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Abstract The dynamic logit model (DLM) with autocorrelation structure (Liang and Zeger
Biometrika 73:13–22, 1986) is proposed as a model for predicting recurrent financial
distresses. This model has been applied in many examples to analyze repeated binary data
due to its simplicity in computation and formulation. We illustrate the proposed model using
three different panel datasets of Taiwan industrial firms. These datasets are based on the
well-known predictors in Altman (J Financ 23:589–609, 1968), Campbell et al. (J Financ
62:2899–2939, 2008), and Shumway (J Bus 74:101–124, 2001). To account for the corre-
lations among the observations from the same firm, we consider two different autocorrela-
tion structures: exchangeable and first-order autoregressive (AR1). The prediction models
including the DLM with independent structure, the DLM with exchangeable structure, and
the DLM with AR1 structure are separately applied to each of these datasets. Using an
expanding rolling window approach, the empirical results show that for each of the three
datasets, the DLM with AR1 structure yields the most accurate firm-by-firm financial-
distress probabilities in out-of-sample analysis among the three models. Thus, it is a useful
alternative for studying credit losses in portfolios.
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1 Introduction

The prediction of financial distress is an important tool for credit risk management.
The well-known models for prediction can be separated into two types: static and
dynamic. The static model uses only single-period data of firms. The model includes
the following types of methods: the discriminant analysis model (Altman 1968), the
Merton model (Merton 1974; Vassalou and Xing 2004), the logit model (Ohlson
1980), the probit model (Zmijewski 1984), and the mixed effect logit model (Alfo
et al. 2005). However, the static model might suffer from a loss of predictive power
(Shumway 2001) because it ignores the changing characteristics of firms over time.
On the other hand, the dynamic model uses multiple-period data of firms so that the
prediction involves the effects of time-varying firm characteristics. The dynamic
model has proved over time to be more powerful than the static model (Hillegeist
et al. 2004; Campbell et al. 2008; Hwang et al. 2011; Glennon and Nigro 2005).
Examples of dynamic models are the discrete-time hazard model (Shumway 2001;
Chava and Jarrow 2004), the default-intensity model (Duffie et al. 2007), the quantile-
regression approach (Li and Miu 2010), and the contingent-claim approach (Tang and
Yan 2006). However, these dynamic models solely focus on the point in time when
the financial distress first happens to a firm and ignores the possibility that subsequent
financial distresses still might happen to that firm. Thus, these models do not generate
predictions for firms with financial-distress experiences.

To avoid the above restriction on the dynamic model, we suggest using the dynamic logit
model (DLM) to predict recurrent financial distresses. The DLM applies the logit model to the
panel data containing not only the first financial distresses but also subsequent financial distresses
of firms. Thus, this model has the advantage of using all available information to predict a firm’s
financial distress at any point in time whether or not that firm has financial-distress experience.
Under the independence assumption, the important parameters in DLMcan be simply determined
by maximizing the log-likelihood function of the panel data under study. However, this inde-
pendence assumption might not be proper in practice, because repeated observations from the
same firm tend to be correlated with one another. If one imposes an improper independence
assumption on DLM, then one might suffer from a loss of predictive power.

For more accurately predicting recurrent financial distresses, we consider the DLM
with autocorrelation structure. This model is more robust in predicting financial
distresses for firms than the DLM with independent structure. Under the autocorrela-
tion structure, the unknown parameters in DLM are estimated using the generalized
estimating equations (GEE) approach (Liang and Zeger 1986; Lipsitz et al. 1994). The
consistency and asymptotic normality of the resulting estimators are given in Sec-
tion 2. There are many software packages having the capabilities to implement GEE
analyses, for example, SAS, S-Plus, and STATA. Thus, the computation required for
the DLM with autocorrelation structure is as simple as that for the DLM with
independent structure. There are many examples in the literature in which the GEE
approach has proved to be more powerful for analyzing repeated data than the
approach using independence estimating equations (IEE). For a detailed introduction
to GEE, see for example, the monograph by Hardin and Hilbe (2002).

To implement the proposed model, exchangeable and first-order autoregressive (AR1)
autocorrelation structures are used to account for the correlations among the observations
from the same firm at different points in time. These two autocorrelation structures assume
respectively that the magnitude of the correlation remains unchanged and decreases

322 J Financ Serv Res (2013) 43:321–341



dramatically as the number of time lags increases. They have the advantage of being
formulated using only one nuisance parameter. See Lee and Geisser (1975) and Geisser
(1981) for the importance of parsimonious correlation structures in prediction problems
based on repeated measurements.

In Section 3, we illustrate the proposed model using three different panel datasets of
industrial firms listed on the two major Taiwan stock exchanges: Taiwan Stock Exchange
(TWSE) and GreTai Securities Market (GTSM). These panel datasets are based on the well-
known predictors suggested by Altman (1968), Campbell et al. (2008), and Shumway
(2001). The three prediction models comprise the following: the DLM with independent
structure, the DLM with exchangeable structure, and the DLM with AR1 structure. These
models are separately applied to each of the three panel datasets. We measure the perfor-
mance of the proposed models through out-of-sample analysis with two performance
metrics. These two performance metrics are the absolute difference (AD) between the actual
number of financial distresses (ANFD) and the predicted number of financial distresses
(PNFD) as well as the predictive interval (PI) of ANFD. These metrics are based on the
actual magnitudes of financial-distress probabilities of firms. Using an expanding rolling
window approach (Hillegeist et al. 2004; Chava et al. 2011), the empirical results in Section 3
show that for each of the three panel datasets, the DLM with AR1 structure has the best
performance among the three prediction models. Thus, this model has the potential to be a
powerful model for studying credit losses in portfolios.

