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Determination of the NMR Monomer Shift and Dimerization Constant 
in a Self-associating System by Direct Application of the 
Least-squares Method 

Henry K. S. Tan 
Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan, ROC 

The monomer shift and dimerization constant of a self-associating system have been determined directly by 
applying the least-squares method to the NMR experimental data. Equations have been obtained in which two 
analytic methods can be applied. In the first method, a value of the dimerization constant is assumed and by 
linear regression the error sum of squares (ESS) is calculated. The minimum ESS is located by a five-point 
searching algorithm. In the second method, non-linear regression analysis of the model equation with the least- 
squares method results in a single equation of unknown K. A conventional root finding method is then applied 
from which the values of monomer shift and dimerization constant are determined. The numerical procedures 
proposed in this paper have been illustrated with an example using previously published experimental NMR 
data. Results of calculations are discussed. 

NMR experiments have been widely used in the study of 
hydrogen bonding, kinetics and equilibrium behaviour of a 
variety of systems. The determination of the monomer shift 
and dimerization constant of a self-associating system has 
been investigated by Purcell et a/.,’ Chen and Shirts2 and 
Chen and R~senberger.~ As pointed out by these authors the 
determination of the monomer shift by extrapolating experi- 
mental data to infinite dilution is not very reliable. Therefore, 
Purcell et al. applied a direct search procedure, Chen and 
co-workers proposed both iterative and graphical methods 
for more accurate determination of the monomer shift and 
dimerization constant. In this paper we first briefly review the 
equations and methods used by Chen and co-workers in their 
s t ~ d i e s . ~ . ~  We then present alternative methods which are 
based on the direct application of the least-squares method 
for the curve fitting of non-linear equations. We also derive 
the necessary expressions for the direct determination of 
monomer shift and dimer dissociation constant from the 
experimental data obtained. An example, using previously 
published experimental results, is used to illustrate the 
methods proposed in this paper. In addition, we also include 
in this work an analytic way of determining monomer shift 
and dimer constant which is based on Chen and 
Rosenberger’s graphical procedure. 

Previous Methods used in the Treatment of 
Experimental Data 

The observed chemical shift, 6, for a monomer-dimer equi- 
librium system can be expressed as the weighted average of 
monomer and dimer with the form of 

where [A] is the equilibrium monomer concentration, CAIo is 
the total concentration, while 6, and 6, are the monomer 
and dimer shifts, respectively. 

The equilibrium constant, K ,  for the self-association of A 
to the dimer A, is defined by 

CAI, - CAI 
2CAI2 

K =  

Combining eqn. (1) and (2) and after simplification, the fol- 
lowing equation is ~ b t a i n e d ~ . ~ , ~  

(3) 

This form of equation has been used by several authors6,’ 
to determine 6, and K with the value of 6, obtained from 
extrapolation at dilute concentration. As shown by Chen and 
Shirts, eqn. (3) can also be transformed to 

6 = 6, + (6, - 6,) 

x {J(1 + 8KCAIO) - lI/{JCl + 8KCA10) + 1) (4) 
Note that eqn. (4) is an explicit form for 6 in contrast to the 
implicit form given in eqn. (3). 

The iterative method proposed by Chen and Shirts starts 
with an assumed value of 6, and by applying a quadratic 
polynomial regression to eqn. (3). The intercept and the limit- 
ing slope (corresponding to the first and second coefficient, 
respectively, in the quadratic polynomial expression) provide 
an estimate of the value of K .  This estimate of K is then 
substituted into eqn. (4) and again a quadratic polynomial 
regression is carried out for the determination of a more 
accurate estimate of 6,. The process continues until the con- 
vergence in 6, to the desired accuracy is achieved. Although 
this is a very useful method for determining monomer shift, in 
view of the inherent iterative calculations required, the use of 
some other methods may be warranted. Therefore, Chen and 
Rosenberger proposed a graphical approach for dealing with 
eqn. (3) or (4). The main argument in this graphical method is 
that if the correct value of 6, is located then linear or quad- 
ratic polynomial regression with respect to either eqn. (3) or 
(4) will lead to an identical quality of curve fitting. In other 
words, the coefficient of the quadratic term of the polynomial 
equation approaches zero. Using eqn. (3) and by assuming 
various values of a,, a series of 6, us. K values are generated 
from both linear and quadratic regressional analysis. Simi- 
larly, using eqn. (4) and assumed values of K ,  a series of K us. 
6, values can also be obtained with both linear and quadra- 
tic regressional analysis. The intersection of K us. 6 ,  plots 
from both linear and quadratic treatment yields the correct 
values of 6, and K .  This graphical method is very efficient 
and is an improvement of the iterative scheme used pre- 
viously by Chen and Shirts. Applying this graphical pro- 
cedure together with the final numerical refinement can lead 
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to a precise determination of values of monomer shift and 
dimerization constant within the accuracy of the measured 
spectroscopic data. 

