Computers & Operations Research 40 (2013) 2128-2137

Contents lists available at SciVerse ScienceDirect

puter.
& operations

Computers & Operations Research

journal homepage: www.elsevier.com/locate/caor

_am—

@ CrossMark

Robust vertex p-center model for locating urgent relief
distribution centers

Chung-Cheng Lu ®“*, Jiuh-Biing Sheu "'

2 Department of Transportation Technology and Management, National Chiao-Tung University, 1001, Ta-Hsueh Road, Hsinchu 300, Taiwan
P Department of Business Administration, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
¢ Institute of Information and Logistics Management, National Taipei University of Technology, 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan

ARTICLE INFO ABSTRACT

Available online 27 February 2013 This work locates urgent relief distribution centers (URDCs) on a given set of candidate sites using a
robust vertex p-center (RVPC) model. This model addresses uncertain travel times, represented using
fixed intervals or ranges instead of probability distributions, between URDCs and affected areas. The
objective of locating a predetermined number (p) of URDCs is to minimize worst-case deviation in
maximum travel time from the optimal solution. To reduce the complexity of solving the RVPC
problem, this work proposes a property that facilitates identification of the worst-case scenario for a
given set of URDC locations. Since the problem is NP-hard, a heuristic framework is developed to
efficiently obtain robust solutions. Then, a specific implementation of the framework, based on
simulated annealing, is developed to conduct computational experiments. Experimental results show
that the proposed heuristic is effective and efficient in obtaining robust solutions of interest. This work
examines the impact of the degree of data uncertainty on the selected performance measures and the
tradeoff between solution quality and robustness. Additionally, this work demonstrates the applic-
ability of the proposed model to natural disasters based on a real-world instance. The result is
compared with that obtained by a scenario-based, two-stage stochastic model. This work contributes
significantly to the growing body of literature applying robust optimization approaches to emergency
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logistics.
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1. Introduction

Emergency response to quick-onset disasters relies heavily on
effective and efficient emergency logistics, which have drawn
considerable attention in the last decade (e.g., [1-3]) due to the
severe impacts of numerous natural disasters and the devastation
and casualties they have caused [4]. To support emergency
responses, such as evacuation of survivors, search and rescue of
the injured, and distribution of medical and relief supplies, all
components in an emergency logistics system must be designed
and deployed optimally, along with mechanisms that trigger and
coordinate activities in and among those components. Of vital
importance to an emergency logistics system are urgent relief
distribution centers (URDCs), because they serve as hubs with the
aim of seamlessly integrating and coordinating inbound and out-
bound emergency logistics in response to relief demands from
affected areas. These hubs also have an inventory management
function (i.e., risk pooling)—aggregating relief demands (or their
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forecasts) across several affected areas to reduce the adverse
impact of relief demand variability and uncertainty on the system.

Recognizing that facility location is an essential design variable
for URDCs, this work focuses on the URDC location problem.
Specifically, this work aims at developing a robust URDC location
model that explicitly accounts for uncertain travel times between
URDCs and affected areas. Among various facility location models
that have been presented in the literature (e.g., [5,6]), the p-center
model, which aims to locate p facilities to minimize maximum
distance (or travel time) between demand nodes and their closest
facilities (e.g., [7]), is particularly suitable for emergency applica-
tions (e.g., [8-10]). The vertex p-center (VPC) model restricts the
set of candidate sites to network nodes, while the absolute p-
center model allows facilities to be anywhere along network arcs.
In response to quick-onset disasters, government agencies typi-
cally designate existing public buildings (e.g., schools and sta-
diums) with little or no damage that can be promptly converted
to shelters for survivors and/or warehouses for relief supplies as
candidate sites instead of establishing new emergency facilities
from scratch. Thus, this work considers the URDC location
problem as a VPC problem (e.g., [11]).

A robust location model of URDCs must explicitly account for
uncertain input data, such as travel times between URDCs and
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affected areas, mainly due to poor measurements based on
limited information available during a disaster’s aftermath or
approximations in the modeling process choosing a distance
norm. Two major categories of approaches have been adopted
in the literature to deal with uncertain coefficients in facility
location models [12], namely, stochastic programming (SP) and
robust optimization (RO). The former has been used typically to
deal with decision-making for facility locations in risk situations,
in which the values of uncertain coefficients are governed by
discrete or continuous probability distributions that are known to
a decision-maker. The SP approach has been widely applied to
emergency logistics for short-notice disasters (e.g., hurricanes,
flooding, and wild fires) by assuming that possible impacts of
these disasters can be estimated based on historical and meteor-
ological data. A classical example of applying SP to disaster relief
is the scenario-based, two-stage stochastic model proposed by
Mete and Zabinsky [13], for medical supply location and distribu-
tion in disaster management. Other examples can be found, for
instance, in [14-16]. A common goal of stochastic location models
is to optimize the expected value of a given objective function.

On the other hand, the RO approach attempts to optimize the
worst-case system performance in uncertain situations that lack
any information about the probability distributions of uncertain
coefficients; hence, the RO approach generally describes uncer-
tain data using pre-specified intervals or ranges (e.g., [17-21]).
Typical robustness measures include mini-max objective value
and mini-max regret in an objective value. The RO approach may
be more appropriate in response to quick-onset or no-notice
disasters (e.g., earthquakes, tsunamis, and landslides); however,
to the best of our knowledge, it has rarely been applied to this
context. For quick-onset disasters, because of the difficulty in
predicting disaster occurrence and impacts as well as a lack of
historical data, probability distributions and scenario data are
generally unavailable. For example, an extremely large earth-
quake, 9.1 on the Richter scale, which hit the northeastern coast
of Japan on March 11, 2011, was never considered in that nation’s
preparedness planning for earthquakes, even though Japan is
widely regarded as one of the most advanced countries in earth-
quake preparedness. Thus, in responding to such a disaster,
decision-makers may prefer an alternative method for describing
uncertain data (i.e., using intervals to represent uncertain data).
The selection of a solution technique (i.e., SP or RO) depends
mostly on data availability and the decision-maker’s objective.