The remainder of this paper is organized as follows. In Section 2, we develop the method
for predicting recurrent financial distresses based on DLM. Section 3 presents the empirical
results. Section 4 contains the concluding remarks and future research topics. The appendix
gives a computational procedure based on the GEE approach for estimating unknown
parameters in the DLM with autocorrelation structure.

2 Method

In this section, we first describe the formulation of the DLM with independent structure and
estimate its unknown parameters using a maximum likelihood method. Then we give the
idea of the DLM with autocorrelation structure and estimate its unknown parameters using
the GEE approach. Afterwards, we introduce two out-of-sample performance metrics to
measure the performance of the discussed prediction methods.

2.1 The DLM with independent structure

The DLM has the advantage of using all available information to predict each firm’s
financial distress at any point in time. In the following, we describe the structure of the
panel data used in the prediction methods based on the DLM.

Two factors determine the panel data: the sampling criteria and the sampling period. Our
sampling criterion is that all industrial firms that are listed on the TWSE or GTSM during the
sampling period are included in the sample. All information occurring at the discrete points
in time during the sampling period is collected from the Taiwan Economic Journal (TEJ)
database. Let the sampling period be [ξ1, ξ2]. Suppose that there are n selected firms under
the particular sampling scheme. We denote the panel data by

Yi;j; xi;j
� �

: j ¼ si; � � � ; ti; i ¼ 1; � � � ; n� �
:
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Here si denotes the first observation time and ti the last observation time for the i-th firm
in the sampling period [ξ1, ξ2] The value of Yi,j01 indicates that the financial status of the i-th
firm at time j is in distress and Yi,j00 otherwise. Therefore, for the i-th firm, the results ofPti
j¼si

Yi;j ¼ 0;
Pti
j¼si

Yi;j ¼ 1; and
Pti
j¼si

Yi;j > 1 indicate respectively that the firm either has no,

one, or repeated financial-distress experiences during the sampling period. Section 3 provides
the definition of financial distress for the sampled firms. Further, we let xi,j be the value of the
d×1 predictor X collected from the i-th firm at time j.

Under the independence assumption, the likelihood function of the panel data is expressed as:

L ¼
Yn
i¼1

Yti
j¼si

p
Yi; j
i; j 1� pi; j
� �1�Yi; j : ð1Þ

Here pi; j ¼ p Yi; j ¼ 1jxi; j
� � � p j; xi; j

� �
stands for the probability of financial distress

happening to the i-th firm at time j. Thus, the probability function pi,j can be of any
functional form with values in the interval (0, 1). The DLM considers a linear logistic
function for pi,j, that is:

pi; j ¼
exp a þ bxi; j
� �

1þ exp a þ bxi; j
� � ; ð2Þ

where α and β are 1× 1 and 1× d vectors of parameters respectively. Plugging Eq. (2) into
Eq. (1), the resulting log-likelihood of the panel data becomes:

‘ ¼
Xn
i¼1

Xti
j¼si

Yi; j a þ bxi; j
� �� log 1þ exp a þ bxi; j

� �� �� �
: ð3Þ

The maximum likelihood estimate baI ;bbI� 	
of (α, β) in Eq. (3) can be obtained by

maximizing ‘ with respect to (α, β), or by solving the normal equations:

0 ¼ @ ‘

@ a; bð ÞT ¼
Xn
i¼1

Xti
j¼si

Yi; j �
exp a þ bxi; j
� �

1þ exp a þ bxi; j
� �( )

1
xi; j


 �
: ð4Þ

Using Eq. (2) and replacing the unknown parameters α and β with their maximum

likelihood estimates baI and bbI , if a firm has the predictor value x0 at time t0 then its
predicted financial-distress probability based on the DLM with independent structure is:

bpI t0; x0ð Þ ¼
exp baI þ bbI x0� 	

1þ exp baI þ bbI x0� 	 : ð5Þ

Under the independence assumption, Liang and Zeger (1986) show that the maximum

likelihood estimate baI ;bbI� 	
is consistent for (α, β). Thus, the predicted financial-distress

probability bpI t0; x0ð Þ converges to the true financial-distress probability p t0; x0ð Þ ¼
exp aþbx0ð Þ

1þexp aþbx0ð Þ . This result shows that the DLM with independent structure is an efficient

prediction model if the imposed independence assumption is correct.
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Further, through a straightforward calculation, the normal equations in Eq. (4) can also be
equivalently expressed as the IEE:

0 ¼ @ ‘

@ a; bð ÞT ¼
Xn
i¼1

DT
i V

�1
i Yi � pið Þ: ð6Þ

We use this result in subsection 2.2 to develop the GEE for the DLM with autocorrelation
structure. The notations of Yi, pi, Vi and Di in Eq. (6) are defined by

Yi ¼
Yi;si
Yi;siþ1

..

.

Yi;ti

26664
37775; pi ¼

pi;si
pi;siþ1

..

.

pi;ti

26664
37775; Vi ¼

Vi;si 0 � � � 0
0 Vi;siþ1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � Vi;ti

26664
37775; Di ¼

Di;si
Di;siþ1

..

.

Di;ti

26664
37775;

where

Vi; j ¼ pi; j 1� pi; j
� � � Var Yi; jjxi; j

� �
; Di; j ¼ pi; j 1� pi; j

� �
1; xTi; j

� 	
� @=@ a; bð Þf gpi; j:

Under the independence assumption, the quantities pi,Vi, andDi stand forE Yijxið Þ ,Cov Yijxið Þ ,
and @=@ a; bð Þf gpi , respectively, for each i ¼ 1; � � � ; n; where xi ¼ xi;si ; � � � ; xi;ti

� �
.