Proposed Methods 
To facilitate the derivation of a general expression for directly 
determining the dimerization equilibrium constant and 
monomer shift we convert eqn. (3) to the following form 

= &d + (6m - sd){J(l f 8K[A10)  - 1)/(4K[AiO) (5) 

Let a denote 6d, b denote (6, - 6,) and let the measured 6 
be denoted by Y ,  and the concentration CAIo be denoted by 
X .  The error sum of squares from a set values of a,, 6, and 
K is 

N 
ESS = 1 (x - { a  + b[J(l + 8 K X i )  - 1]/(4KXi)))2 

i =  1 

(6) 
where N is the number of data points. 

It will be assumed that the three parameters of 6 d ,  6, and 
K are to be determined from eqn. (6) when the ESS is a 
minimum. By partial differentiation of eqn. (6) with respect to 
a, b and K, and equating the derivatives to zero, we obtain 

(7) 

where 

G i  = [J(1 + 8KXi) - 1]/(4KXi) (9) 
The value of K corresponding to the minimum ESS can 

then be determined from the following equation 

1 
-k ' [,/(l + 8KXi) - ~ i ]  

V 

+ l G i & = O  (10) ' i  - 
,/(l + 8 K X i )  

Note that in eqn. (lo), a, b and G are all functions of K and 
are defined in eqn. (7)-(9), respectively. 

Two methods can be used for determining the values of K ,  
a and b which give the minimum ESS. The first method is by 
relying on eqn. (6)-(9). The second method corresponds to 
the determination of K which satisfies eqn. (10). In the first 
method, a value of K is assumed, Gi is calculated from eqn. 
(9), and a and b are then calculated from eqn. (7) and (8). 
Upon substituting the calculated values of a, b and the 
assumed value of K into eqn. (6), the corresponding ESS is 
obtained. The process can then be repeated with other 
assumed values of K .  The minimum value of the ESS is 
located by successive iteration. One systematic way of locat- 
ing this minimum value of the ESS is by the following pro- 
cedures. If the minimum ESS is known to lie between K ,  and 
K , ,  then if K ,  denotes the midpoint between K ,  and K ,  the 
calculated values of ESS are such that for K ,  < K ,  < K,, 
ESS(1) > ESS(3) < ESS(5). 

Corresponding values of the ESS at K ,  and K ,  are then 
calculated, where K ,  and K ,  are the midpoints between K ,  
and K ,  and between K ,  and K , ,  respectively. There are 
three possible outcomes after the calculation of ESS(2) and 

ESS(4): (i) ESS(2) > ESS(3) < ESS(4), (ii) ESS(1) > 
ESS(2) < ESS(3), (iii) ESS(3) > ESS(4) < ESS(5). For case (i), 
the old ESS(2) and ESS(4) become the new ESS(1) and ESS(5) 
in the next stage of iterative calculation. Eor cases (ii) and 
(iii), the old ESS(l), ESS(2), ESS(3), or ESS(3), ESS(4), ESS(5) 
becomes the new ESS( l), ESS(3), ESS(5) in the next iteration. 
In this manner the interval between K ,  and K ,  is reduced by 
half in each cycle of repetitive calculation. 

The second method is in essence the determination of the 
real and physical meaningful value of a root that satisfies a 
non-linear algebraic equation. In this case, Newton-Raphson, 
secant, bisection or some other conventional numerical 
methods for root finding can be applied. The secant method 
is preferred if the derivative expression is too complicated to 
evaluate with the Newton-Raphson method. 

In this paper, our primary aim is to suggest alternative 
methods to the previous ones used by Chen and Shirt2 and 
Chen and Rosenberger., However, we must point out that 
the graphical method proposed by Chen and Rosenberger is 
a very ingenious way of effectively determining K and 6, 
without resorting to a complete regressional analysis which 
leads to the derivation of eqn. (10). Utilizing Chen and 
Rosenberger's idea we formulate an analytic expression 
which can aid us in the determination of 6, and K .  In doing 
so, plots of K us. 6, from both linear and quadratic regres- 
sion can be omitted. The analytic expression is obtained 
based on the fact that when the correct K or 6, is located, 
the quadratic term coefficient for the quadratic polynomial 
equation should approach zero. This criterion differs from 
that of Chen and Rosenberger, since in their method the 
quadratic term does not have to approach zero as long as the 
value of 6, or K from both linear and quadratic regression 
converges. 

