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Abstract 

A fuzzy clustering algorithm based on global connection information is proposed to solve the graph bisection 
problem. 
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1. Introduction 

Let G = (V, E) be an undirected connected 
edge-weighted graph. In general, a partition of G 
is a partition of its vertex set V. Hence, if the 
ends of an edge e in E belong to two different 
subsets of the partition, e will be cut by a parti- 
tion (V,, V,) of V. The cut of a partition <V,, V,) 
for graph G is defined as the sum of the weights 

of all the edges cut by the partition 

cUt( v1, vz) = C C ‘ij, 

where cij is the weight of the edge {i, j} in G. 
Therefore, a min-cut partition for graph G is a 
partition (V,, VJ of I/ with minimum cut. How- 
ever, a min-cut partition always yields an unbal- 
anced partition, and an unbalanced partition is 
inefficient on many applications. Therefore, bal- 
anced-partition graph bisection is formulated as 

* Corresponding author. 

follows: A partition (V,, 1/Z] of I/ is said to be a 
graph bisection (GB) if I VI I = I V2 I when I I/ I is 
even or I V, I = I V, I - 1 when I I/ I is odd. 

Due to the size constraint on the partition, GB 
is NP-complete [4]. Many heuristic approaches 
have been suggested for GB. In 1970, Kernighan 
and Lin [.5] proposed a two-way “group-migra- 
tion” improvement algorithm with a constraint on 
the subset size. They randomly started with two 
subsets and iteratively applied pairwise swapping 
on all pairs of nodes. Subsequently, Fiduccia and 
Mattheyses [3] reduced the time complexity to 
O(P) with respect to the number of pins P. Saab 
and Rao [7,8] also proposed heuristic algorithms 
to solve GB. Generally speaking, the Kernighan- 
Lin based algorithm [l] is quite efficient, but it 
does not focus on the global connection informa- 
tion of the given graph. Therefore, it is difficult 
for it to obtain an optimal or near-optimal graph 
bisection. 

In this paper, we propose a fuzzy clustering 
algorithm based on global connection information 
to solve GB. For an undirected connected edge- 
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weighted graph, we introduce two groups of fuzzy 
memberships on the vertex set and define the 
clustering distance between any pair of vertices in 
the graph according to global connection. Based 
on fuzzy c-means clustering [2,61, two-way fuzzy 
graph clustering generates two groups of con- 
verged fuzzy memberships for the vertex set. Fi- 
nally, according to the grades of the member- 
ships, the vertices in the graph can be separated 
into two even subsets with minimum cut. 

2. Fuzzy membership on vertices 

Given is an undirected edge-weighted graph 
G =(V, E), where I/= {xi, x2 ,..., XJ and E = 

(Yl, Y,, * f * 7 y,). Let [w+ the set of nonnegative 
reals and iWZn the set of real 2 x n matrices. 
First, fuzzy memberships and fuzzy functions for 
the vertex set I/ are introduced. Every fuzzy 
function ui : Y+ [O,l] assigns grades of fuzzy 
memberships onto the vertices in V. Function ui 
is called the ith fuzzy set in I/. There are in- 
finitely many fuzzy sets associated with I/. Every 
fuzzy set in I/ represents a possible fuzzy cluster- 
ing. Hence, for two-way partitioning, two fuzzy 
sets in V will be applied to partition the vertex 
set V. 

In order to partition V by means of fuzzy sets, 
we need some clustering constraints between the 
two fuzzy sets. For example, for each xk in V, the 
sum of the fuzzy memberships in the two fuzzy 
sets is restricted to be 1. Formally, a two-way 
fuzzy clustering for two-way partitioning can be 
represented by a fuzzy matrix U in MZn whose 
entries satisfy the following clustering constraints: 
(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Row i of U, say q = (uil, ui2), exhibits fuzzy 
set i of V. 

d;= 
if {i, j) is an edge in the graph, 

I - 

Short path( i, j) 

if {i, j} is not an edge in the graph, 

Column j of U, say L$ = (uij, uZj) exhibits 
the values of the 2 fuzzy sets of the jth datum 
in V. 

uik shall be interpreted as uj(x,), the value of 
fuzzy set i for the kth datum. 
The sum of the membership values for each 
xk is 1 (L+ + uZk = 1, for all k). 
No fuzzy set is empty (row sum &uik > 0, for 
all i). 

where Short path& t) is the sum of the weights 
on the short&t path from vertex s to vertex t. 
Clearly, the clustering distance of all pairs of 
vertices in the graph must be obtained for fuzzy 
clustering. Hence, all clustering distances can be 
computed by running an all-pairs shortest-path 
algorithm. 