The p-center problems with interval-represented uncertain
data tend to be very difficult because of the mini-max structure.
Therefore, analytical results and exact algorithms for the p-center
problems with interval data have only been attained in special
cases, such as locating a single facility on general networks or
multiple facilities on tree networks (e.g., [22,23]). To the best of
our knowledge, only Averbakh and Berman [24] reported analy-
tical results for an absolute weighted p-center problem with
interval-represented node weights. No study has addressed abso-
lute or vertex multi-center problems with interval-represented
edge lengths.

This work develops a robust vertex p-center (RVPC) model for
locating URDCs in an emergency logistics network. This model
considers explicitly uncertain travel times between URDCs and
affected areas. The objective of locating p URDCs is to minimize
worst-case deviation in maximum travel time between URDCs and
affected areas from the optimal solution. In this model, uncertain
travel times are represented using prescribed, continuous intervals
(or ranges), rather than probability distributions. This work also
proposes a property that facilitates identification of the worst-case
scenario for a given set of URDC locations, thereby reducing
complexity of solving the problem. Since the problem is NP-hard
[25], a local search-based algorithmic framework incorporating the

property for identifying the worst-case scenarios is developed to
find robust solutions within a reasonable amount of computational
resources. Then, a specific framework implementation based on
simulated annealing (SA) is developed to conduct numerical
experiments, including a case study based on the Jiji Earthquake,
which hit central Taiwan on September 21, 1999.

This study contributes significantly to literature by (i) modeling
the URDC location problem as the vertex multi-center problem with
interval-represented edge lengths on general networks; (ii) provid-
ing an effective and efficient algorithmic framework for solving
these problems; and (iii) shedding light on the applicability and
potential benefits of the proposed models to real-world instances.

The remainder of this paper is structured as follows. Section 2
describes the RVPC problem, the representation of data uncertainty,
and the property of worst-case scenarios. Section 3 presents the
generic heuristic framework and a specific implementation using SA.
This is followed by the numerical experiments in Section 4. Section 5
provides a case study demonstrating the applicability of the pro-
posed model to a real instance. Concluding remarks are given in
Section 6.

2. Vertex p-center problem with data uncertainty
2.1. The deterministic problem

Consider a connected, undirected network G(N, A), where N is
the vertex set and A the arc (or edge) set. Let U be the set of
candidate sites for URDC locations and V be the set of relief
stations in affected areas; UUV=N, and U # V. Each possible pair of
relief station ieV and URDC jeU is connected by an arc (i, j)eA
that is associated with a positive (real or integer) number, &,
representing travel time between relief station i and URDC j. Each
relief station is serviced only by a single URDC. For a given set of
predetermined candidate sites, the VPC problem is to locate p
(p<|U|) URDCs and assign relief stations to these centers,
thereby minimizing maximum travel time between relief stations
and URDCs. A mixed integer linear programming (MILP) formula-
tion of the problem is as follows (e.g., [11])

(VPC) Minimize z (1)
Subjecttoz> "t;y;, VieV 2)
jeU

Syj=1, vieV 3)
jeU

Yi—% <0, VieV, jeU 4)
> x=p (5)
jeU

x€{0,1}, VjeU (6)
yje{0,1}, VvieV, jeU 7

The decision variables are binary variables x; VjeU and yj;,
vieV, jeU. x;=1 if candidate site j is selected; otherwise, x;=0.
Additionally, y;=1 if relief station i is serviced by URDC j;
otherwise, y;;=0. The objective function (1) minimizes maximum
travel time between each relief station and its closest URDC.
Constraint (2) defines the lower bound of maximum travel time,
which is being minimized. Constraint (3) requires that each relief
station be assigned to exactly one URDC. Constraint (4) restricts
relief station assignments only to open URDCs. Constraint (5)
stipulates that p URDCs are to be located. Constraints (6) and (7)
indicate that location and allocation decision variables are binary.
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2.2. Representation of data uncertainty and the robust VPC problem

In the RVPC problem, both link travel times and nodal (relief)
demands could be uncertain, but this current work only deals
with uncertain link travel times. Uncertain travel times between
relief stations and URDCs are described using intervals or ranges.
Specifically, an interval [tl;, tu;], 0 < tl; < tuy, is used to capture
the uncertainty of travel time between relief station i and URDC j.
Let W be the Cartesian product of intervals [ty tuy], VieV, jeU. A
scenario we W is defined as a realization of travel times, t;(w)e|-
tly, tuy], vieV, and jeU, where tjw) denotes the travel time
between station i and URDC j in scenario w. Let T=(x, y), where
x={x;, jeU} and y={yy;, ieV, je U}, be a feasible solution to the VPC
problem (i.e., satisfying Constraints (3)-(7)), and let Q be the set
of feasible solutions. In this study, Te is called a URDC location
plan. For a plan 7 and a relief station ieV, this work defines the
travel time between i and 7 in scenario w as

dw,i,7) = Miny, _ 1 vje uftj(w)}. ®)

This definition requires that each relief station be serviced by
its closest URDC. For a plan 7 and scenario w, the maximum travel
time between plan 7 and relief stations in scenario w, z(w, t), is
given as follows:

zZ(w, T) = Max; . yd(w, i, 7). 9

For a given scenario w, the deterministic VPC problem, as
presented in Section 2.1, can be written

VPC(w) = Minimize, . oz(w,T) (10)

This work defines the robust deviation of plan 7 in scenario w,
dev(w, ), as the difference between maximum travel time of plan
7 and that of the optimal plan, T%(w), in scenario w.

dev(w,T) = z(w,T)—z(W,T*(W)). an

This robust deviation represents the regret (or opportunity
loss) of adopting plan t instead of the optimal plan t*(w) in
scenario w. Further, for a given plan e, the maximum (or
worst-case) deviation is called robustness cost, rc(t), which can be
obtained by solving the following sub-problem:

rc(t) = Maxy, . wdev(w, ). 12)
The RVPC problem can be formally stated as
(RVPC) Minimize, . orc(7). 13)

This is equivalent to finding Topust=argMin..q rc(t). That is,
the RVPC problem is to find a robust solution T;opust that mini-
mizes worst-case deviation in maximum travel time from the
optimal solution.

