [16].
Higher annealing temperature is often used to reduce the Ge
surface roughness and TDD after epitaxial growth. As clearly
shown, lower TDD in the Ge film results in lower Dj; in the
MOSCAP.

Fig. 10 shows the combined leakage current density versus
the bias voltage of the Ge/Si MOSCAP for bias voltage ranging
from —2 to 2 V. The leakage current is reduced when the Ty
is increased and the lowest value is realized at 825 °C in the
experiment. A reduction of close to five orders of magnitude
(10°) in the leakage current can be observed by comparing
sample725 and sample800 at —2 V. These results confirm that
the MOSCAP on the Ge epitaxial film annealed at higher
thermal cycling temperature presents lower leakage current.
This is again attributed to the lower TDD count in the Ge
film as the annealing temperature is increased. Higher TDD is
often known to lead to higher current leakage [24] and could
cause malfunction to the devices. Another possibility is due to
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the slight difference in the EOT. It appears that the dielectric
thickness gets thicker from sample725 to sample825 in Fig. 6.
Ideally, all the Ge samples should have identical EOT as they
were prepared and deposited at the same time. However, due
to the surface conditions (such as roughness and TDD) of
the respective Ge film, the GeO,N, formation tends to get
better (hence, thicker) from sample725 to sample825. Hence,
sample825 with a slightly thicker dielectric appears to have a
lower maximum capacitance than the other samples.

IV. CONCLUSION

In summary, the electrical properties (from MOS analysis)
of Ge epitaxial film are significantly affected by the postgrowth
thermal cycling temperature. The Ge film treated with UVO
and subsequent GeO,N,, nitridation has shown a reasonable
leakage current. The MOSCAP fabricated on the Ge film that
is cyclic annealed at an upper bound temperature of 825 °C
exhibits the lowest leakage current density of ~2.3 x
107% A/em? (at —2 V), which is improved by five orders of
magnitude (10°) compared with the sample annealed at 725 °C,
Dj, ~ 3.5 x 10" em™2/V, and TDD < 107 em 2.
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