2.2 The DLM with autocorrelation structure

The DLM with autocorrelation structure is developed by assuming that the time series
observations Yi,j from the same firm are correlated with one another, but those from different
firms are not correlated. Under the autocorrelation assumption, the value of (α, β) in DLM is
estimated using the GEE approach. To formulate the GEE, let ρj,k be the correlation
coefficient between Yi,j and Yi,k, where j; k 2 si; � � � ; tif g , for each i ¼ 1; � � � ; n . Thus, the
covariance matrix of Yi can be expressed as:

Cov Yijxið Þ ¼ V 1=2
i Ai V

1=2
i � Gi; ð7Þ

for each i ¼ 1; � � � ; n . Subsection 2.1 provides the definitions of Yi, xi, and Vi, and

Ai ¼

1 ρsi;siþ1 � � � ρsi;ti
ρsiþ1;si 1 � � � ρsiþ1;ti

..

. ..
. . .

. ..
.

ρti;si ρti;siþ1 � � � 1

26664
37775:

Note that Ai stands for the correlation matrix of Yi Using the result from Eq. (7), the
associated GEE are similarly formulated as the IEE in Eq. (6) with Vi replaced by Gi

Specifically, the GEE are:

0 ¼
Xn
i¼1

DT
i G�1

i Yi � pið Þ: ð8Þ

By way of generation, the GEE alleviate the need to correctly specify the joint distribu-
tion of Yi. But the price paid by the GEE for simple formulation is that the corresponding
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log-likelihood function of the panel data is not available, and thus the GEE approach is not a
maximum likelihood method. A computational procedure for finding the solution to the
GEE in Eq. (8) is in the appendix.

In this paper, we consider two types of autocorrelation structures for the time series
observations Yi,j from the same firm. One is the exchangeable structure with ρj,k 0 ρ, and thus
the corresponding correlation matrix of Yi is:

Ai ¼
1 ρ � � � ρ
ρ 1 � � � ρ

..

. ..
. . .

. ..
.

ρ ρ � � � 1

26664
37775;

for each i ¼ 1; � � � ; n . The other is the AR1 structure with ρj;k ¼ ρ j�kj j , and thus the
corresponding correlation matrix of Yi is:

Ai ¼
1 ρ � � � ρti�si

ρ 1 � � � ρti�si�1

..

. ..
. . .

. ..
.

ρti�si ρti�si�1 � � � 1

26664
37775;

for each i ¼ 1; � � � ; n . Given each of these two autocorrelation structures, if ρ00 then Gi 0
Vi, for each i ¼ 1; � � � ; n , and the resulting GEE become the IEE in Eq. (6).

We also consider other types of autocorrelation structures such as the m-dependence
structure with ρj,k00 for jj� kj > m , the banded correlation structure with ρj;k ¼ ρ j�kj j
for jj� kj � 1 , and the unstructured correlation without constraints on ρj, k. However, their
corresponding estimates of the regression parameters α and β provided by our computational
algorithm are not of normal convergence, and thus we do not report the results. The poor
computational results might be due to there being too many nuisance parameters
ρj,k involved. The numbers of nuisance parameters in these autocorrelation structures arePm
k¼1

x2 � x1 þ 1� kð Þ , ξ2−ξ1, and x2 � x1ð Þ x2 � x1 þ 1ð Þ=2 , respectively. Here ξ1 and ξ2

are the start and the end points in time for the sampling period of the panel data respectively.

Given each of exchangeable and AR1 structures, set baG;bbG� 	
as the solution of the

corresponding GEE in Eq. (8). Regardless of whether the imposed covariance matrix Gi is

correctly specified for Cov Yijxið Þ , baG;bbG� 	
is consistent for (α, β) and has an asymptotic

normal distribution with covariance matrix:

V1 ¼ lim
n!1

Xn
i¼1

DT
i G

�1
i Di

 !�1 Xn
i¼1

DT
i G

�1
i Cov Yijxið ÞG�1

i Di

( ) Xn
i¼1

DT
i G

�1
i Di

 !�1

:

If Gi is correctly specified so that Cov Yijxið Þ ¼ Gi , then V1 reduces to

V2 ¼ lim
n!1

Xn
i¼1

DT
i G

�1
i Di

 !�1

:

Consistent estimators bV1 and bV2 for V1 and V2 can be constructed by replacing

the unknown quantities α, β, ρ, and Cov Yijxið Þ with their estimates baG; bbG; bρ;
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and Yi � bpið Þ Yi � bpið ÞT , respectively in each case. Here bρ ¼ Pn
i¼1

ti � sið Þ ti � siþð
�

1Þ=2�

d � 1g�1Pn
i¼1

Pti�1

j¼si

Pti
k¼jþ1

bei; jbei;k for the exchangeable structure, bρ ¼ Pn
i¼1

ti � sið Þ�
�

d � 1g�1 �

Pn
i¼1

Pti�1

j¼si

bei; jbei; jþ1 for the AR1 structure, bei; j ¼ bpi; j 1� bpi; j� 	n o�1=2
Yi; j � bpi; j� 	

; bpi; j ¼
exp baGþbbGxi; j� �

1þexp baGþbbGxi; j� � ; bpi ¼ bpi;si ; � � � ;bpi;ti� �T
.

The estimator bV1 is called the robust covariance estimator because it is consistent for V1

regardless of whether or not Gi is correctly specified for Cov Yijxið Þ . In contrast, bV2 is called
the naive covariance estimator because it is based on the assumption that Gi is correctly
specified for Cov Yijxið Þ . See Liang and Zeger (1986) and Lipsitz et al. (1994) for a detailed

introduction of the asymptotic properties of baG;bbG� 	
.

Using Eq. (2) and replacing α and β with their estimates baG and bbG , if a firm has the
predictor value x0 at time t0, then its predicted financial-distress probability based on the
DLM with autocorrelation structure is:

bpG t0; x0ð Þ ¼
exp baG þ bbGx0� 	

1þ exp baG þ bbGx0� 	 : ð9Þ

By the consistency of baG and bbG , bpG t0; x0ð Þ is also consistent for the true financial-
distress probability p(t0, x0). Thus, the DLM with autocorrelation structure is a reliable
prediction model for a firm’s financial distress whether or not the autocorrelation structure
imposed on the time series observations Yi,j from the same firm is correctly specified.

