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Performance Analysis of Energy Detection Based Spectrum Sensing with
Unknown Primary Signal Arrival Time

Jwo-Yuh Wu, Member, IEEE, Chih-Hsiang Wang, and Tsang-Yi Wang, Member, IEEE

Abstract—Spectrum sensing in next-generation wireless cog-
nitive systems, such as overlay femtocell networks, is typically
subject to timing misalignment between the primary transmitter
and the secondary receiver. In this paper, we investigate the
performance of the energy detector (ED) when the arrival time
of the primary signal is modeled as a uniform random variable
over the observation interval. The exact formula for the detection
probability is derived and corroborated via numerical simulation.
To further improve the detection performance, we propose a
robust ED based on the Bayesian principle. Computer simulation
confirms the effectiveness of the Bayesian based solution when
compared with the conventional ED.

Index Terms—Cognitive radio, spectrum sensing, energy de-
tection.

I. INTRODUCTION

COGNITIVE radio (CR) is a widely known opportunistic
spectrum access technique for enhancing the cell-wide

spectrum utilization efficiency [1-2]. In order to detect the idle
frequency band so as to gain the channel access, spectrum
sensing performed at the CR users is indispensible. In the
literature, the detection of idle spectrum is typically considered
as a binary hypothesis test, and a commonly used signal model
under both hypotheses is [1-2]

ℋ0 : 𝑥[𝑛] = 𝑣[𝑛], 0 ≤ 𝑛 ≤ 𝑁 − 1 (idle)
ℋ1 : 𝑥[𝑛] = 𝑠[𝑛] + 𝑣[𝑛], 0 ≤ 𝑛 ≤ 𝑁 − 1 (occupied)

(1.1)

where 𝑁 is the length of the data record, 𝑠[𝑛], 𝑥[𝑛], 𝑣[𝑛] are,
respectively, the signal of the primary user, the received signal
at the CR terminal, and the measurement noise. The hypoth-
esis model (1.1) implicitly assumes perfect synchronization
between the primary transmitter and the CR receiver. Such an
assumption, however, is not valid in many practical situations.
For example, in an overlay femto cell network [3], the signal
of the macro mobile subscriber, synchronized with the macro
base station (BS), will arrive at a femto BS asynchronously.
The spectrum detection at the femto BS is typically subject
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to timing misalignment of the primary signal [4], [5]. Also,
in heavy-traffic networks in which primary users may dynam-
ically enter the network, time delays observed in the sensing
period is unavoidable, especially when a long sensing duration
is adopted for obtaining good sensing performance. Thus, in
the aforementioned cases, a more reasonable signal model for
the binary hypothesis test is thus

ℋ0 : 𝑥[𝑛] = 𝑣[𝑛], 0 ≤ 𝑛 ≤ 𝑛0 − 1 (idle)

ℋ1 :

{
𝑥[𝑛] = 𝑣[𝑛], 0 ≤ 𝑛 ≤ 𝑛0 − 1
𝑥[𝑛] = 𝑠[𝑛] + 𝑣[𝑛], 𝑛0 ≤ 𝑛 ≤ 𝑁 − 1

(occupied)

(1.2)

where 𝑛0 accounts for the primary signal arrival time.
Therefore, in contrast to the spectrum sensing schemes in the
literature focusing on the synchronized signal model (1.1)
[1-2], this paper considers the spectrum detection aimed for
tackling signal timing uncertainty under the hypothesis (1.2).

