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Abstract—We presented a study of high-performance GaN-
based light emitting diodes (LEDs) using a GaN nanopillars (NPs)
structure grown on sapphire substrate by integrating RF-plasma
molecular beam epitaxy (MBE) and metal-organic chemical vapor
deposition (MOCVD). Nanoscale air voids were clearly observed
at the interface between GaN NPs and the overgrown GaN layer
by cross-sectional scanning electron microscopy. It can increase
the light-extraction efficiency due to additional light scattering.
The transmission electron microscopy images suggest the air voids
between GaN NPs introduced during nanoscale epitaxial lateral
overgrowth of GaN can suppress the threading dislocation density.
Moreover, Raman spectrum demonstrated that the strain of the
GaN layer grown on GaN NPs was effectively eliminated, resulting
in the reduction of quantum-confined Stark effect in InGaN/GaN
quantum wells. Consequently, the LEDs fabricated on the GaN
NPs template exhibit smaller electroluminescent peak wavelength
blue shift and great enhancement of the light output (70% at
20 mA) compared with the conventional LEDs.

Index Terms—Light emitting diodes (LEDs), metal-organic
chemical vapor deposition (MOCVD), molecular beam epitaxy
(MBE), quantum-confined Stark effect (QCSE).

1. INTRODUCTION

AN-BASED optoelectronic devices can be used in a wide
Grange of applications due to its wide band gap cover-
age (from ultraviolet to infrared), sustainability of high elec-
trical field, and high temperature operation. In the last two
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decades, we saw a strong demand of GaN-based lasers or
LEDs, which will eventually change our daily life. However,
lack of a suitable, inexpensive substrate restrains the improve-
ment of GaN-based devices. Even though many semiconductor
companies produce and sell pure GaN substrates today, their
prices are high and not very accessible to ordinary applications.
Typically, GaN-based epitaxial layers were grown on sapphire
substrate by heteroepitaxial technique, such as metal-organic
chemical vapor deposition (MOCVD) [1], [2]. Due to the large
lattice mismatch and thermal expansion coefficient misfit be-
tween GaN and sapphire, the subsequent-grown GaN epitaxial
layers usually contained high threading dislocation densities
(TD densities) (around 10% — 10'° ¢cm~?) [3]. To improve the
crystalline quality of GaN-based epitaxial layers on sapphire
substrate, various growth techniques have been proposed, such
as epitaxial lateral overgrowth (ELO) [4], [5], cantilever epi-
taxy (CE) [6], defect selective passivation [7], microscale SiNy
or SiOy patterned mask [8]-[10], anisotropically etched GaN-
sapphire interface [11], plastic relaxation through buried AlIGaN
cracks [12], and patterned sapphire substrate (PSS) [13]-[15].

EVEN with these techniques, it is still difficult to reduce TD
density to a level ~ 107 cm~2 unless certain complicated or
expensive method such as double ELOG [16] or epitaxy on
GaN substrate [17] is used. Recently, nanoscale epitaxial lateral
overgrowth (NELOG) was found to be a promising method.
During the NELOG process, coalescence overgrowth of nanos-
tructures not only improves crystal quality [18], but also pro-
duces a scattering effect on the emitted photons, leading to
higher light-extraction efficiency (LEE) [19]. The nanostruc-
tures were generally fabricated by top-down methods [20]-[22],
such as etching process, in which the dry etching procedure nor-
mally generates defect states on the column surfaces, causing
reduction of internal quantum efficiency (IQE). In this paper,
we report a NELOG of high-quality GaN layer on bottom-up
nanostructure [self-assembled GaN nanopillars (NPs)] grown by
molecular beam epitaxy (MBE) [23]. Detailed analyses of the
grown InGaN/GaN film will be demonstrated, and electroopti-
cal properties of LEDs based on such GaN NPs template will
also be discussed.