The same developments for baG;bbG� 	
, V1, V2, bρ; bV1; bV2; and bpG t0; x0ð Þ based on the

DLM with autocorrelation structure can also be applied to the DLM with independent
structure by taking the estimate of the nuisance parameter ρ as zero. Thus, both the

consistency and the asymptotic normality of baG;bbG� 	
are shared with baI ;bbI� 	

. The

principle disadvantage of baI ;bbI� 	
is that it might not have high efficiency in cases where

the autocorrelation is large (Liang and Zeger 1986).

2.3 Measuring prediction performance

For assessing the prediction models introduced in subsections 2.1 and 2.2, there are some
standard performance metrics, for example, the out-of-sample type I and type II error rates
(Cheng et al. 2010) and the out-of-sample accuracy ratio obtained from the cumulative accuracy
profile curve (BCBS 2005). However, these standard performance metrics are only based on the
relative ordinal rankings of financial-distress probabilities and not on the actual magnitudes of
those probabilities. Thus, they are not suitable to assess whether a prediction model generates
financial-distress probabilities that are adequate in absolute terms. Due to the fact that the credit
losses of portfolios depend on the actual magnitudes of financial-distress probabilities, a proper
prediction model must be able to provide accurate firm-by-firm financial-distress probabilities.
Accordingly, we use the out-of-sample AD (ADout) between ANFD and PNFD and the out-of-
sample PI (PIout) of ANFD as performance metrics for assessing the prediction models. Both
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ADout and PIout are developed using the actual magnitudes of financial-distress probabilities
rather than the relative firm-riskiness rankings. Korablev and Dwyer (2007), Duffie et al.
(2009), and Chava et al. (2011) also consider similar performance metrics.

To compute ADout and PIout, the out-of-sample data are selected. In contrast, the panel data
that are used to build the prediction models in subsections 2.1–2.2 are considered as the “in-
sample” data. The out-of-sample data are generated in a similar fashion to the in-sample data. In
this paper, the out-of-sample period is ðx2; x2 þ 1� , where ξ2 is the end time of the sampling
period of in-sample data. The out-of-sample firms comprise all industrial firms that are listed on
the TWSE or GTSM during the out-of-sample period. Suppose that there are n0 out-of-sample
firms. All values of the d×1 predictor X for the n0 out-of-sample firms occurring at time ξ2+1
are collected from the TEJ database. The out-of-sample data are denoted by

eYk;x2þ1;exk;x2þ1

� 	
: k ¼ 1; � � � ; n0

n o
:

Here eYk;x2þ1 ¼ 1 indicates that the financial status of the k-th out-of-sample firm is in

distress at time ξ2+1, and eYk;x2þ1 ¼ 0 otherwise. Further, exk;x2þ1 is the value of X collected
from the k-th out-of-sample firm at time ξ2+1, for each k ¼ 1; � � � ; n0 .

Using the out-of-sample data eYk;x2þ1;exk;x2þ1

� 	
: k ¼ 1; � � � ; n0

n o
and the result from

Eq. (9), we first evaluate the predicted financial-distress probabilities bpG x2 þ 1;exk;x2þ1

� �
,

for each k ¼ 1; � � � ; n0 . Then we apply the convolution calculation technique (Duan 2010)
to these predicted financial-distress probabilities, so that the distribution of the number of
financial distresses based on the DLM with autocorrelation structure for the n0 out-of-sample
firms at time ξ2+1 can be obtained. The statistical characteristics of this distribution such as
the mean, variance, and quantile can be evaluated. For the n0 out-of-sample firms, their
PNFD at time ξ2+1, denoted by PNFDout(ξ2+1), is taken to be the mean of this distribution.
Further, the value of PNFDout(ξ2+1) can also be equivalently obtained using

PNFDout x2 þ 1ð Þ ¼ Pn0
k¼1
bpG x2 þ 1;exk;x2þ1

� �
. Thus the value of ADout at time ξ2+1 is defined

by

ADout x2 þ 1ð Þ ¼ ANFDout x2 þ 1ð Þ � PNFDout x2 þ 1ð Þj j;

where ANFDout x2 þ 1ð Þ ¼ Pn0
k¼1

eYk;x2þ1 and PNFDout x2 þ 1ð Þ stands for a prediction of the

value of ANFDout x2 þ 1ð Þ which has a mean of
Pn0
k¼1

p x2 þ 1;exk;x2þ1

� �
. On the other hand,

for the n0 out-of-sample firms, the 95% PI of their ANFDout (ξ2+1) can be taken as [p0.025, p0.975]
Here, p0.025 and p0.975 denote respectively the 2.5-th and 97.5-th percentiles of the distribution of
the number of financial distresses. This 95 % PI of ANFDout (ξ2+1) is denoted by PIout (ξ2+1).

The out-of-sample performance metrics ADout (ξ2+1) and PIout (ξ2+1) based on the DLM
with autocorrelation structure can be similarly defined for the DLM with independent
structure by replacing bpG x2 þ 1;exk;x2þ1

� �
with bpI x2 þ 1;exk;x2þ1

� �
.

3 Empirical studies

In this section, we conduct empirical studies to compare the performance of the three
prediction models: the DLM with independent structure, the DLM with exchangeable
structure, and the DLM with AR1 structure.
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3.1 Data and estimation results

To investigate the performance of the three prediction models, we collect three different
panel datasets based on the well-known predictors from Altman (1968), Campbell et al.
(2008), and Shumway (2001). For simplicity of presentation, these predictors are called the
Altman, Campbell, and Shumway predictors respectively. Table 1 gives their definitions.
Further, the panel data used to build the three prediction models are also called the in-sample
data in this paper.