Among the existing spectrum sensing schemes, the energy
detector (ED) [6] is quite popular mainly because it involves
only the partial knowledge (the second moment) of the pri-
mary signal and is thus cost-effective to implement [1-2].
Even though various performance characteristics of the ED
have recently been investigated, e.g., [7-9], the discussions
in all these works were based on the idealized model (1.1).
In this paper, we study the detection performance of ED
under the hypothesis (1.2). As the detection of arrival is the
main focus, as in [10], we consider the scenario that the
primary user is present only after spectrum sensing is started.
Motivated by the fact that, in high-traffic random access
networks, the traffic patterns of primary users are typically
unknown to the secondary users, the signal arrival time 𝑛0

is assumed to be uniformly distributed over the observation
window 0 ≤ 𝑛 ≤ 𝑁 − 1. Specific technical contributions of
this paper can be summarized as follows. Firstly, conditioned
on a fixed 𝑛0, the exact formula for the conditional detection
probability under the hypothesis model (1.2) is derived. The
average detection probability can then be accordingly obtained
by taking the expectation with respect to 𝑛0. To the best of
our knowledge, the performance study shown in this paper is
the original contribution in the literature that is tailored for the
ED scheme in the realistic sensing environment characterized
by the model (1.2). Secondly, to further exploit the prior
knowledge about 𝑛0 for improving the detection performance,
we also propose a robust ED based on the Bayesian formu-
lation [6]. Simulation study shows that the Bayesian based
solution improves the receiver operation characteristics (ROC).
Moreover, under a prescribed detection probability threshold,
the Bayesian scheme does lead to a smaller false-alarm
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probability, thereby enhancing spectrum utilization efficiency
of the CR networks. Finally, we would like to remark that
the problem of ED based spectrum sensing in the presence
of signal arrival timing misalignment was recently addressed
in [4] within the OFDMA system framework. Rather than
developing robust sensing schemes, the conventional ED was
considered in [4] for spectrum detection. In addition, analyses
of the associated ROC characteristics therein (conditioned on
a fixed set of delays) were not exact, but instead resorted
to the Chi-square approximation of the true data distribution
[4, p-5305]. Given these facts, the distinctive features of
current paper in contrast with [4] are: (i) derivations of the
exact conditional and average detection probabilities for the
conventional ED under the timing-misaligned signal model
(1.2); (ii) development of a Bayesian ED robust against timing
uncertainty.

II. PERFORMANCE ANALYSIS

A. Exact Detection Probability of ED Test Under (1.2)

The test statistic of the conventional ED is by definition
given by

𝑇 =

𝑁−1∑
𝑛=0

∣𝑥[𝑛]∣2. (2.1)

Under the alternative hypothesis ℋ1 in (1.2) and conditioned
on a fixed 𝑛0, let us decompose the test statistic 𝑇 into

𝑇 =

𝑛0−1∑
𝑛=0

∣𝑥[𝑛]∣2
︸ ︷︷ ︸

:=𝑇1

+

𝑁−1∑
𝑛=𝑛0

∣𝑥[𝑛]∣2

︸ ︷︷ ︸
:=𝑇2

. (2.2)

Based on (2.2), we shall first derive the conditional detection
probability; the average detection probability can then be
easily obtained by taking the expectation with respect to 𝑛0.

Let us assume that (i) the signal 𝑠[𝑛] and noise 𝑣[𝑛] are
zero-mean white sequences with variances given by 𝜎2

𝑠 and
𝜎2
𝑣 , respectively; (ii) 𝑠[𝑛] and 𝑣[𝑛] are independent. Note that,

with 𝑇1 and 𝑇2 defined in (2.2), it is easy to verify 𝑧1 :=
𝑇1/𝜎

2
𝑣 ∼ 𝜒2

𝑛0
and 𝑧2 := 𝑇2/(𝜎

2
𝑣 + 𝜎2

𝑠 ) ∼ 𝜒2
𝑁−𝑛0

, and hence
the associated probability density functions (PDF) are

𝑓𝑧1(𝑥) =
𝑥(𝑛0/2)−1𝑒−𝑥/2√

2𝑛0Γ(𝑛0/2)
𝑢(𝑥) and

𝑓𝑧2(𝑥) =
𝑥[(𝑁−𝑛0)/2]−1𝑒−𝑥/2√
2(𝑁−𝑛0)Γ ((𝑁 − 𝑛0)/2)

𝑢(𝑥), (2.3)

where 𝑢(𝑥) is the unit step function. To simplify notation let
us consider the equivalent test statistic