2.3. A key property of the RVPC problem

One of the major difficulties in solving the RVPC problem, a
min-max (or minimax) combinatorial optimization problem, is
evaluating the robustness cost of a given plan 7, rc(t). To determine
robustness cost, one must identify the worst-case scenario for a
given plan 7, which is particularly difficult when uncertain data are
represented using (continuous) intervals, because interval repre-
sentation implies an infinite number of possible scenarios. To
facilitate the identification of the worst-case scenario for a given
plan z, this work presents a property that increases the tractability
of the RVPC problem from a combinatorial perspective. Specifically,
this property indicates that, when evaluating the robustness cost of
a plan 7, even when uncertain travel times are specified as
independent ranges, attention can be restricted to a finite set of
discrete scenarios selected appropriately.

Theorem 1. Given a plan 1, the worst-case scenario, wc, which
maximizes the robust deviation of 7, can be determined as
follows: for each arc (i, j), ty{wc)=tuy if y;=1 and x;=1 (ie,
station i is serviced by URDC j, which is denoted as (i, j)et);
otherwise, t(wc)=tl; (i.e., y;;=0, or station i is not serviced by
URDC j, which is denoted as (i, j) ¢ 7).

Proof. Let w be a generic scenario. One must prove that dev(w,
1) < dev(wc, 1), Ywe W, that is, for plan t, scenario wc is the worst-
case scenario, which has the maximum deviation over all possible
scenarios in W. According to the definition of robust deviation in
Egs. (9) and (11),
dev(w,1) = z(W,T)—z(W,T*(W)) = Max; . yd(w,i,7)

—Max; . yd(w,i,t*(w)),
and

dev(wc,t) = z(wc,7)—2z(wc,T¥(we)) = Max; . yd(wc,i,t)
—Max; . yd(wec,i,t*(wc)),

where 7%(w) and t:#(wc) are the optimal plan in scenario w and
worst-case scenario wc, respectively. Firstly, by definition of the
worst-case scenario wc given in Theorem 1

Ti(We) = T;5(w),V(i,j) € T\T* (W) and t;(wce) < T;(w),V(i,j) € TH(W)\T.
Thus, the robust deviation of plan 7 in scenario w is smaller than
or equal to the robust deviation of plan 7 in scenario wc. That is
dev(w,t) = Max;; . yd(w,i,7)—Max; c yd(w,i,7*(w))
< Max; . yd(wc,i,t)—Max; . yd(wc,i,t*(w)).

Furthermore, according to the definition in Eq. (8), the
maximum travel time between plan 7:(w) and relief stations in
worst-case scenario wc is greater than or equal to the maximum
travel time between the optimal plan 7#( wc) in worst-case
scenario we, i.e.,

Max; . vd(wec,i,7%(w)) > Max; . yd(wc,i,7*(wc))
Thus,

Max; . yd(wc,i,t)—Max;; . yd(wc,i,t*(w))
< Max; . yd(wc,i,7)—Max; . yd(wc,i,t*(wc)).
Finally, we can obtain that

dev(w,7) < Max; . yd(wec,i,t)—Max; . yd(wc,i,t*(wc))
=z(wc,7)—2z(wc,T¥(we)) = dev(wc,T).

This completes the proof. O

3. Solution algorithm
3.1. A local search-based algorithmic framework

Since the RVPC problem is NP-hard [25], to obtain robust solutions
with a reasonable amount of computational resources for problem
instances with practical sizes, heuristics or meta-heuristics are
typically adopted. Based on the property presented in Theorem 1,
the following local search-based algorithmic framework is proposed.

Step 1: Initialization

1.1 Generate randomly an initial solution 7y; let T=1,.
1.2 Evaluate the robustness cost of t, rc(t), based on Theorem 1.

Step 2: Local search
2.1 Generate a new solution, Thew, ffom the neighborhood of 7.

2.2 Evaluate the robustness cost of Tpew, 'C(Thnew) based on
Theorem 1.
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Step 3: Solution acceptance or rejection

3.1 If the rules (or aspiration rules) of solution acceptance are
adopted, then let T="Tpew-
3.2 Otherwise, decline the new solution, Tpew-

Step 4: Convergence check

4.1 If convergence criteria are satisfied, stop.
4.2 Otherwise, go to Step 2.

In this framework, each candidate solution has more than one
neighbor solution, and the choice of which neighbor solution to
move is determined using only the information about the neigh-
borhood of the current solution (ie. local search). When no
improvement mechanisms are designed for the neighborhood
search, a local search may be stuck at local optima. This issue can
be resolved by applying, for instance, restarts with different initial
solutions or relatively more sophisticated schemes based on
iterations (e.g., iterated greedy) or memory-less stochastic mod-
ifications (e.g., SA) in Step 3 of the proposed framework.

3.2. A specific implementation based on simulated annealing

This subsection presents a specific implementation of the
proposed framework based on SA, which can escape from becom-
ing trapped into a local optimum by accepting, with a small
probability, worse solutions during iterations. Suman and Kumar
[26] comprehensively reviewed SA-based optimization algo-
rithms. The SA-based heuristic is presented as follows.

Step 0. Input data and set parameters values p, To, Tr, Itemax,
Numy,ay, and ﬁ:

Step 1. Initialization

1.1 Randomly generate the initial solution 7o; T="10;
1.2 Initialize Temp: =Ty, Ite: =0, Num: =0, Tiobust: =71,
rC(Tmbust): = rc(r);

Step 2. Generate a solution Tew, and evaluate its robustness
cost, 1C(Tnew); Ite:=Ite+1;

Step 3. AE:=rc(Thew)—1c(7); if AE<O, go to Step 3.1; other-
wise, go to Step 3.2;

3.1 Let T:=Tpews
3.2 Generate a random number rand~U(0, 1);If rand < (Temp/
(Temp? +AE?)), then T="Tnew;

Step 4. 1f TC(‘E) < rC(Trobust)v then Trobust: =T, rc(rl‘obust)::rc(‘r)v
Num:=0;

Step 5. If Ite=Iteyax,
Num:=Num+1,;

Step 6. If Temp < Tr or Num:=Num,ay, then stop; otherwise, go
to Step 2.