The sampling period for each of the three panel datasets is 1986 to 2008. The in-sample
firms consist of all industrial firms listed on the TWSE or GTSM during the sampling
period. We exclude financial firms from the sample due to the unique capital requirements
and regulatory structure of that industry group. The predictor values come from the calendar
year-end data collected from the TEJ database. In order to eliminate outliers, the values of
each predictor (except the predictor PRICE) are winsorized using a 5/95 percentile interval
(Campbell et al. 2008). The resulting predictor values measure the risk of financial distress

Table 1 The definitions of the Altman, Campbell, and Shumway predictors. The results are given respec-
tively in Panels A, B, and C

Variable Definition

Panel A: Altman predictors

WCTA Working capital divided by total assets

RETA Retained earnings divided by total assets

EBITTA Earnings before interest and taxes divided by total assets

METL Market equity divided by total liabilities

STA Sales divided by total assets

Panel B: Campbell predictors

NIMTAAVG NIMTAAVG ¼ 1� w3ð Þ 1� w12ð Þ�1
NIMTA4 þ w3NIMTA3 þ w6NIMTA2 þ w9NIMTA1ð Þ ,

the weighted average of four quarterly NIMTAwith ω02−1/3 and NIMTA as net income
divided by market-valued total assetsa

TLMTA Total liabilities divided by market-valued total assetsa

EXRETAVG EXRETAVG ¼ 1� wð Þ 1� w12ð Þ�1
EXRET12 þ � � � þ w11EXRET1ð Þ , the weighted average

of twelve monthly excess returns (EXRET) with ω02−1/3 and EXRET as the return on the
firm minus the TWSE capitalization weighted stock index (TAIEX) return

SIGMA Annualized square root of the average of the squared deviations in the firm’s daily stock
returns from zero over the past 3 months

RSIZE Logarithm of each firm’s market equity value divided by the total TWSE market equity value

CASHMTA Cash and short-term investments divided by market-valued total assetsa

MB Market equity value divided by book equity value

PRICE Logarithm of stock price if the price is below NT$22, and logarithm of NT$22 otherwise

Panel C: Shumway predictors

SIGMA Annualized square root of the average of the squared deviations in the firm’s daily stock
returns from zero over the past 3 months

RSIZE Logarithm of each firm’s market equity value divided by the total TWSE market equity value

NITA Net income divided by total assets

TLTA Total liabilities divided by total assets

EXRET The return on the firm minus the TAIEX return

a The market-valued total assets is the sum of the book value of liabilities and the market value of equities
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over the 12-month period beginning 4 months after the calendar year end (Hillegeist et al.
2004). Using the TEJ definitions for characteristics such as negative net worth and bank-
ruptcy, we identify the financial-distress filings covering the period from May, 1987 to April,
2010. Table 2 presents the frequency distribution of the in-sample firms in each of the three
panel datasets according to the number of financial distresses that a firm experiences during
the sampling period. The results in Table 2 show that for each of the three panel datasets,
more than 12 % of the in-sample firms have financial-distress experience. Table 3 gives the
summary statistics of the predictor values in each of the three panel datasets.

Given the in-sample data, Table 4 reports the estimation results of the three prediction
models using each set of the Altman, Campbell, and Shumway predictors. Table 4 shows
that the values of the estimated coefficients in each of the three models all agree with their
expected signs. Also, the table indicates that the robust standard errors for most of coeffi-
cient estimates are of larger magnitude than the associated naive standard errors.

3.2 Prediction results

To compare the prediction performance of the models based on each set of the Altman,
Campbell, and Shumway predictors, we collect the corresponding out-of-sample data with
the predictor values in 2009 and financial statuses in 2010 (covering the period from May,
2010 to April, 2011) from the TEJ database. The out-of-sample data based on the Altman
predictors consist of 24 financial distresses and 1,387 firm-year observations, the Campbell
predictors consist of 22 financial distresses and 1,242 firm-year observations, and the
Shumway predictors consist of 23 financial distresses and 1,368 firm-year observations.

Using the out-of-sample data and the estimation results in Table 4, Fig. 1 and Table 5
present the out-of-sample prediction performance of the three models. Figure 1 gives the
distributions of the number of financial distresses in 2010. Panel (a) of Fig. 1 presents the
results for the three models based on the Altman predictors. The panel shows that the
distributions generated from the three models are quite different. From Panel (a) of Fig. 1,
we see that the mean of the distribution generated by the DLM with AR1 structure is the
closest to the ANFD among the models. Also, the distribution generated by the DLM with
AR1 structure shifts to the left relative to the distribution produced by each of the other two

Table 2 The frequency and percent frequency (in parentheses) distributions of the in-sample firms in each of
the three panel datasets according to the number N of financial distresses that a firm has experienced during
the sampling period. These panel datasets are collected from the TEJ database for the period of 1986 to 2008

N Altman predictors Campbell predictors Shumway predictors

0 1,495 (87.12 %) 1,209 (84.84 %) 1,435 (86.65 %)

1 66 (3.85 %) 79 (5.54 %) 68 (4.11 %)

2 73 (4.25 %) 71 (4.98 %) 73 (4.41 %)

3 29 (1.69 %) 29 (2.04 %) 32 (1.93 %)

4 28 (1.63 %) 19 (1.33 %) 25 (1.51 %)

5 9 (0.52 %) 9 (0.63 %) 14 (0.85 %)

6 7 (0.41 %) 3 (0.21 %) 3 (0.18 %)

7 4 (0.23 %) 5 (0.35 %) 3 (0.18 %)

8 1 (0.06 %) 0 (0.00 %) 2 (0.12 %)

9 4 (0.23 %) 1 (0.07 %) 1 (0.06 %)

Total firms 1,716 (100 %) 1,425 (100 %) 1,656 (100 %)

330 J Financ Serv Res (2013) 43:321–341



models, and the distribution has a smaller mean. The results in Panel (a) of Fig. 1 are the
same as those in Panels (b) and (c) of Fig. 1 for the distributions generated by the models
based on the Campbell and Shumway predictors respectively.