𝑇 =
𝑇

𝜎2
𝑣

=
1

𝜎2
𝑣

𝑁−1∑
𝑛=0

∣𝑥[𝑛]∣2 =
𝑇1
𝜎2
𝑣

+
𝑇2
𝜎2
𝑣

= 𝑧1 + (
𝜎2
𝑠 + 𝜎2

𝑣

𝜎2
𝑣

)𝑧2 = 𝑧1 + (1 + 𝑆𝑁𝑅)𝑧2, (2.4)

where 𝑆𝑁𝑅 := 𝜎2
𝑠/𝜎

2
𝑣 . Since 𝑧1 and 𝑧2 are independent, the

pdf of 𝑇 is given by

𝑓𝑇 (𝑥) = 𝑓𝑧1(𝑥) ∗ 𝑓𝑧2 ((1 + 𝑆𝑁𝑅)𝑥) , (2.5)

where ∗ denotes the convolution. In terms of Laplace trans-
form, (2.5) reads

𝐹𝑇 (𝑠) = 𝐹𝑧1(𝑠)× ℒ{𝑓𝑧2((1 + 𝑆𝑁𝑅)𝑥)}
= 𝐹𝑧1(𝑠)×

1

1 + 𝑆𝑁𝑅
𝐹𝑧2

(
𝑠

1 + 𝑆𝑁𝑅

)
, (2.6)

where the second equality follows since ℒ{𝑓(𝑎𝑥)} =
(𝑎)−1𝐹 (𝑠/𝑎) [11]. To derive an explicit expression for 𝐹𝑇 (𝑠)
in (2.6), we need the next lemma.

Lemma 2.1 [11]: For 𝜆 > 0, we have
ℒ{

𝑥𝜆−1𝑒−𝑎𝑥𝑢(𝑥)
}
= Γ(𝜆)(𝑠+ 𝑎)−𝜆. □

From (2.3) and by means of Lemma 2.1, we immediately have

𝐹𝑧1(𝑠) =
Γ (𝑛0/2) (𝑠+ 1/2)

−𝑛0/2

√
2𝑛0Γ (𝑛0/2)

=
(𝑠+ 1/2)

−𝑛0/2

√
2𝑛0

(2.7)

and

𝐹𝑧2(𝑠) =
Γ ((𝑁 − 𝑛0)/2) (𝑠+ 1/2)

−(𝑁−𝑛0)/2

√
2(𝑁−𝑛0)Γ ((𝑁 − 𝑛0)/2)

=
(𝑠+ 1/2)−(𝑁−𝑛0)/2

√
2(𝑁−𝑛0)

. (2.8)

Based on (2.6), (2.7), and (2.8), direct manipulation shows

𝐹𝑇 (𝑠) =
1

(1 + 𝑆𝑁𝑅)
√
2𝑁

(
𝑠+

1

2

)−𝑛0/2

×
(

𝑠

1 + 𝑆𝑁𝑅
+

1

2

)−(𝑁−𝑛0)/2

=
(1 + 𝑆𝑁𝑅)[(𝑁−𝑛0)/2]−1

√
2𝑁

(
𝑠+

1

2

)−𝑛0/2

×
(
𝑠+

1 + 𝑆𝑁𝑅

2

)−(𝑁−𝑛0)/2

.

(2.9)

With the aid of (2.9), the pdf 𝑓𝑇 (𝑥) is given by

𝑓𝑇 (𝑥) =
(1 + 𝑆𝑁𝑅)[(𝑁−𝑛0)/2]−1

√
2𝑁

{
ℒ−1

{
(𝑠+ 1/2)−

𝑛0
2

}
∗ℒ−1

{
(𝑠+ (1 + 𝑆𝑁𝑅)/2)

−(𝑁−𝑛0)/2
}}

(𝑎)
=

(1 + 𝑆𝑁𝑅)[(𝑁−𝑛0)/2]−1

√
2𝑁

{[
𝑥

𝑛0
2 −1𝑒−

𝑥
2 𝑢(𝑥)