Under the criterion that the quadratic term coefficient 
should equal zero when the correct 6, or K is located, we 
have, after solving for the quadratic term coefficient, C ,  from 
quadratic polynomial regression by the method of determi- 
nants, 

where 
+" 12: -(C Z J 2 ]  1 &Z? = o  

if eqn. (3) is used, 

,/(l + 8 K X i )  - 1 
,/(l + %Xi) + 1 

Zi = f ( K )  = - 

if eqn. (4) is used. The validity of eqn. (11) is, of course, 
subject to the condition that 

As in the case of eqn. (lo), any standard numerical methods 
for root finding can be applied in eqn. (1 1) to solve for K or 
6,. Again the secant method which avoids the need for 
obtaining the derivative expression is more convenient to 
apply than if the Newton-Raphson method is used. 

Note that in eqn. (lo), the root, K, obtained corresponds to 
the minimum ESS attainable. On the other hand, eqn. (11) 
indicates that both linear and quadratic polynomial regres- 
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sion lead to the convergence of a set of values of K ,  6, and 
6,. It should also be pointed out that if the implicit form of 
eqn. (3) is used, the values of K ,  6, and 6, and the corre- 
sponding ESS will be different from those determined from 
using the explicit form of eqn. (4). 

As pointed out by Chen and Shirts,2 not all the self- 
associating systems are so simple that their equilibrium 
relationship can be easily depicted by eqn. (2). They have 
made references to previous s t ~ d i e s * ~ ~  and believe that for 
fairly dilute solutions and for systems such as hindered 
phenols and lactams, the monomer-dimer equilibrium is 
dominant because of geometric preferences. Thus for these 
systems, the methods proposed in this paper may be useful. 
In carrying out the numerical treatment of the experimental 
data as outlined in this work, we must make the prerequisite 
assumptions that the value of K is unique and that the cri- 
teria of 6, > 6 > 6, or 6, > 6 > 6, must be met. 

Results and Discussion 
To illustrate the use of the proposed method we employ the 
experimental NMR data for solutions of 6-valerolactam in 
CDC1, as reported by Purcell et al.' These spectral data were 
obtained with a Varian DA-60 IL spectrometer and with the 
use of tetramethylsilane as internal reference. Table 1 gives 
the original data in which the solute concentration is 
expressed in terms of mole fraction. Following the work of 
Chen and Shirts,2 we have also converted the concentration 
to mol kg-' and the resulting conversions are also given in 
Table 1. To carry out linear regression analysis, the value of 
K is assumed so that a and b can be calculated from eqn. (7) 
and (8). From the calculated values of a and b the ESS corre- 
sponding to the assumed value of K is then determined from 
eqn. (6). With a series of assumed values of K ,  a plot of ESS 
us. K can be obtained and is shown in Fig. 1. As can be seen 
from Fig. 1, the presence of a minimum ESS is evident 
although the exact location cannot be easily determined by 
visual inspection. The ESS as shown in Fig. 1 is fairly con- 
stant between K values of 5.2 and 5.6 kg mol- '. By applying 
partial regression analysis to eqn. (3), that is assuming a value 
of 6, and carrying out the linear regression calculation, plots 
of ESS us. 6, and ESS us. 6 ,  were also obtained as shown in 
Fig. 2 and 3. Comparing Fig. 2 and 3, it can be seen that for 
the range of ESS between 220 and 250 H z , ~  the dimer shift 

Table 1 
306 K" 

Experimental NMR data of valerolactam in CDCI,, at 

concentration 
mole fraction /mol kg - G/Hzb 

0.010 
0.020 
0.030 
0.04 1 
0.052 
0.06 1 
0.073 
0.083 
0.09 1 
0.097 
0.150 
0.203 
0.255 
0.300 
0.359 
0.408 
0.449 
0.490 

0.0839 
0.1695 
0.2569 
0.3551 
0.4556 
0.5396 
0.6541 
0.7519 
0.83 16 
0.8923 
1.4659 
2.1157 
2.8432 
3.5600 
4.6522 
5.7248 
6.7689 
7.9809 

382.0 
408.8 
420.7 
426.6 
442.7 
451.0 
444.8 
453.3 
459.5 
458.4 
469.6 
476.9 
484.6 
484.7 
488.3 
491.7 
491.9 
494.3 