Table 5 gives the values of PNFD, AD, and 95 % PI produced from the distributions in
Fig. 1. Among the three models, Table 5 shows that the value of AD from the DLM with
AR1 structure is the smallest one for each set of the Altman, Campbell, and Shumway
predictors. Also, the 95 % PI from the DLM with AR1 structure is the only one containing
the ANFD for the Altman and Shumway predictors. By the results presented in Fig. 1 and
Table 5, we conclude that the DLM with AR1 structure has the best out-of-sample prediction
performance in 2010 among the three models.

3.3 Robustness performance

In this section, we use an expanding rolling window approach to assess the robustness of the
advantage of the DLM with AR1 structure, that is, it has the best out-of-sample prediction
performance among the three models. For simplicity, we use the same predictors to generate
the in-sample and out-of-sample data. Also, we use the same computational procedures as in

Table 3 Summary statistics of predictors in each of the three panel datasets. These panel datasets are
collected from the TEJ database for the period of 1986 to 2008. Panels A, B, and C give the results for the
Altman, Campbell, and Shumway predictors respectively

Variable Mean Median Standard deviation Minimum Maximum

Panel A: Altman predictors

570 financial distresses, 14,269 firm-year observations, and 1,716 firms

WCTA 0.167 0.160 0.170 −0.141 0.490

RETA 0.060 0.082 0.143 −0.325 0.272

EBITTA 0.046 0.053 0.077 −0.138 0.175

METL 3.575 2.112 3.830 0.301 14.890

STA 0.758 0.664 0.440 0.164 1.827

Panel B: Campbell predictors

491 financial distresses, 12,858 firm-year observations, and 1,425 firms

NIMTAAVG 0.003 0.008 0.018 −0.049 0.025

TLMTA 0.346 0.312 0.202 0.063 0.749

EXRETAVG −0.006 −0.007 0.045 −0.090 0.087

SIGMA 0.447 0.432 0.155 0.205 0.755

RSIZE −8.149 −8.231 1.480 −10.567 −5.348
CASHMTA 0.084 0.060 0.074 0.007 0.270

MB 1.514 1.340 0.799 0.473 3.315

PRICE 2.642 2.996 0.648 −2.408 3.091

Panel C: Shumway predictors

544 financial distresses, 13,655 firm-year observations, and 1,656 firms

SIGMA 0.459 0.439 0.166 0.207 0.809

RSIZE −8.231 −8.310 1.523 −10.769 −5.389
NITA 0.030 0.038 0.075 −0.155 0.149

TLTA 0.394 0.388 0.166 0.122 0.716

EXRET −0.054 −0.059 0.410 −0.824 0.751
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Fig. 1 Plot of the distributions of the number of financial distresses in 2010. The distributions are generated
by applying Duan’s (2010) convolution calculation technique to the predicted financial-distress probabilities
of the out-of-sample firms based on the three models. These predicted financial-distress probabilities are
computed using the predictor values of the out-of-sample firms in 2009. In each panel, the blue dashed, the
green short dashed, and the red solid curves denote the distributions produced using the DLM with
independent structure, the DLM with exchangeable structure, and the DLM with AR1 structure respectively.
Also, the location of the black vertical solid curve stands for the value of ANFD. Panels (a), (b), and (c) show
the results based on the Altman, Campbell, and Shumway predictors respectively

Table 5 The numerical values of PNFD, AD, and 95 % PI for the out-of-sample firms in 2010. The results are
produced from the distributions of the number of financial distresses in Fig. 1. These distributions are obtained
by applying Duan’s (2010) convolution calculation technique to the predicted financial-distress probabilities
of the out-of-sample firms in 2010 based on the three models. The three models are the DLM with
independent structure, the DLM with exchangeable structure, and the DLM with AR1 structure. Panels A,
B, and C present the numerical results based on the Altman, Campbell, and Shumway predictors respectively

Independent Exchangeable AR1

Panel A: Altman predictors

1,387 out-of-sample firms, ANFD024

PNFD 53.404 50.234 32.484

AD 29.404 26.234 8.484

PI [41.057, 65.262] [37.980, 62.035] [22.074, 42.604]a

Panel B: Campbell predictors

1,242 out-of-sample firms, ANFD022

PNFD 37.220 37.247 35.507

AD 15.220 15.247 13.507

PI [27.742, 46.259] [27.257, 46.823] [25.497, 45.107]

Panel C: Shumway predictors

1,368 out-of-sample firms, ANFD023

PNFD 43.082 35.221 32.922

AD 20.082 12.221 9.922

PI [31.770 53.951] [24.450, 45.662] [22.169, 43.458]a

The notation a indicates that the 95 % PI contains the ANFD given in the same panel of the table
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subsections 3.1 and 3.2 to obtain the distributions of the number of financial distresses based
on the three models in each year during the period of 2001 to 2010.