Γ(𝑛0/2)

]

∗
[
𝑥[(𝑁−𝑛0)/2]−1𝑒−(1+𝑆𝑁𝑅)𝑥/2𝑢(𝑥)

Γ ((𝑁 − 𝑛0)/2)

]}

=
(1 + 𝑆𝑁𝑅)[(𝑁−𝑛0)/2]−1

√
2𝑁Γ(𝑛0/2)Γ ((𝑁 − 𝑛0)/2)

∫ 𝑥

0

𝜏 [(𝑁−𝑛0)/2]−1

× 𝑒−(1+𝑆𝑁𝑅)𝜏/2(𝑥− 𝜏)𝑛0/2−1𝑒−(𝑥−𝜏)/2𝑑𝜏

=
(1 + 𝑆𝑁𝑅)[(𝑁−𝑛0)/2]−1

√
2𝑁Γ(𝑛0/2)Γ ((𝑁 − 𝑛0)/2)

𝑒−𝑥/2×∫ 𝑥

0

𝜏 [(𝑁−𝑛0)/2]−1(𝑥− 𝜏)𝑛0/2−1𝑒−𝑆𝑁𝑅𝜏/2𝑑𝜏, (2.10)
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where (a) holds by using Lemma 2.1. Hence, for a given
threshold 𝛾 determined according to the prescribed false-
alarm probability, the conditional detection probability can be
computed based on (2.10) as

𝑃𝐷(𝑛0) =

∫ ∞

𝛾

𝑓𝑇 (𝑥)𝑑𝑥

=
(1 + 𝑆𝑁𝑅)[(𝑁−𝑛0)/2]−1

√
2𝑁Γ(𝑛0/2)Γ ((𝑁 − 𝑛0)/2)

∫ ∞

𝛾

𝑑𝑥×[
𝑒−𝑥/2

∫ 𝑥

0

𝜏 [(𝑁−𝑛0)/2]−1(𝑥 − 𝜏)
𝑛0
2 −1𝑒−𝑆𝑁𝑅𝜏/2𝑑𝜏

]
︸ ︷︷ ︸

:=𝑝(𝑥)

.

(2.11)

To find a closed-form expression of 𝑃𝐷(𝑛0) in (2.11), we
need the next lemma.

Lemma 2.2 [11]: For 𝜈 > 0 and 𝜇 > 0, it follows∫ 𝑥

0

𝑡𝜈−1(𝑥− 𝑡)𝜇−1𝑒𝛿𝑡𝑑𝑡 = 𝐵(𝜇, 𝜈)𝑥𝜇+𝜈−1Φ(𝜈, 𝜇+ 𝜈; 𝛿𝑥),

(2.12)

where 𝐵(⋅, ⋅) is the beta function, and Φ(⋅, ⋅; ⋅) is the confluent
hyper-geometric function defined by

Φ(𝛼, 𝛾; 𝑧) =

1 +
𝛼

𝛾
⋅ 𝑧
1!

+
𝛼(𝛼 + 1)

𝛾(𝛾 + 1)
⋅ 𝑧

2

2!
+
𝛼(𝛼+ 1)(𝛼+ 2)

𝛾(𝛾 + 1)(𝛾 + 2)
⋅ 𝑧

3

3!
+ . . . .

(2.13)

□

Based on Lemma 2.2, equation (2.11) becomes

𝑃𝐷(𝑛0) =
(1 + 𝑆𝑁𝑅)[(𝑁−𝑛0)/2]−1𝐵

(
𝑁−𝑛0

2 , 𝑛0

2

)
√
2𝑁Γ(𝑛0/2)Γ ((𝑁 − 𝑛0)/2)

×
∫ ∞

𝛾

𝑒−𝑥/2𝑥(𝑁/2)−1

[ ∞∑
𝑖=0

𝑎𝑖𝑥
𝑖

]
𝑑𝑥, (2.14)

where

𝑎0 = 1, 𝑎1 =
(𝑁 − 𝑛0)/2

𝑁/2
⋅ (−𝑆𝑁𝑅/2)

1!
,

𝑎2 =
[(𝑁 − 𝑛0)/2]{[(𝑁 − 𝑛0)/2] + 1}

𝑁/2{[𝑁/2] + 1} ⋅ (−𝑆𝑁𝑅/2)
2

2!
, . . . .