II. EXPERIMENTS

The epitaxial structure for GaN-based LED on sapphire with
GaN NP was prepared as follows. First, the self-assembled
GaN NP structure was grown on sapphire substrate by a RF-
plasma MBE system (ULVAC MBE), and the related processes
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Fig. 1. (a) Cross-sectional SEM image of GaN NPs template. The inset shows
the funnel-like GaN NP. (b) Schematic of GaN-based LED structures on GaN
NPs template.

have been reported in our previous study [24]. Fig. 1(a) shows
scanning electron microscope (SEM) image of the grown GaN
NPs. It can clearly be seen that the GaN NP is in funnel-like form
shown on the inset Fig. 1, which might be beneficial for the fol-
lowing regrowth of GaN-based LED structure. In addition, the
density, the diameter, and the height are estimated to be around
1.15 x 10'° cm~2, 50 nm and 0.8 um, respectively. Next, we
deposited a GaN-based LED structure on this NP template by
a low-pressure MOCVD (Veeco D75) system, denoted as NP-
LEDs. In the mean time, the same GaN-based LED structure was
also grown on sapphire without GaN NP for comparison, de-
noted as conventional LEDs (i.e., C-LEDs). During the growth,
trimethylgallium (TMGa), trimethylindium (TMIn), and ammo-
nia (NH;3) were used as gallium, indium, and nitrogen sources,
respectively. Silane (SiH,) and biscyclopentadienyl magnesium
(CPy Mg) were used as the n-dopant and p-dopant source. The
epitaxial structure of the GaN-based LED overgrowth on NP is
depicted in Fig. 1(b), consisting of 30-nm GaN nucleation layer
(GaN NL), 1-pm un-doped GaN (#-GaN), 3-pm n-doped GaN
(n-GaN), 10-pairs InGaN/GaN multiquantum wells (MQWs),
and 0.2-pum p-doped GaN (p-GaN) cap layer.

The surface morphology of the overgrown GaN NPs sam-
ple was measured by atomic force microscopy (AFM). The
room temperature Raman scattering was used to analyze the
residuals strain of GaN epitaxial layers and GaN-based LEDs.
The distribution and behaviors of TDs in epitaxial layers were
then resolved by transmission electron microscopy (TEM). The
electrooptical properties of GaN-based LEDs were studied by
electroluminescence (EL) measurements. Finally, after normal
clean-room processes are finished, we compared the current—
voltage (I-V) and optical output (L-I) of two types of LEDs on
a conventional probe station and an integration-sphere setup.
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Fig. 2. (a)—(c) Procedure of the air-voids formation between a GaN NPs and
u-GaN epitaxial layer; (d) Cross-sectional SEM image. The inset shows air
voids.
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Fig. 3.
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III. RESULTS AND DISCUSSION

It is first of our great interest to find out what happened to
these NPs after regrowth. Fig. 2 shows the proposed steps of the
air-voids formation during the entire material growth procedure.
First, funnel-like shaped GaN NPs were formed on a sapphire
substrate by MBE at substrate temperature of 740 °C shown in
Fig.2(a). As the NP grows upward, there is also lateral growth on
the sidewall of individual pillar. Such lateral growth eventually
narrows the gap between columns and forms holes with 0.2—
0.25 pm in size, which is shown in Fig. 2(b). Next, we transfer
the template to a MOCVD system to finish the growth. The
regrowth temperature of GaN film is about 1050 °C. Under this
high temperature, recrystallization of GaN is very possible and
final coalescence u-GaN NPs template was performed and air
voids were encapsulated, as shown in Fig. 2(c) and (d). From the
SEM pictures in Fig. 2(d), we can estimate the average diameter
of these air voids is about 100 nm. These embedded air voids
shall be able to increase the LEE due to extra light scattering
from these air bubbles [25].