Note that the SA-based heuristic is provided only as a specific
implementation for the framework, presented in Section 3.1. Any
other local search-based heuristic can be adopted in the proposed
framework, such as iterated greedy. Moreover, while SA is not a
new approach, this work demonstrates a successful application of
SA (or meta-heuristic) to solve robust combinatorial optimization
problems, which is rarely seen in existing literature.

then Temp:=Temp x f, Ite:= O,

3.3. Neighborhood description and evaluation of robustness cost

In Step 2 of the SA-based heuristic, a new solution Tpe, is
generated in each iteration from the neighborhood of the current
solution 7. Whenever a new solution 7. iS generated, one must
evaluate its robustness cost, rc(Tpew). This work defines two neigh-
borhood types. The first is called the allocation neighborhood, and
involves only changes in allocation decision variables (ie., y;, i€V,
jeU). Both location and allocation decision variables (i.e., xj, je U, and
Vi i€V, jeU) change in the second type, called the Location-
Allocation neighborhood. Specifically, the allocation neighborhood
consists of feasible solutions obtained by randomly selecting two
relief stations serviced by different URDCs in the current solution,
and swapping their associated URDCs (Fig. 1(a)). Further, to accel-
erate the generation of a feasible solution from the allocation
neighborhood, a dominance-checking rule is applied to eliminate
impossible swaps. Consider a selected relief station i, which is to be
reallocated from its currently associated URDC j1, to another URDC
Jj2. This rule compares travel time intervals [tlj, tu] and [, tugp].
If tliz > tuy;y, the latter interval is said to be dominated by the former
interval and the intended reallocation is abandoned because relief
stations are assumed to be serviced by their respective closest
URDCs, such that i will never be connected to j2.

The new solutions in the Location-Allocation neighborhood
are generated by randomly choosing two URDCs and swapping
their associated groups of relief stations. In this neighborhood
type, at least one chosen URDC must be an open facility. More-
over, if only one chosen URDC is open, this swap is equivalent to
moving a group of relief stations from an open facility to another
facility that was closed but is now open after the swap (Fig. 1(b)).
In each iteration of the SA-based heuristic, a new solution Te is
generated from either the allocation (with probability p;) or
Location—-Allocation (with probability p,) neighborhood of current
solution 7. Selection between the two types of neighborhood is
based on probabilities p; and p,, and p;+p>=1.

The robustness cost of a solution 7 is the regret of using plan
instead of the optimal solution in the worst-case scenario. Two
steps exists for evaluating rc(t): (i) identify the worst-case
scenario of 7; and, (ii) find the optimal solution to this worst-
case scenario. In the RVPC problem, although the interval repre-
sentation of uncertain data implies an infinite number of possible

a
Randomly select two relief stations
........ -+ and swap their associated URDCs.
a4 »
b

Randomly select two URDCs and swap their
associated groups of relief stations.

RIS

Il Open URDCs [] Closed URDCs QO Relief stations

Fig. 1. lllustrations of different neighborhood types. (a) Illustration of type 1
neighborhood and (b) Illustration of type 2 neighborhood.
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scenarios, the worst-case scenario can be identified easily using
Theorem 1, which was presented in Section 2.3. That is, the worst-
case scenario of (or induced by) a given plan 7 is obtained by
setting travel times to the upper bounds for links connecting open
URDCs and their associated relief stations, and to the lower
bounds for the remaining links. The efficient algorithm proposed
by Chen and Chen [27] can then be adopted to solve the
deterministic VPC problem (i.e., to obtain the optimal location
plan URDCs) in the identified worst-case scenario.

4. Numerical experiments
4.1. Experimental design

A set of numerical experiments were conducted on a set of test
instances, to examine the algorithmic performance of the SA-
based heuristic, the tradeoff between robustness and optimality,
and the impact of both number of facilities and data uncertainty
on the solutions. The algorithm was coded in C++ computer
language and tested on a personal computer with a Pentium Core
2 Duo 2.4 GHz CPU and 2 GB RAM.

To examine the performance of the SA-based heuristic, this
work also implemented an enumeration approach and compared
the effectiveness (solution quality) and efficiency (computational
time) of the SA-based heuristic with those of the enumeration
approach. This approach enumerates all possible plans and
identifies the plan with minimal objective value. In spite of its
computational inefficiency, this enumeration approach guaran-
tees to find exact solutions that serve as the benchmark for
evaluating the solution quality of the heuristic.

The test instances have different problem sizes, represented by
the triplet (|V|, |U|, p), where |V|, |U|, and p denote the numbers
of relief stations, candidate URDC sites, and open URDC sites,
respectively. Fifteen different sizes of instances were considered.
For each problem size, 30 instances were generated, so there were
450 problem instances. For each instance, the two-dimensional
coordinates of relief stations and candidate URDC sites were
generated from the intervals (0, 100) and (40, 60), respectively.
The nominal travel time t; between each pair of relief station i
and candidate URDC site j is given as the Euclidean distance
rounded to the nearest integer. Because of the likely degradation
of road condition in the aftermath of disasters, the travel time
interval [tly, tu;] is generated as [tj, £+ aty], Vi, j. The parameter o
is used to control the degree of data uncertainty; the larger the
value of o, the higher the degree of data uncertainty. Each
problem instance was tested for five different uncertainty levels,
«=0.5, 1.0, 1.5, 2.0, and 2.5, so there were 2250 (=450 x 5) tests.