4. Optimality of fuzzy clustering 

No fuzzy set is all of V (row sum Ckujk <n, Based on fuzzy c-means clustering, two-way 
for all il. fuzzy graph clustering can be transformed into a 

3. Clustering distance 

Due to the primary min-cut operation in graph 
partitioning, it is sure that any pair of connected 
vertices with larger weight will be clustered into 
the same cluster to reduce the partitioning result. 
Hence, for graph partitioning, the larger the 
weight of the edge, the less its clustering distance. 
A related clustering graph can be generated by 
modifying the edge weights of the original edge- 
weighted graph. For G = (V, E), the related clus- 
tering graph G* = (V*, E*) is an undirected 
edge-weighted graph, where V* = V, E* = E, and 
the edge weight c$ of the edge Ii, j) is defined by 
c; = l/Cij. 

Since there is no geometrical distance between 
any pair of vertices in a graph, it is critical for 
fuzzy clustering on a graph structure to estimate 
the clustering distance of any pair of vertices. 
Simply speaking, for an undirected edge-weighted 
graph, the distance of any pair of vertices in the 
graph is the distance of the shortest path. Fur- 
thermore, the clustering distance of any pair of 
vertices in the related clustering graph can be 
computed by running a shortest-path algorithm. 
The clustering distance will indicate the clustered 
degree of the pair of vertices in the same cluster. 
For any pair of vertices i and j in G*, the 
clustering distance d: between vertex i and j can 
be further obtained as 
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mathematical optimization problem for the 
mapped objective function. Using the fuzzy mem- 
berships of the vertex set and the clustering dis- 
tance between any pair of vertices, the objective 
function for two-way fuzzy graph clustering can 
be formulated as follows: Let U in I’$,, be a 
fuzzy graph partition of V, and let u = (u,, u2) be 
the cluster centers. Objective function Ji : M,, X 

I/+ R+ is defined as 

Ji( u? ui) = 2 ( uik)2( dik)2. 
k=l 

Further, objective function J : M,, X v2 + IF!+ is 
defined as 

= i: i: (Uik)2(dik)2, 

k=l i=l 

where U in M,, is a fuzzy graph clustering of V, 
u =(ui, u2) in V2 is the cluster centers, and 

dik = 11 xk - ui II is the clustering distance between 
xk and ui. Note the several parameters in the 
definition of the objective function. The squared 
clustering distance is weighted by the second 
power of the membership of datum xk in cluster 
i. Thus, function J is a squared error criterion, 
and its minimization produces a fuzzy clustering 
matrix U that is optimal in a generalized least- 
squared error sense. 

Since two-way fuzzy graph clustering can be 
transformed into a mathematical optimization 
problem for the mapped objective function, two- 
way fuzzy graph clustering can be stated as an 
approach that attempts to find a solution for the 
following mathematical program: 

Minimize 

J(U, ‘) = ~ i: (uik)2(dik)2 
k=l i=l 

subject to 

ulk + U2k = l, 
uik > 0, 1 Q i G 2, 1 G k G n, 
xi E V, 1 G i G n are vertices in the graph, 
Vj E V, 1 <j =G 2 are unknown cluster centers, 
U = {uik) is a 2 X n matrix, where uik is re- 

ferred to as the grade of membership of 
xk in row i of matrix U. 

Objective function J is a nonlinear multi-vari- 

able function, and it is difficult for two-way fuzzy 
graph clustering to obtain an optimal matrix U. 
For minimizing J, iterative optimization on U 
and clustering center v can be applied to approx- 
imate the minima of the function. In the follow- 
ing lemmas, we discuss necessary conditions on U 
and v for the mapped objective function. 

Lemma 4.1. Consider the following problem: 

Minimize 

k=l i=l 
subject to 

Ulk + U2k = 1, l<k<n, 
uik > 0, 1 G i G 2, 1 G k Gn, 

where v is fixed. Then U = {uik) is a 
mum of the problem if for 1 =G k < n, 
if xk # ~1, and xk Z u2 then 

d,:, * d:k 

Uik = dfk( di”k + dzk) 
(for lGiG2 > 

global mini- 

, 

else 

i 

1 if xk = vi, 

“‘= 0 ifxk#vi (for l<i<2). 