The quality of the film can first be evaluated by its surface
roughness. After the u-GaN layer was deposited, without growth
of remaining LED layers, the surface morphology was measured
by AFM, as shown in Fig. 3. The root mean square (rms) value
of the surface roughness is about 1.4 nm, indicating high surface
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Fig. 4. TEM image of (a) C-LEDs, (b) NP-LEDs, and (c) high-resolution
TEM image of region I in (b). The diffraction condition is g = 0002.

quality and excellent coalescence overgrown on GaN NPs tem-
plate. To analyze the detailed epitaxial layer quality, we used
TEM to compare the cross section between two types of de-
vices (NP-LEDs and C-LEDs). As we can see from Fig. 4(a),
in the case of the GaN epitaxial layer grown on sapphire with-
out GaN NPs, numbers of TD propagate vertically from the
interface of GaN and sapphire, all the way to the top device
layers. As a result, the TDs density in conventional GaN layer
can be as high as 10 cm~2. Whereas, for the GaN epitaxial
layer grown on sapphire with GaN NP [(see Fig. 4(b)], it can
be clearly found that the crystallography is drastically differ-
ent from that of conventional ones. Fewer TDs are observable
within the range in view. The dislocation density on the top of
n-GaN, MQWs is calculated to be around 7 x 107 cm~2. The
reduction of TDs density can be attributed to the misfit (mainly
perpendicular to the c-axis) and dislocation bending occurred
just above the voids, as shown in the inset of Fig. 4(b). Such
behaviors are similar to those occurred in the NELOG method
on a SiOy nanorod-array-patterned sapphire substrate [26].

In addition to material defect density, another important fea-
ture to watch is the internal stress of the epitaxial film since the
nanosized holes of template can potentially alleviate the built-in
stress due to lattice mismatch. To analyze the residual strain in
the GaN films, Raman backscattering measurements were per-
formed at room temperature. Fig. 5 shows the Raman spectrum
for GaN epitaxial layer grown on sapphire with and without
GaN NPs. The Raman shift peaks of Ey (high) mode for GaN
epitaxial layer grown on sapphire with and without GaN NPs
are located at around 567.4 and 569.3 cm™!, respectively. The
in-plane compressive stress o for GaN epitaxial layer is esti-
mated to decrease from 1.24 to 0.4 GPa with presence of GaN

1.2

—«—GaN on NP

567.4cm” 569.3cm”  _._GaN on sapphire

1.0

Normailze Intensity (arb. units.)

550 560 570 580 590 600
. -1
Raman shift (em )
Fig. 5. Raman spectrum for GaN epilayer overgrown on GaN NPs template
and sapphire.

NP templates, by using the following equation [27]:
Aw =wg, —wy =Co (D

where Aw is the Raman shift peak difference between the
strained GaN epitaxial layer w g9 and the unstrained GaN epitax-
ial layer wy (566.5 cm™ 1), and C is the biaxial strain coefficient,
which is 2.25 cm~!/GPa. Since the film on NP template bears
less strain, consequently we can expect that the GaN-based
LED grown on such template have weaker quantum-confined
Stark effect (QCSE) [28]. LED devices with a chip size of 350
x 350 mm? were then fabricated from the completed epitax-
ial structures grown on sapphire with and without GaN NPs.
Fig. 6(a) shows EL emission peak wavelength as a function of
injection current for NP-LEDs and C-LEDs. The emission peak
wavelength of NP-LED is slightly red shifted (about 3.4 nm)
from that of C-LED, and this is reasonable since lateral strain
relaxation favors higher indium incorporation [29]-[31]. More
importantly, as we increase the injection current, the emission
peak wavelength of NP-LEDs exhibits smaller blue shift (around
2.9 nm) compared with that of C-LEDs (around 5.6 nm). This
result indicates that the QCSE does become weaker due to the
strain relaxation in epitaxial layer overgrown on GaN NPs tem-
plate, as we expected. Fig. 6(b) displays the typical power—
current—voltage (L-I-V) characteristics of NP-LEDs and C-
LEDs. With an injection current of 20 mA, the forward volt-
ages are 3.38 and 3.40 V, and the output powers are 25.3 and
14.8 mW, for NP-LEDs and C-LEDs, respectively. The light
enhancement of L—/-V characteristics can be attributed to the
following factors: First, the TD density reduction of epitaxial
layers. This reduction leads to much fewer nonradiative recom-
bination events in the NP devices and increases the photon-
generation efficiency. Second, more lights can be extracted from
the LED because of the light-scattering effect from the embed-
ded nanoscale air voids.