(2.15)

Based on (2.14), the exact form of the conditional detection
probability can be obtained as1

𝑃𝐷(𝑛0) =
(1 + 𝑆𝑁𝑅)[(𝑁−𝑛0)/2]−1𝐵

(
𝑁−𝑛0

2 , 𝑛0

2

)
√
2𝑁Γ(𝑛0/2)Γ ((𝑁 − 𝑛0)/2)

×[ ∞∑
𝑖=0

𝑎𝑖

∫ ∞

𝛾

𝑒−𝑥/2𝑥(𝑁/2)+𝑖−1𝑑𝑥

]

(𝑏)
=

(1 + 𝑆𝑁𝑅)[(𝑁−𝑛0)/2]−1𝐵
(
𝑁−𝑛0

2 , 𝑛0

2

)
√
2𝑁Γ(𝑛0/2)Γ ((𝑁 − 𝑛0)/2)

×
∞∑
𝑖=0

𝑎𝑖

[
2(𝑁/2)+𝑖Γ

(
𝑁

2
+ 𝑖,

𝛾

2

)]
, (2.16)

1In the case of 𝑛0 = 0, (2.16) reduces to the widely known result in [6,
p-144].

where (b) follows since
∫∞
𝛾
𝑥𝜈−1𝑒−𝜇𝑥𝑑𝑥 = 𝜇−𝜈Γ(𝜈, 𝜇𝛾)

[6, 346], and Γ(𝛼, 𝑦) :=
∫∞
𝑦 𝑒−𝑡𝑡𝛼−1𝑑𝑡 is the incomplete

Gamma function. Based on (2.16), we summarize the main
result in the following theorem.

Theorem 2.3: The average detection probability of the ED
under the hypothesis test (1.2) is given by

𝑃𝐷 =
1

𝑁

𝑁−1∑
𝑛0=0

𝑃𝐷(𝑛0)

=
1

𝑁

𝑁−1∑
𝑛0=0

{
(1 + 𝑆𝑁𝑅)[(𝑁−𝑛0)/2]−1𝐵

(
𝑁−𝑛0

2 , 𝑛0

2

)
√
2𝑁Γ(𝑛0/2)Γ ((𝑁 − 𝑛0)/2)

×
∞∑
𝑖=0

𝑎𝑖

[
2(𝑁/2)+𝑖Γ

(
𝑁

2
+ 𝑖,

𝛾

2

)]}
, (2.17)

where 𝛾 is the threshold determined according to the pre-
scribed false-alarm probability. □

B. Low-SNR Regime

While the formula (2.17) appears quite involved, in
the low-SNR regime it admits a very simple form that is
compatible with the existing study of ED [6]. To see this,
we need the next lemma, which provides an upper and lower
bounds for the conditional detection probability 𝑃𝐷(𝑛0).

Lemma 2.4: Let 𝑃𝐷(𝑛0) be defined in (2.16). Then we have

Γ
(
𝑁
2 , 𝛾

(
1+𝑆𝑁𝑅

2

))
(1 + 𝑆𝑁𝑅)(𝑛0/2)+1Γ(𝑁/2)

≤ 𝑃𝐷(𝑛0)

≤ (1 + 𝑆𝑁𝑅)[(𝑁−𝑛0)]/2−1Γ
(
𝑁
2 ,

𝛾
2

)
Γ(𝑁/2)

. (2.18)

Proof: See appendix.
To gain further insight based on (2.18), let us assume

without loss of generality that the total number of samples
𝑁 is even, so that 𝑁/2 is a positive integer. In this case, we
have Γ(𝑁/2) = [(𝑁/2) − 1]! and Γ(𝑁/2, 𝑦) = [(𝑁/2) −
1]!𝑒−𝑦

∑(𝑁/2)−1
𝑘=0

𝑦𝑘

𝑘! [11, p-900]. Hence (2.18) becomes

𝑒−𝛾(1+𝑆𝑁𝑅)/2
∑(𝑁/2)−1

𝑘=0
[𝛾(1+𝑆𝑁𝑅)/2]𝑘

𝑘!