In addition to the objective function values, defined in Eq. (12),
the price of robustness #7(Tobust) and hedge value H(Tropust) are
the other two performance measures. #7(Tqopust) iS €qual to the
price that the decision-maker needs to pay for employing the
robust plan T;opust, instead of the optimal nominal plan T,ominal, iN
the scenario of nominal travel times, Wnominar- Specifically

n(Trobust) = Z(WnominalvTrobust)_z(wnominalrrnominal)s (14)

where zZ(Wnominal» Tnominal) 1S the maximum travel time between
the URDCs of the optimal nominal plan T,omina1 and relief stations
in the nominal scenario Wyominal. In the conducted numerical
experiments, the nominal travel times were set as the mean or
middle values of the generated travel time intervals.

H(Tobust) is defined as the value gained from implementing the
robust plan T;opust, instead of the optimal nominal plan T,ominal, in
the worst-case scenarios. Specifically

H(Trobust) = rC(Tnominal)_rC(Trobust)' (1 5)

In the definitions, #(Trobust) represents the tradeoff between
robustness and optimality, while H(7onLust) can be viewed as the
regret of employing the plan T,omina in the worst-case scenario.

4.2. Numerical results of solving the RVPC problem

4.2.1. Effectiveness and efficiency of the SA-based heuristic

The computational results of solving the RVPC problem
instances with the number of relief stations |V|=10, 15, and 20
are displayed in Tables 1, 2, and 3, respectively. In these tables,
Ave. rc(Trobust) denotes the average robustness cost, over 30
instances, for each problem size and uncertainty level. As shown
in the third and fifth columns of these tables, for most problem
sizes and uncertainty levels (o), the Ave. rc(T obust) Obtained using
the SA-based heuristic is the same as that obtained using the
enumeration approach. For each problem size and each uncer-
tainty level, the number of instances (out of 30 instances) where
the SA-based heuristic fails to obtain optimal solution is reported
in the parenthesis of the third column in the tables. In all, but 19,
of the 500 instances (excluding the instances of problem sizes (20,
4, 3) and (20, 5, 3)), the objective value obtained using the SA-
based heuristic is identical to that obtained using the enumera-
tion approach, indicating that the proposed heuristic is able to
obtain optimal, or near-optimal, solutions. In the 19 instances,
where the heuristic failed to obtain optimal solution, the max-
imum gap between heuristic solutions and optimal solutions
(obtained by the enumeration) is about 10% of the corresponding
optimal solution. The average gap of the 19 instances is about 6%.
These small deviations further highlight the effectiveness of the
proposed heuristic.

Note that, since the estimated computational time for the
enumeration approach to optimally solve one instance with size

Table 1
Comparison of algorithmic performance for the RVPC instances with |V|=10.

Problem size o  SA-based heuristic Enumeration

Ave. 1c(Tropust) CPU time (s) Ave. rc(Trobust) CPU time (s)

(10,4,2) 05 21.02(0) 135 21.02 3.89
1.0 46.83 (0) 46.83
1.5  72.65 (0) 72.65
2.0 98.47(1) 98.23
2.5 12428 (0) 124.28
(10,4,3) 0.5 20.90 (0) 1.46 20.90 13.20
1.0 46.07 (0) 46.07
15  71.52 (1) 71.43
2.0 97.30(1) 97.20
2.5 123.47 (0) 123.47
(10,5,2) 05 21.13(0) 138 21.13 437
1.0 46.60 (0) 46.60
1.5  72.07 (0) 72.07
2.0 97.53(0) 97.53
2.5 123.00 (0) 123.00
(10,5,3) 05 21.03(0) 1.72 21.03 59.48
1.0 4657 (2) 46.43
15 7092 (2) 70.85
20 97.23(1) 97.17
2.5 121.63 (1) 121.53
(10,5,4) 05 1920(1)  2.39 19.15 407.79
1.0 46.10 (0) 46.10
1.5 7040 (1) 70.15
2.0 96.20 (0) 96.20
2.5 120.60 (1) 120.25
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equal to (20, 4, 3) or (20, 5, 3) is more than one week, it is very
difficult to use the enumeration approach to obtain exact solu-
tions for all the larger instances. Alternatively, a maximum
computation time (5 days) was set to allow the enumeration
approach to solve one instance with size equal to (20, 4, 3) or (20,
5, 3) and report the incumbent solution (i.e., an upper bound)
obtained within that maximum computation time. As shown in
Table 3, for the tests on these larger instances, the solution
obtained using the SA-based heuristic is significantly better than
that obtained using the enumeration approach, with the improve-
ment in objective value ranging from 15 to 50%.

Table 2
Comparison of algorithmic performance for the RVPC instances with |V|=15.

Problem size o  SA-based heuristic Enumeration

Ave. 1c(Trobust) CPU time (s) Ave. rc(Trobust) CPU time (s)

(15,4,2) 05 21.67(0) 2.51 21.67 22.072
1.0 4833 (0) 4833
1.5  75.03 (0) 75.03
2.0 101.73 (0) 101.73
2.5 128.43 (0) 128.43
(15,4,3) 05 2095(1)  3.56 20.85 6161.899
1.0 46.90 (0) 46.90
1.5 7450 (1) 74.00
2.0 100.10 (0) 100.10
2.5 125.90 (1) 125.20
(15,5,2) 0.5 22.00 (0) 2.71 22.00 49,554
1.0 48.50 (0) 48.50
1.5 74.98 (0) 74.98
2.0 101.50 (0) 101.50
2.5 127.32 (0) 127.32
(15,5,3) 05 21.70(1)  3.77 21.60 25649.025
1.0 47.10(1) 46.90
1.5  72.40 (0) 72.40
2.0 9820(1) 97.90
2.5 123.75 (1) 123.40

Table 3
Comparison of algorithmic performance for the RVPC instances with |V|=20.