In order to confirm the efficiency improvement of our NP-
LED, the PL IQE measurement was performed. A general
approach to evaluate the IQE of LEDs is to compare the PL-
integrated intensity between low and room temperatures [32].
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Fig. 6. (a) EL peak wavelength as a function of injection current of two

fabricated LEDs. (b) L-I-V characteristics of the two fabricated LEDs.

Fig. 7 shows the measured IQE as a function of excitation power
at 15 and 300 K for NP-LEDs and C-LEDs. The efficiency is
defined as the collected photon numbers divided by the injected
photon numbers and normalized to the maximum efficiency at
low temperature [33]. At 20 mW of excitation power, it can
be found that the IQE increase from 58% (C-LEDs) to 72%
(NP-LEDs), which corresponds to 1.24 times enhancement of
efficiency. At this excitation level, we could calculate the cor-
responding generated carrier density to be 2 x 10'7 cm™3, ap-
proximately same level of 20 mA at room temperature in our
device. Thus, part of the efficiency improvement of GaN-NP-
based LED can be linked directly to the improvement of IQE
due to better crystal quality.

On the other hand, we still need to quantify how much im-
provement of L—/-V is coming from the better light-extraction
scheme due to air voids. A 2-D finite difference time do-
main (FDTD) simulation was applied to calculate the LEE of
the LEDs using the FullWAVE program [34]. The calculated
electric-field distribution with air-void period of 0.25 pm is
shown in Fig. 8(a), where an array of air-filled rectangular holes
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represents air voids in our devices. The size of each rectangular
hole is 0.2 pym x 0.1 pm. We set single dipole illumination
sources placed at 0.5 pm below the top of surface structures and
the detector around the simulated device [35]. As it can be seen
in the figure, the electric-field intensity of NP-LEDs is higher
than C-LEDs at the monitor. It indicates that the photons emit-
ted from the MQWs escape out into the air easier in NP-LEDs
than in C-LEDs. The corresponding normalized light output as
functions of the simulation time are calculated and plotted in
Fig. 8(b), and the enhancement of extra light scattering is defined
as the ratio of steady-state light output of NP-LEDs to that of
C-LEDs. From the simulated results, light output of NP-LEDs
is around 1.48 times higher than that of the C-LEDs. Com-
bining with previous PL IQE measurement, we can see a total
enhancement of 82% (48% from LEE and 24% from IQE) when
we compare the result to conventional LED structure. The actual
increase in power output of LED, which is 70%, is lower than
prediction. This is possibly due to randomness of the air-void
formation, which makes our FDTD analysis overestimating the
light-scattering effect.

IV. CONCLUSION

In summary, high-quality GaN-based LED structure was suc-
cessfully fabricated on GaN NPs template by using MOCVD
and MBE. It was found that the residual stress was reduced
from 1.24 to 0.4 GPa in GaN epitaxial layer by inserting the
GaN NPs. Consequently, the NP-LEDs exhibit smaller EL peak
wavelength blue shift and great enhancement of the light output
70% at 20 mA compared to the C-LEDs. From SEM measure-
ment, a layer of air voids was formed at the interface of the GaN
NP and subsequent GaN layer. In addition, TEM revealed obvi-
ous dislocations-bending behavior above the voids, resulting in
low dislocation density in 10" cm™~? range. So our nanostructure
shows two folds of the improvement: one in IQE enhancement
from better crystal quality and the other in light extraction due to
air-void layer. With low-temperature PL. measurement and 2-D
FDTD simulation, we can estimate the enhancement brought by
each factor (IQE and light extraction) should be 24% and 48%,
respectively, and this is close to what we observed in L-I-V
measurement (70% at 20 mA).
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