N 
N 
I 

v) w 
5 140 

135 t ,,/ 
130 I n  I 

3 4 5 6 
dimerization constant/kg mol-' 

Fig. 1 ESS us. dimerization constant 

does not vary as much as the monomer shift. This is in agree- 
ment with Purcell et d ' s  finding, which used the direct search 
procedure," that the calculated dimer shift is nearly indepen- 
dent of the preset monomer shift. We should also point out 
that the results of Fig. 1 and 2 do not give the same value for 
the minimum ESS. This is to be expected since two different 
forms of the equations, one explicit the other implicit, are 
used. The explicit type of equation is to be preferred if trans- 
formation to a linear form can be accomplished. Graphical 
output, as shown in Fig. 1, indicates the region in which the 
minimum ESS and the corresponding K are situated. The 
exact location, however, must be determined by analytical 
means. Applying eqn. (6)-(8) and employing the five-point 
searching algorithm outlined in the previous section, the 
value of K corresponding to the minimum ESS is calculated. 
Table 2 gives the iterative calculated results starting with 
three different initial K ranges. The first is for K between 3 
and 7, the second for K between 1 and 9 and the third for K 
between 2 and 6. In the same table the corresponding values 
of 6, and 6, at K ,  for each iterative calculation are also 

3501----T7 

200 ' 

250 275 300 325 350 
monomer shift/Hz 

Fig. 2 ESS us. monomer shift 

450 500 r-----n 
400 

,$- 350 

300 
2 

250 t \  1 u, 
512 514 516 520 526 

dimer shift/Hz 

200 J '  I 

Fig. 3 ESS us. dimer shift a From ref. 1. From TMS. 
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Table 2 Calculated results using a five-point searching algorithm for locating the minimum ESS 

~ 

1 
2 
3 
4 
5 
6 
7 
8 

1 
2 
3 
4 
5 
6 
7 

1 
2 
3 
4 
5 
6 

3.000 
4.000 
5.000 
5.000 
5.250 
5.313 
5.344 
5.359 

1.000 
3.000 
4.000 
5.000 
5.000 
5.250 
5.3 13 

2.000 
4.000 
5.000 
5.000 
5.250 
5.3 13 

176.485 
141.557 
131.718 
131.718 
131.212 
131.168 
131.158 
I3 1.156 

661.437 
176.485 
141.557 
131.718 
13 1.718 
131.212 
131.168 

281.500 
141.557 
131.71 8 
13 1.71 8 
13 1.212 
131.168 

5.000 
5.000 
5.500 
5.250 
5.375 
5.375 
5.375 
5.375 

5.000 
5.000 
5.000 
5.500 
5.250 
5.375 
5.375 

4.000 
5.000 
5.500 
5.250 
5.375 
5.375 

131.7 18 
13 1.718 
13 1.214 
13 1.212 
131.155 
131.155 
131.155 
131.155 

131.718 
131.718 
13 1.718 
131.214 
13 1.212 
131.155 
131.1 55 

141.557 
131.718 
131.214 
131.212 
131.155 
131.155 

7.000 
6.000 
6.000 
5.500 
5.500 
5.438 
5.406 
5.391 

9.000 
7.000 
6.000 
6.000 
5.500 
5.500 
5.438 

6.000 
6.000 
6.000 
5.500 
5.500 
5.438 

137.828 
132.398 
132.398 
131.214 
131.214 
131.171 
131.160 
131.157 

153.942 
137.828 
132.398 
132.398 
13 1.214 
131.214 
131.171 

132.398 
132.398 
132.398 
131.214 
131.214 
131.171 

308.99 
308.99 
303.03 
305.98 
304.50 
304.50 
304.50 
304.50 

308.99 
308.99 
308.99 
303.03 
305.98 
304.50 
304.50 

32 1.92 
308.99 
303.03 
305.98 
304.50 
304.50 

517.31 
517.31 
516.61 
5 16.94 
5 16.77 
5 16.77 
5 16.77 
516.77 

517.31 
517.31 
517.31 
516.61 
5 16.94 
516.77 
516.77 

5 19.08 
517.31 
516.61 
5 16.94 
5 16.77 
516.77 

listed. Note that in these three sample calculations with dif- 
ferent initial estimates of K values, convergence to minimum 
ESS is achieved within six to eight iterations. 