Problem size o  SA-based heuristic Enumeration

Ave. 1c(Trobust) CPU time (s) Ave. rc(Trobust) CPU time (s)

(20,4,2) 05 23.65(0) 3.68 23.65 779.588
1.0 52.50 (0) 52.50
1.5 81.35(0) 81.35
2.0 110.20 (0) 110.20
2.5 139.05 (0) 139.05
(20,4,3) 05 21.50 (NJA) 4.74 28.50° 5 days
1.0 49.00 (NJA) 61.00°
1.5  76.50 (NJA) 91.50°
2.0 104.00 (N/A) 122.00°
2.5 131.50 (NJA) 152.50°
(20,5,2) 05 23.75(0) 3.93 23.75 1875.083
1.0 52.30 (0) 52.30
1.5 80.85 (0) 80.85
2.0 109.40 (0) 109.40
2.5 137.95 (0) 137.95
(20,5,3) 05 18.50 (NJA) 557 26.50° 5 days
1.0 43.00 (NJA) 67.00°
1.5 69.00 (NJA) 97.50°
2.0 95.00 (NJA) 128.00°
2.5 121.00 (N/A) 158.50°

2 Incumbent solution obtained using the enumeration approach in 5 days

Regarding the computational efficiency of the proposed heur-
istic, as shown in the fourth and sixth columns of these tables, the
SA-based heuristic requires less computational time than the
enumeration approach in all the conducted tests. In particular,
although the computational time of the enumeration approach
increases dramatically as the problem size gets larger, the
increase in computational time of the SA-based heuristic is not
significant. For instance, for the test with the same numbers of
|[V|=15 and |U|=5, when p increases from two to three, the
computational time of the enumeration approach increases, on
average, by more than 500 times, but the SA-based heuristic
requires an average of one more second. In summary, the SA-
based heuristic obtains optimal or near-optimal solutions using
much less computational time than the enumeration approach.

4.2.2. Impacts of data uncertainty

The tests conducted on the problem instances of larger size,
i.e., (30, 5, 3), (40, 8, 4), and (50, 10, 5), aim to examine the impact
of data uncertainty on the selected performance measures. The
average optimal objective value (Ave. rc(T obust)), robustness price
(Ave. n(Trobust)), and hedge value (Ave. H(Tiobust)), for different
uncertainty levels, are reported in Table 4. The nominal values
used in evaluating the robustness price and hedge value are the
middle (or mean) values of the generated travel time intervals. As
observed in the table, both the average robustness cost and hedge
value increase as the uncertainty level becomes higher. Because of
the larger travel time intervals (due to a larger o), the worst-case
scenario deviates further from the nominal scenario, resulting in
larger robust deviations and the increase in hedge value, which
highlights the advantage of implementing robust solutions in the
presence of data uncertainty. It is also shown in the table that,
although the average robustness price, #(Trobust), iNCreases
slightly with problem size and uncertainty level, the value is
small (about 10% of z(Wnominal, Tnominat)) for all problem sizes and
uncertainty levels, indicating that the robust plans determined
by the proposed method do not sacrifice much solution quality
(or optimality) for robustness.

5. Numerical example based on a real case

This numerical example demonstrates the application of the
proposed RVPC model to locate URDCs in a relief distribution

Table 4
Computational results of the SA-based heuristic on solving larger RVPC instances.

Problem size o ¢(Trobust) N(Trobust) H(Trobust) CPU time
(30,5, 3) 0.5 245 6.3 44.7 6.48
1.0 53.6 6.3 75.3
1.5 82.5 6.5 108.5
2.0 111.5 6.7 1471
2.5 140.9 6.9 175.2
(40, 8, 4) 0.5 27.9 6.5 42.3 16.68
1.0 56.7 6.6 749
1.5 85.5 6.7 107.1
2.0 115.8 6.9 139.8
2.5 144.8 7.6 174.5
(50, 10, 5) 0.5 27.9 6.9 43.8 59.36
1.0 57.9 7.3 77.3
1.5 87.3 7.5 110.8
2.0 118.7 7.9 145.3
2.5 148.6 8.4 178.4
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system responding to the massive earthquake that hit central
Taiwan on September 21, 1999—the 921 Jiji Earthquake. This
earthquake, which measured 7.3 on the Richter scale, mostly
affected Taichung and Nantou counties, causing more than 2500
deaths and 8000 injuries and destroying (completely or partially)
39,000 buildings. The focus of this example is on the three-tier
relief distribution system established in Nantou County immedi-
ately after this earthquake. Specifically, relief supplies were
transported from six unaffected counties (Taipei, Taoyuan,
Hsinchu, Changhua, Tainan, and Kaohsiung counties) and sent to
the 51 relief stations in the 11 townships in Nantou county. To
centralize relief distribution to relief stations in the relief dis-
tribution system, the rescue and relief agency selected Nantou
Stadium and Jiji Town Hall as URDCs. In this case study, these two
buildings were also considered candidate sites for URDCs. Five
other candidate sites were selected based on an earthquake
preparedness report by Taiwan’s Ministry of the Interior [28].
The triplet (|V|, |U|, p)=(51, 7, 2) denotes the problem size in this
numerical example, where |V|, |U| and p denote the number of
relief stations, candidate URDC sites, and open URDC sites,
respectively.

Fig. 2 shows the locations of the seven candidate sites and 51
relief stations. Table 5 lists the average travel times between the
seven candidate sites and 51 relief stations. These travel time data
were collected by Sheu [2,3] to evaluate an emergency logistics
distribution approach. In the earthquake’s aftermath, the max-
imum travel time for sending relief supplies from the two URDCs
(i.e., Nantou Stadium and Jiji Town Hall) to the 51 relief stations
was 75 min. Without considering travel time uncertainty, this
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X X X X X,
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X
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Lugu 4
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Jhushan X

A Candidate URDC sites
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Fig. 2. Candidate URDC sites and relief stations.

work solved a deterministic VPC problem based on the travel
times listed in Table 5. In the solution, Puli High School and Jiji
Town Hall are selected as the URDCs, with a maximum travel time
of 54 min. These two URDCs significantly reduce (75-54=21 min)
the maximum travel time, compared to that of the two URDCs set
up in the earthquake’s aftermath. This indicates a potential
improvement in relief distribution system efficiency by locating
URDCs at the sites suggested by the solution of the deterministic
VPC problem.