(1 + 𝑆𝑁𝑅)(𝑛0/2)+1

≤ 𝑃𝐷(𝑛0)

≤ (1 + 𝑆𝑁𝑅)[(𝑁−𝑛0)/2]−1𝑒−𝛾/2
(𝑁/2)−1∑
𝑘=0

[𝛾/2]𝑘

𝑘!
. (2.19)

When 𝑆𝑁𝑅 → 0, we have 1 + 𝑆𝑁𝑅 → 1 and (2.19) then
becomes

𝑃𝐷(𝑛0) → 𝑒−𝛾/2
(𝑁/2)−1∑
𝑘=0

(𝛾/2)𝑘

𝑘!

(𝑐)
= 𝑄𝜒2

𝑁
(𝛾), (2.20)

where (c) holds directly by definition of the right-tail
probability of the Chi-square random variable 𝜒2

𝑁 with an
even degree-of-freedom [6, p-25]. With the aid of (2.20) and
since the limiting probability is independent of 𝑛0, we have
the following asymptotic result.
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Fig. 1. Analytic and experimental ROC curves of energy detector (SNR =
-5 dB).

Proposition 2.5: Let 𝑃𝐷 be the average detection probabil-
ity defined in (2.17). Then we have

lim
𝑆𝑁𝑅→0

𝑃𝐷 = 𝑄𝜒2
𝑁
(𝛾). (2.21)

□

Recall from [6, Sec. 5.3] that 𝑄𝜒2
𝑁
(𝛾) is the detection prob-

ability for ED when 𝑆𝑁𝑅 = 𝜎2
𝑥/𝜎

2
𝑣 → 0. In this case, the

performance of ED can be very poor since the energy of the
received signal in either hypothesis is very close to the noise
floor. To further enhance the detection performance when SNR
is low and the signal timing mismatch is present, a robust ED
scheme based on the Bayesian principle is proposed next.

III. PROPOSED BAYESIAN DECISION RULE

A. The Bayesian Test

To exploit the prior statistical knowledge of 𝑛0 for en-
hancing the detection performance, a typical approach is the
Bayesian philosophy [6]. The conditional joint pdf of the data
samples under the two hypotheses ℋ0 and ℋ1 are

𝑝 (x;ℋ0) =
1

(2𝜋𝜎2
0)
𝑁/2

exp

[
−1

2𝜎2
0

𝑁−1∑
𝑛=0

∣𝑥[𝑛]∣2
]
, (3.1)

and

𝑝 (x;ℋ1) =
1

(2𝜋𝜎2
0)
𝑛0/2

exp

[
−1

2𝜎2
0

𝑛0−1∑
𝑛=0

∣𝑥[𝑛]∣2
]
×

1

(2𝜋(𝜎2
0 + 𝜎2

1))
(𝑁−𝑛0)/2

exp

[
−1

2(𝜎2
0 + 𝜎2

1)

𝑁−1∑
𝑛=𝑛0

∣𝑥[𝑛]∣2
]
.

(3.2)

The Bayesian test decides ℋ1 if (3.3), shown at the top of
the next page, holds (see [6, Chap. 6]). The performance
advantages of the Bayesian test (3.3) over the conventional ED
scheme (2.1) under the considered scenario will be illustrated
via computer simulation in the next section.
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Fig. 2. Detection probability 𝑃𝐷 versus SNR (𝑃𝑓 = 0.05).