For the first window, we estimate the updated coefficients for each of the three models
using the in-sample data comprising the predictor values from 1986 to 1999 and financial
statuses from 1987 to 2000. The updated coefficients are combined with the predictor values
of out-of-sample firms in 2000 to predict the financial-distress probabilities and to generate
the distribution of the number of financial distresses for out-of-sample firms in 2001. The
out-of-sample performance based on AD and 95 % PI during 2001 is measured for each of
the three models. For the second window, we estimate the updated coefficients for each of
the three models using the in-sample data comprising the predictor values from 1986 to 2000
and financial statuses from 1987 to 2001. The updated coefficients are combined with the
predictor values of out-of-sample firms in 2001 to predict the financial-distress probabilities
and to generate the distribution of the number of financial distresses for out-of-sample firms
in 2002. The out-of-sample performance based on AD and 95 % PI during 2002 is measured
for each of the three models. The process is continued so that the updated coefficients for
each of the three models in the last window are based on the in-sample data comprising the
predictor values from 1986 to 2008 and financial statuses from 1987 to 2009. The last set of
updated coefficients is combined with the predictor values of out-of-sample firms in 2009 to
predict the financial-distress probabilities and to generate the distribution of the number of
financial distresses for out-of-sample firms in 2010. Thus, the out-of-sample performance
based on AD and 95 % PI during 2010 is measured for each of the three models. The process
carried out in the last window is the same as that performed in subsections 3.1 and 3.2.
Table 6 gives the numbers of firm-year observations in the in-sample and out-of-sample data
for each of the ten windows.

Figures 2 and 3 and Table 7 present the out-of-sample prediction performance of the three
models based on each set of the Altman, Campbell, and Shumway predictors. Figures 2 and
3 give the out-of-sample prediction comparisons in terms of AD and 95 % PI respectively.
From Fig. 2, we see that the DLM with AR1 structure has the best performance among the
three models for most of the windows, in the sense of yielding the smallest values of AD.
From Fig. 3, we see that the 95 % PI from the DLM with AR1 structure is of the best
performance among the three models in terms of the number of times that the 95 % PI
contains ANFD over the ten windows.

Table 7 summarizes the out-of-sample prediction performance in Figs. 2 and 3 for the
three models. Table 7 gives the sample average and standard deviation of the values of AD
as well as the number of times that the 95 % PI contains ANFD over the ten windows. For
each set of the Altman, Campbell, and Shumway predictors, Table 7 shows that the values of
AD generated by the DLM with AR1 structure over the ten windows not only have the
smallest sample average but also have the lowest volatility, and the number of times that the
95 % PI contains ANFD over the ten windows is the largest. These results confirm the
robustness of the advantage of the DLM with AR1 structure having the best out-of-sample
prediction performance among the three models.

4 Concluding remarks and future research topics

In this paper, we propose to use the DLM with autocorrelation structure to predict recurrent
financial distresses. We construct the model by applying the logit model to the panel data
containing not only the first financial distresses but also subsequent financial distresses of
firms. Thus the proposed model has the advantage of using all of the available information to
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predict a firm’s financial distress at any point in time whether or not the firm has financial-
distress experience. Further, the model assumes that the financial statuses collected for the
same firm at different time points are correlated with one another, but those obtained from
different firms are not correlated. Such an autocorrelation assumption is more appropriate
than the usual independence assumption, because repeated observations from the same firm
tend to be correlated with one another. We estimate the unknown parameters in the proposed
model using the GEE approach. From the theoretical results in Liang and Zeger (1986) and
Lipsitz et al. (1994), the estimated financial-distress probability based on the proposed

Table 6 The numbers of firm-year observations in the in-sample and out-of-sample data. The data are
collected in each of the ten windows for investigating the robustness performance of the three models based
on each set of the Altman, Campbell, and Shumway predictors. Panels A and B present the results for the in-
sample and out-of-sample data respectively

Window (predictor
sampling period)

Altman predictors Campbell predictors Shumway predictors

Financial
distresses

Total firm-
years

Financial
distresses

Total firm-
years

Financial
distresses

Total firm-
years

Panel A: In-sample data

First window
(1986–1999)

139 4,071 87 3,641 121 3,771

Second window
(1986–2000)

173 4,812 119 4,359 154 4,507

Third window
(1986–2001)

212 5,641 156 5,161 192 5,330

Fourth window
(1986–2002)

252 6,632 196 6,098 232 6,289

Fifth window
(1986–2003)

304 7,752 247 7,120 284 7,354

Sixth window
(1986–2004)

366 9,012 304 8,209 345 8,539

Seventh window
(1986–2005)

435 10,290 369 9,330 414 9,752

Eighth window
(1986–2006)

486 11,579 414 10,477 464 11,018

Ninth window
(1986–2007)

537 12,924 462 11,664 514 12,341

Tenth window
(1986–2008)

570 14,269 491 12,858 544 13,655

Panel B: Out-of-sample data

First window (2000) 34 741 32 718 33 736

Second window (2001) 39 829 37 802 38 823

Third window (2002) 40 991 40 937 40 959

Fourth window (2003) 52 1,120 51 1,022 52 1,065

Fifth window (2004) 62 1,260 57 1,089 61 1,185

Sixth window (2005) 69 1,278 65 1,121 69 1,213

Seventh window(2006) 51 1,289 45 1,147 50 1,266

Eighth window (2007) 51 1,345 48 1,187 50 1,323

Ninth window (2008) 33 1,345 29 1,194 30 1,314

Tenth window (2009) 24 1,387 22 1,242 23 1,368
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model is consistent for the true financial-distress probability whether or not the imposed
autocorrelation structure is correct. Thus, the DLM with autocorrelation structure is a
reliable prediction model.

The performance of the proposed model in predicting recurrent financial distresses is
illustrated using three panel datasets based on the well-known predictors from Altman
(1968), Campbell et al. (2008), and Shumway (2001). Its robustness assessment is also
investigated using different numbers of years of data. To implement the proposed method,
we use two different autocorrelation structures: exchangeable and AR1, to account for the
correlations among the observations from the same firm at different points in time. The data
collected from the TEJ database are based on all industrial firms listed on the two major
Taiwan stock exchanges: TWSE and GTSM. Using an expanding rolling window approach,
our empirical results show that for each of the three panel datasets, the DLM with AR1
structure has better performance than the other two discussed models: the DLM with
independent structure and the DLM with exchangeable structure. The DLM with AR1
structure yields more accurate PNFD and PI in out-of-sample analysis. Thus, from the
empirical results, the DLM with AR1 structure has the potential to be a powerful model
for studying credit losses in portfolios.