Proof. By the definition of fuzzy membership, the 
columns in matrix U are independent. Therefore, 

Min{ J( U, v)) = Min 
i 

5 c ( uik)‘( dik)2 
k-1 i=l 1 

= 5 Min i (uik)2(dik)2 . 
k=l ( i=l 1 

As mentioned in the previous definitions, the 
restricted condition for each column in U is 
C~=iuik = 1. Further, the minimum function can 
be formulated as a function F and solved by the 
Lagrange Multiplier method, 

F= ,tl (Uid2(did2 +A( +k - 1). 
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The first-order sufficient and necessary condi- 
tions for optimality are 

~ = [2(Uik)(dik)2-h] =O. 
rk 

By (2), we obtain 

h 
Uik = ~ 

2(dik)2 ’ 

Substitute (3) into (1): 

Therefore, 

A d,: + d;k 
-= 

2 dfk * dik ’ 

Substitute (4) into (3), we obtain 

1 d:k + d;k d,:, * d;k 

uik=(din)?* d:k * d;k = dFk(d;k+d;k)’ 

(1) 

(2) 

(3) 

(4) 

The fuzzy membership assignment can be further 
classified into two different cases. If xk corre- 
sponds to ui, the fuzzy membership of xk on 
cluster i is 1 and that on the other cluster is 0. 
Thus, uik is assigned as follows: for 1 < k <n, 
if xk # ui and xk # u2 then 

d:k * d;k 
U lk = dfk(d;k + d;k) (for 1 <’ G 2), 

else 

i 

1 if xk = ci, 

Uik= 0 if xkfui (forlGiG2). 0 

Lemma 4.2. Consider the following problem: 

Minimize 

J(U, L’) = i i: (Uik)2(dik)2 
k=l i=l 

subject to 

Ulk + U2k = 1, 16 k <n, 
uik > 0, I G i G 2, 1~ k G n, 

where U is fixed. Then v = (v 1, ~1~) is a global 
minimum of the problem if vi is in V such that 
J&U, yi> is the least. 

Proof. Due to U being fixed, all rows in matrix U 
are independent. Therefore, 

Min( J(U, u)} = Min{J,(U, v,) +J,(U, u,)} 

= Min{J,( U, vi)) 

+ Min{J,(U, v,)}. 

Furthermore, the minimization of J(U, U) will 
depend on the minimization of Min{J,(U, vi)} + 
Min(J,(U, v2)}. Thus, the center of cluster i for 
1 G i G 2 can be assigned by vi such that J,<U, vi) 

is the least. KI 

5. Fuzzy clustering and graph bisection 

According to Lemmas 4.1 and 4.2, two-way 
fuzzy graph clustering, via iterative optimization 
of J(lJ, v) on U and v, produces a feasible fuzzy 
graph partition of V= {x,, x2,. . . , x,). The basic 
steps of the algorithm are as follows: 

Algorithm Fuzzy Graph Clustering - 

Determine the clustering distance d: between 
xi and xj, 1 < i,j < n. 
Initialize an arbitrary partition and establish a 
fuzzy matrix U, 
Calculate the centers v = (c,, L’*) using U as 
follows: 
(1) Determine ui such that J,(U, v,> is the 

least, 
(2) Determine u2 such that J,(U, v,) is the 

least. 
Calculate a new fuzzy matrix U’ using v = 
(v,, v,) as follows: 
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for l<k<n, 
if xk ZU, and x,#u, then 

d:k * & 
u’k := dfk( dFk + d$) 

(for l<i<2), 

else 

1 

u’k ‘= 

if xk = o’,, 

0 if xk # ci (for 1 < i < 2), 

5. If I z& - uik I < E, for 1 < i G 2, 1 < k G ~1, then 
stop; otherwise, U := U’, and repeat at step 3. 

After U converges, two groups of fuzzy mem- 
berships can be generated for all the vertices in 
the graph. According to the grades of any one 
group of fuzzy memberships, a vertex ordering 
will be constructed by sorting the selected group 
of fuzzy membership, and all the vertices will be 
separated into two even subsets with minimum 
cut for graph bisection. 
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