B. Numerical Simulation

In the following simulations we compare the performance
of the conventional ED (2.1) and that of the proposed Bayesian
ED (3.3), based on the hypothesis signal model (1.2); the total
number of samples is set to be 𝑁 = 200, and the signal arrival
time 𝑛0 is uniformly distributed within 0 ≤ 𝑛0 ≤ 199. Figure
1 plots the ROC curves of ED (2.1), with SNR set to be −5 dB;
Figure 2 plots the probability of detection 𝑃𝐷 at various SNR
levels, assuming that the false-alarm probability 𝑃𝑓 = 0.05.
As can be seen from the figures, the derived analytic formula
(2.17) closely matches the simulated results. Figures 3 and 4,
respectively, compare 𝑃𝐷 and 1−𝑃𝑓 curves (as a function of
SNR) of the ED (2.1) and the robust ED solution (3.3); note
that large values of 1 − 𝑃𝑓 mean better channel utilization
efficiency of secondary users [12]. The figures show that
the Bayesian based solution (3.3), which takes into account
the statistical knowledge of the signal arrival time, not only
improves 𝑃𝐷 but also leads to larger 1−𝑃𝑓 , especially when
SNR is low. Since the proposed Bayesian ED (3.3) is optimal
in accordance with the criterion of minimizing average cost
function, a natural approach to evaluate the performance is to
compare the detectors (2.1) and (3.3) in terms of the average
probability of error, i.e.,

𝑃𝑒 = 𝑃 (ℋ0∣ℋ1)𝑃 (ℋ1) + 𝑃 (ℋ1∣ℋ0)𝑃 (ℋ0), (3.4)

where 𝑃 (ℋ𝑖∣ℋ𝑗) denotes the probability that ℋ𝑖 is decided
given that ℋ𝑗 is true. The optimal decision threshold of the
Bayesian rule (3.3) for minimizing average error probability
is known to be simply 𝜏 = 𝑃 (ℋ0)/𝑃 (ℋ1) [13, p-20]. In our
simulation, the equally likely hypothesis is assumed, thereby
𝜏 = 1. Figure 5 compares the achievable 𝑃𝑒 of (2.1) and (3.3)
at various SNR. As expected, the Bayesian test (3.3) is seen
to yield a smaller average error probability.

IV. CONCLUSION

Spectrum sensing in the presence of unknown arrival time of
the primary signal finds applications in many practical system
scenarios and is thus an important issue in the study of CR
networks. In this paper we have provided the exact formula
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1
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1
𝑁
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1
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𝑛0/2 exp
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exp
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0+𝜎

2
1)
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] > 𝛾 (3.3)
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Fig. 3. Detection probabilities of detectors (2.1) and (3.3) versus SNR (𝑃𝑓 =
0.05).
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Fig. 4. 1− 𝑃𝑓 versus SNR (𝑃𝐷 = 0.95).

of the average detection probability for ED when the arrival
time of the primary signal is modeled as a uniform random
variable over the observation interval. To further improve the
detection performance against the timing uncertainty, we have
then proposed a Bayesian based detection scheme. Simulation
results show that the Bayesian ED reduces the false-alarm
probability and thus enhances the spectrum utilization in the
considered asynchronous scenario. Future research will be
dedicated to extending the current results to the cooperative
sensing scenario.

−15 −10 −5 0 5 10 15
10

−3

10
−2

10
−1

10
0

SNR (dB)
P

e

 

 
ED (2.1)
Bayesian ED (3.3)

Fig. 5. Average error probabilities of detectors (2.1) and (3.3) versus SNR.