Because earthquakes are quick-onset disasters, predictions are
generally very limited. Additionally, historical data may be
unavailable when designing travel time scenarios. Thus, the
proposed RVPC model represented uncertain travel times using
intervals. Let t; be the average travel time (see Table 5) between
URDC candidate site j and relief station i, Vi, j. The travel time
interval was generated as [t;—oty, t;+ot;], Vi, j. Three distinct
values of « (ie. 0.25, 0.5, and 0.75) were considered to reflect
different degrees of travel time uncertainty, such that three
instances of the RVPC problem existed. Note that the travel times
t;, Vi, j collected by Sheu [2] were the estimated mean travel times
in the aftermath of the JiJi earthquake on September 21, 1999,
rather than the typical travel times before the earthquake. That is,
the impact of the earthquake on the road network had been taken
into account in these travel times. It is possible that some actual
travel times were less than the estimated mean travel times.
Thus, we used these travel times as the mean travel times of the
travel time intervals.

Table 6 lists the numerical results of solving these three RVPC
problem instances. The average CPU time for the implemented
SA-based heuristic to solve one instance is 73s. The URDCs
selected in the RVPC model differ from those in the deterministic
VPC problem. Particularly, Shueili Middle School was selected as a
URDC in all three test instances of the RVPC problem but not in
the VPC problem. This difference highlights the importance of
considering data uncertainty in choosing URDC sites. All the three
performance measures (rC(Trobust)- ”(Trobust)- and H(Trobust))
increase as the uncertainty level, o, increases. For the different
uncertainty levels, #(Tiobust) iS about 20-25% of the optimal
objective value (54 min) in the scenario of average travel times.
This finding indicates that seeking solution robustness would
trade off a significant amount of solution quality. The reason is
likely due to the spatial distribution of candidate sites. In this case
study, because candidate sites are scattered throughout Nantou
county, the objective value changes dramatically when a different
set of candidate sites is selected to locate URDCs.

For comparison purposes, the conventional two-stage SP
technique was applied to develop a stochastic VPC (SVPC) model
for determining URDC locations in the case study. For the SVPC
model, travel time uncertainty was represented using a finite set
of discrete scenarios, S, where t;(s) denotes travel time between
station i and URDC j in scenario seS. Moreover, each scenario s is
associated with a probability of occurrence, Ps (Z5cs Ps=1). First-
stage decisions involve locations of URDCs (i.e., binary variables x;,
vjeU), whereas assignment decisions are made during the second
stage, in which binary variables y;(s)=1 when relief station i is
assigned to URDC j in scenario s; otherwise, y;(s)=0. The SVPC
model, which aims to minimize maximum expected travel time
between URDCs and relief stations over all scenarios, can be
formulated by adapting stochastic location models from the
literature (e.g., [29,30])

(SVPC) Minimize z (16)

Subjecttoz> " _ P[> ti(s)y;(s), VieV a7
jeU
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Table 5
Travel times (min) between URDC candidate sites and relief stations.
Township Relief URDC candidate sites
stations
Nantou Puli High Caotun Middle Jhushan Elementary Jiji Town Guoshing Town Shueili Middle
Stadium School School School Hall Hall School
Nantou NT-A 4 68 22 33 33 57 43
NT-B 3 65 19 35 35 56 45
NT-C 6 67 20 35 37 56 47
NT-D 2 66 20 32 33 56 43
Puli PL-A 65 7 54 80 77 38 60
PL-B 56 4 54 80 78 40 62
PL-C 69 7 57 84 80 42 64
PL-D 65 9 53 80 76 38 60
PL-E 71 20 59 85 91 40 75
PL-F 61 9 49 76 72 34 56
PL-G 65 7 53 79 76 38 60
PL-H 67 6 55 82 78 40 62
Caotun CT-A 18 59 6 37 43 42 53
CT-B 32 42 13 51 57 25 67
CT-C 36 50 16 55 56 33 71
CT-D 27 53 8 46 52 35 62
CT-E 39 54 20 58 60 37 75
CT-F 48 41 28 67 72 24 85
CT-G 39 41 20 58 64 25 74
Jhushan  JS-A 23 71 33 12 22 61 34
JS-B 27 74 36 6 27 64 40
Jiji JJ-A 36 79 50 36 4 78 17
JJ-B 36 77 50 35 5 75 15
JJ-C 27 79 41 30 19 67 29
Mingjia MJ-A 15 67 29 21 19 57 29
MJ-B 13 64 32 34 32 64 42
MJ-C 17 73 35 31 28 63 39
MJ-D 18 75 37 34 32 65 42
MJ-E 23 75 37 31 29 62 39
Lugu LG-A 41 88 50 19 37 78 44
LG-B 50 97 59 28 46 87 54
LG-C 58 103 73 42 34 101 42
Jhongliao JL-A 28 65 35 54 38 47 53
JL-B 21 72 35 39 18 62 33
Yuchih YC-A 76 29 65 84 57 49 41
YC-B 61 47 75 62 35 68 19
YC-C 91 39 79 98 72 64 55
YC-D 84 27 72 98 73 56 56
YC-E 68 40 76 69 43 61 26
YC-F 92 51 86 93 66 71 50
Guoshing GS-A 57 41 38 71 77 1 72
GS-B 71 37 52 85 60 26 46
GS-C 75 43 56 89 95 18 90
GS-D 62 28 42 76 70 17 56
Shueilli SL-A 49 61 63 50 24 67 10
SL-B 71 58 85 72 45 64 31
SL-C 57 58 71 57 31 64 17
SL-D 72 86 86 73 46 102 30
SL-E 65 85 79 66 39 96 24
SL-F 58 82 72 57 33 91 21
SL-G 51 65 65 52 25 81 9
Z;e Ji®)=1, VieV, seS (18) > x=p (20)
jeU
) ) x;€{0,1}, y,-j(s)e{O,l}, vieV, jeU, seS 21
Yii($)—x;<0, vieV, jeU, seS (19)
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This model can be solved by a commercial solver, such as
CPLEX or DECIS in GAMS, or solution techniques in the literature
(e.g., [30]).