In the above procedure, the determination of K is by using 
partial regression expressions. A complete regression analysis 
leads to eqn. (10) which can be used for the direct determi- 
nation of K .  To find the root of the non-linear equation 
f ( K )  = 0, the secant method is used. Although the Newton- 
Raphson method can also be applied, evaluation of the deriv- 
ative expression for f ( K )  can be complicated and tedious. By 
the use of the secant method the following expression is 
employed in the successive iteration 

where K ,  and K ,  are the two initial guesses of K to start the 
root-finding calculation. After each calculation, the value of 
K ,  determined becomes the new K ,  and the old K ,  is the 
new K ,  in the next iterative calculation. The process is 
repeated until K converges to the desired accuracy. Table 3 
gives the calculated results with three different initial sets of 
K ,  and K ,  values. In all three cases, K is converged to three 
significant figures within five to seven iterations. 

With either five-point minimum ESS searching or direct 
application of eqn. (lo), the value of K is found to be 5.37 kg 
mol-'. The corresponding 6, and 6, are calculated to be 

Table 3 Convergence of the root off ( K )  using the secant method 

initial values of K and K, 

K, K2 Kl K2 Kl K2 
3.00 4.00 7.00 8.00 1 .OO 2.00 

4.68414 0.077193 3.92623 0.20432 2.75318 
5.15510 0.021375 6.35708 -0.07247 3.67854 
5.33544 0.003424 5.72065 -0.02979 4.45818 
5.36984 0.000186 5.27647 0.00911 5.02612 
5.37182 0.000001 5.38050 -0.00081 5.29617 
5.37184 0.000000 5.37205 -0.oooO2 5.36527 
5.37184 0.000000 5.37183 0.00000 5.371 71 

5.37184 

0.56828 
0.25986 
0.10953 
0.03529 
0.007 I9 
0.00061 
0 . m  1 
0.00000 

304.50 and 516.77 Hz, respectively. The minimum ESS is 
determined to be 131.16 Hz., 

By using eqn. (3) with various assumed values of 6, and 
applying quadratic polynomial regression, a series of values 
for the quadratic term coefficient, C, us. 6, is obtained and 
these are plotted in Fig. 4. Similarly, using eqn. (4) with 
various assumed values of K and after applying the quadratic 
polynomial regression, a plot of quadratic term coefficient us. 
K can be obtained, see Fig. 5 .  Analytically, the value of either 
K or 6, can be obtained by solving eqn. (11) with a conven- 

r 
I 

0 O * O 5 1 -  t ---. 

Q, 

0 
.- 
.- a= 
8 -0.05 - 
E 
b 
c 
u .- 
tl 

3 
U monomer shift/Hz 

Fig. 4 Quadratic term coefficient us. monomer shift using eqn. (3) 
and (1 1) 

/ 
60 - 
50 - 
40 - 
30 - 
20 
10 - 
0 

-10 
-20 
-30 - 
-40 * 

~- 

/' - 

- 
- 

4 5 6 7 0 9  
dimerization constant/kg mol-' 

Fig. 5 Quadratic term coefficient us. dimerization constant using 
eqn. (4) and (1 1) 
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tional root-finding method. For this example, the calculated 
K value is 5.44 kg mol-' when the regression is applied to 
eqn. (4), and 6, is calculated to be 305.32 Hz when regression 
is applied to eqn. (3). 

Conclusions 
In this study we have examined the previous methods used in 
the determination of monomer shift and dimerization con- 
stant for self-associating systems. We have derived a general 
expression from which the values of K ,  6, and 6, correspond- 
ing to the minimum ESS can be determined. By the direct 
application of a least-squares method, the determination of K 
reduces to the problem of root finding for a non-linear alge- 
braic equation. In addition, we have introduced in this paper 
an analytic method which modifies a previous graphical pro- 
cedure for the determination of monomer shift, d,. In con- 
trast to the previous iterative method of Chen and Shirts2 
and the graphical method employed by Chen and 
R~senberger,~ we have applied direct minimization of the 
ESS in the determination of the dimerization constant and 
chemical shifts for both the monomer and the dimer. We feel 
that the direct minimization of ESS is a better and more rea- 
sonable approach to data treatment. We have proposed an 
analytical method which is an efficient way of replacing the 
graphical procedure. Note that the numerical value read from 
graphs cannot be very accurate and numerical interpolation 
by analytic means is usually warranted. Therefore, analytical 

determination is often preferable to graphical means. We 
must emphasize that the methods proposed in this work may 
not be applicable for all self-associating systems. It is sug- 
gested that more experimental data should be used to 
examine the utility of the methods and the validity of the 
model equations used in the data treatment. 

The author is indebted to Dr. L. G. Walker of Ryerson Poly- 
technic University, Toronto, Canada, for his help and assist- 
ance in the preparation of this article. 
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