APPENDIX

PROOF OF LEMMA 2.4

We first observe that 𝑝(𝑥) in (2.10) satisfies

𝑒−𝑥/2 × 𝑒−𝑆𝑁𝑅𝑥/2

∫ 𝑥

0

𝜏 [(𝑁−𝑛0)/2]−1(𝑥− 𝜏)𝑛0/2−1𝑑𝜏

≤ 𝑝(𝑥)

≤ 𝑒−𝑥/2
∫ 𝑥

0

𝜏 [(𝑁−𝑛0)/2]−1(𝑥− 𝜏)𝑛0/2−1𝑑𝜏. (A.1)

Since ∫ 𝑥

0

𝜏 [(𝑁−𝑛0)/2]−1(𝑥 − 𝜏)𝑛0/2−1𝑑𝜏

= 𝑥[(𝑁−𝑛0)/2]−1𝑢(𝑥) ∗ 𝑥𝑛0/2−1𝑢(𝑥), (A.2)

we have

ℒ
{∫ 𝑥

0

𝜏 [(𝑁−𝑛0)/2]−1(𝑥− 𝜏)𝑛0/2−1𝑑𝜏

}
= ℒ

{
𝑥[(𝑁−𝑛0)/2]−1𝑢(𝑥)

}
× ℒ

{
𝑥𝑛0/2−1𝑢(𝑥)

}
=

Γ ((𝑁 − 𝑛0)/2)

𝑠(𝑁−𝑛0)/2
× Γ(𝑛0/2)

𝑠𝑛0/2

=
Γ ((𝑁 − 𝑛0)/2)Γ(𝑛0/2)

𝑠𝑁/2
. (A.3)

By taking the inverse Laplace transform of both sides of (A.3)
we have ∫ 𝑥

0

𝜏 [(𝑁−𝑛0)/2]−1(𝑥 − 𝜏)𝑛0/2−1𝑑𝜏

= Γ ((𝑁 − 𝑛0)/2)Γ(𝑛0/2)ℒ−1

{
1

𝑠𝑁/2

}
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=
Γ ((𝑁 − 𝑛0)/2) Γ(𝑛0/2)

Γ(𝑁/2)
𝑥𝑁/2−1, (A.4)

where the last equality holds due to Lemma 2.1. With the aid
of (A.4), (A.1) becomes

Γ ((𝑁 − 𝑛0)/2) Γ(𝑛0/2)

Γ(𝑁/2)
𝑥𝑁/2−1𝑒−(1+𝑆𝑁𝑅)𝑥/2

≤ 𝑝(𝑥)

≤ Γ ((𝑁 − 𝑛0)/2)Γ(𝑛0/2)

Γ(𝑁/2)
𝑥𝑁/2−1𝑒−𝑥/2. (A.5)

Based on (A.5), we have

𝑃𝐷 =
(1 + 𝑆𝑁𝑅)[(𝑁−𝑛0)/2]−1

√
2𝑁Γ(𝑛0/2)Γ((𝑁 − 𝑛2)/2)

∫ ∞

𝛾

𝑝(𝑥)𝑑𝑥

≥ (1 + 𝑆𝑁𝑅)[(𝑁−𝑛0)/2]−1

√
2𝑁Γ(𝑁/2)

∫ ∞

𝛾

𝑥
𝑁
2 −1𝑒−(1+𝑆𝑁𝑅)𝑥/2𝑑𝑥

(𝑎)
=

(1 + 𝑆𝑁𝑅)[(𝑁−𝑛0)/2]−1

√
2𝑁Γ(𝑁/2)

(
1 + 𝑆𝑁𝑅

2

)−𝑁/2
×

Γ

(
𝑁

2
, 𝛾

(
1 + 𝑆𝑁𝑅

2

))

=
Γ
(
𝑁
2 , 𝛾

(
1+𝑆𝑁𝑅

2

))
(1 + 𝑆𝑁𝑅)(𝑛0/2)+1Γ(𝑁/2)

, (A.6)

where (a) follows since
∫∞
𝛾
𝑥𝜈−1𝑒−𝜇𝑥𝑑𝑥 = 𝜇−𝜈Γ(𝜈, 𝜇𝛾) [11,

p-346]. Similarly we have

𝑃𝐷 ≤ (1 + 𝑆𝑁𝑅)[(𝑁−𝑛0)/2]−1

Γ(𝑁/2)
Γ

(
𝑁

2
,
𝛾

2

)
. (A.7)

The assertion follows from (A.6) and (A.7).
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