There are some possible extensions for the prediction models considered in this paper.
First, a measure of aggregate systemic risk can be generated using the predicted financial-
distress probabilities based on each of the three models. For example, using the expanding
rolling window approach in subsection 3.3, systemic risk can be the equal-weighted (or
value-weighted) average of predicted financial-distress probabilities for out-of-sample firms
collected in each window. It is of interest to examine whether this type of measure of
aggregate systemic risk can predict the future market return, economic downturn, TED
spread, or loss-given-default rate. Caselli et al. (2008), Acharya et al. (2010), Allen et al.
(2010), Adrian and Brunnermeier (2011), and Kelly (2011) all consider similar studies on
systemic risk. Second, each of the three models can be extended to predict financial

Fig. 2 The out-of-sample AD between ANFD and PNFD produced by the three models using an expanding
rolling window approach for the period of 2001 to 2010. In each panel, the blue dashed, the green short
dashed, and the red solid curves denote the values of AD produced using the DLM with independent structure,
the DLM with exchangeable structure, and the DLM with AR1 structure respectively. Panels (a), (b), and (c)
show the results based on the Altman, Campbell, and Shumway predictors respectively
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distresses over different future periods (Campbell et al. 2008; Duan et al. 2011). It is of
interest to study the term structure of forward financial-distress probabilities based on each
of the three models. Third, we study the performance of the three models in this paper only
using firm-specific variables. The macroeconomic variables such as the real GDP growth
rate and interest rate have been considered in Salas and Saurina (2002) for assessing credit
risk. Researchers might study the effects of macroeconomic variables on the discussed
models for predicting recurrent financial distresses. Finally, each of the three models
assumes that the firm-specific effects on financial distress prediction are constant. However,
in practice, these firm-specific effects should depend on business cycles (Pesaran et al.
2006), especially in cases of severe economic downturns. Thus, it would be more sensible to
allow the parameters of logistic function to evolve with the effect of changes in macroeco-
nomic dynamics. To do so, the idea of the varying coefficient model (Fan and Zhang 2008)
can be considered. Specifically, the logistic function in Eq. (2) is replaced by

pi; j ¼
exp a zj

� �þ b zj
� �

xi; j
� �

1þ exp a zj
� �þ b zj

� �
xi; j

� � ;

Fig. 3 The out-of-sample 95 % PI of ANFD produced by the three models using an expanding rolling
window approach for the period of 2001 to 2010. The blue, the green, and the red solid curves denote the out-
of-sample 95 % PI of ANFD produced using the DLM with independent structure, the DLM with exchange-
able structure, and the DLM with AR1 structure respectively. In each panel, the black stars and the solid
circles stand for PNFD and ANFD respectively. Panels (a)–(c) show the results based on the Altman
predictors, (d)–(f) based on the Campbell predictors, and (g)–(i) based on the Shumway predictors
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where b zj
� � ¼ b1 zj

� �
; � � � ; bd zj

� �� �
, and each of a zj

� �
; b1 zj
� �

; � � � ; bd zj
� �

is an unknown
but smooth function of the value zj collected at time j from the k×1 macroeconomic variable
Z. Thus, the resulting prediction models would allow the effects of firm-specific predictors
on credit risk to change with observable macroeconomic dynamics factors.
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Appendix: A computational procedure for finding the solution baG;bbG� 	
of GEE

The value of baG;bbG� 	
can be computed using the Fisher-scoring algorithm. Set θ ¼ a; bð ÞT

. Given a starting value bθ0 for θ, iterate

bθmþ1 ¼ bθm þ
Xn
i¼1

Di
bθm� 	T

Gi
bθm;bρm� 	�1

Di
bθm� 	( )�1 Xn

i¼1

Di
bθm� 	T

Gi
bθm;bρm� 	�1

Yi � pi bθm� 	n o" #
;

untilbθmþ1 ¼ bθm � baG;bbG� 	T
andbρmþ1 ¼ bρm � bρ . Here the nuisance parameter ρ in them-th

iteration is estimated by bρm ¼ Pn
i¼1

ti � sið Þ ti � si þ 1ð Þ=2� d � 1

� 
�1Pn
i¼1

Pti�1

j¼si

Pti
k¼jþ1

beðmÞi;j beðmÞi;k

for the exchangeable structure, bρm ¼ Pn
i¼1

ti � sið Þ � d � 1

� 
�1Pn
i¼1

Pti�1

j¼si

beðmÞi; j beðmÞi; jþ1 for the AR1

structure,beðmÞi; j ¼ bpðmÞi; j 1� bpðmÞi; j

n oh i�1=2
Yi; j � bpðmÞi; j

� 	
, and bpðmÞi; j ¼ pi; j bθm� 	

. Liang and Zeger

Table 7 The sample average and standard deviation of the values of AD and the number N of times that the
95 % PI contains ANFD over the ten windows for the three models based on each set of the Altman,
Campbell, and Shumway predictors. The three models are the DLM with independent structure, the DLMwith
exchangeable structure, and the DLM with AR1 structure

Independent Exchangeable AR1

Panel A: Altman predictors

Average 11.071 7.010 3.847

Standard deviation 11.575 10.922 7.411

N 8 8 9

Panel B: Campbell predictors

Average 17.413 15.934 9.096

Standard deviation 14.084 13.595 11.468

N 4 4 7

Panel C: Shumway predictors

Average 15.568 11.442 7.399

Standard deviation 13.786 10.414 8.928

N 5 5 8
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(1986) suggest taking the starting value bθ0 as the maximum likelihood estimate of θ produced
in subsection 2.1 under the independence assumption.
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