In this case study, travel times in each scenario were generated
based on the average travel times (t; Vi, j) given in Table 1.
Specifically, in a scenario s, t(s) is generated from a uniform
distribution, U[tj—o tj tj+ot;], Vi, j. Three SVPC problem
instances were tested with «=0.25, 0.50, and 0.75, and 20
scenarios were generated in each instance.

Table 7 lists the numerical results of solving the three SVPC
problem instances. The URDCs selected in the SVPC model differ
from those in the VPC model. In comparison with RVPC model
results, the same set of URDCs was selected by the two models
when o=0.25, but different sets of URDCs were selected by the
two models when «=0.50 and 0.75. This observation may
indicate that the difference between the results of the two models
increases when the degree of data uncertainty increases. For other
performance measures, both the objective value, z(Topust), and
robustness price, #(Trobust), iNCrease as parameter o« increases. The
values of #(Trobust) in the SVPC model (ie., 2, 5, and 11) are
markedly smaller than those in the RVPC model (i.e., 15, 20, and
16) for different degrees of travel time uncertainty, indicating that
the SVPC model gives up much less solution quality to achieve
solution robustness than the RVPC model.

Notably, comparison results for this case study should not be
used to claim superiority of the RVPC model over the SVPC model
or vice versa, because the two models differ fundamentally.
Specifically, the SVPC model typically assumes availability of the
probability distribution of uncertain travel times, whereas the
RVPC model considers information about the probability distribu-
tion is unavailable and, hence, represents uncertain travel times
using intervals or ranges. Moreover, the RVPC model minimizes
the deviation from the optimal solution in the worst-case sce-
nario, while the SVPC model optimizes the expected system
performance. Thus, the RVPC model generally produces more
conservative solutions than those acquired by the SVPC model.
Accordingly, the SVPC model may be more appropriate for
preparation for short-notice disasters, while the RVPC model is
well-suited in response to no-notice or quick-onset disasters.

6. Concluding remarks

With particular emphasis on addressing data uncertainty
when locating URDCs in response to quick-onset natural disasters,
this work developed the RVPC model and its solution algorithm.
The model aims to minimize the worst-case deviation in

Table 6
Numerical results of the RVPC problem in the case study.

maximum travel time between URDCs and relief stations from
the optimal solution. Rather than using probability distributions
to describe uncertain travel times, the model represents uncertain
travel times using prescribed fixed intervals. The useful property
in Theorem 1 was proposed to facilitate the determination of the
worst-case scenario among an infinite number of possible scenar-
ios, due to the (continuous) interval representation of uncertain
data. Because of the complexity of solving the models, the SA-
based heuristic, which incorporates the properties described in
Theorem 1 to evaluate robustness costs efficiently, was developed
to obtain robust solutions.

A large number of problem instances, with various problem
sizes and different degrees of data uncertainty, were generated
and solved using the SA-based heuristic. The numerical results
show that the proposed heuristic is able to efficiently obtain
optimal, or near-optimal, solutions. It was also found that the
robust solutions determined by the proposed method do not
trade off much quality (or optimality) for robustness.

To demonstrate the applicability of the proposed RVPC model
to real-world instances, a case study of the Jiji Earthquake, which
hit central Taiwan on September 21, 1999, was conducted. In this
case study, the URDCs selected in the RVPC model differ from
those in the deterministic VPC problem, highlighting the impor-
tance of considering data uncertainty when choosing URDC sites.
This work also compared the RVPC model with the two-stage
SVPC model. Comparison results reveal that the two models select
different sets of URDCs, especially when the degree of data
uncertainty is high. Further, the SVPC model sacrifices much less
solution quality to achieve solution robustness than the RVPC
model. However, comparison results obtained in this case study
cannot be used to conclude that the RVPC model is superior to the
SVPC model or vice versa, as the two models differ fundamentally
and are best suited to distinct disaster types.

This work contributes significantly to the growing body of
literature developing robust optimization approaches to emer-
gency logistics. Particularly, this research is the first in the
literature to address the RVPC problem in general networks with
uncertain link travel times represented by intervals. Theorem 1,
which facilitates evaluating robustness costs, could serve as a
main building block for developing solution algorithms (e.g.,
heuristics or approximation algorithms) to the RVPC problem.
As described in Section 3, this research developed the SA-based
heuristic which utilizes this theorem. While the SA-based heur-
istic has satisfactory solution quality and computational effi-
ciency, it would be desired to look for other more effective and
efficient solution algorithms to the RVPC problem. Our future
works will involve the development of other meta-heuristics,

Size o r¢(Trobust) N(Trobust) H(Trobust) Max. avg. travel time Selected URDCs
(51,7,2) 0.25 57 15 27 74 Guoshing Town Hall, Shueili Middle School
0.50 92 20 38 79 Puli High School, Shueili Middle School
0.75 133 16 43 75 Caotun Middle School, Shueili Middle School
Table 7
Numerical results of the SVPC problem in the case study.
Size o Z(Trobust) N(Trobust) Max. avg. travel time Selected URDCs
(51,7,2) 0.25 71.69 2 56 Guoshing Town Hall, Shueili Middle School
0.50 90.54 5 59 Caotun Middle School, Shueili Middle School
0.75 105.95 11 66 Jiji Town Hall, Guoshing Town Hall
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such as Genetic Algorithm and Tabu Search, to the RVPC problem,
and compare their performance with that of the SA-based
heuristic.

Some other interesting topics that may be addressed based on
the proposed robust emergency facility location models and
algorithms are briefly outlined as follows. For instance, practical
constraints (such as facility capacity and budget constraints) can
be included when determining emergency facility locations. The
model can also be extended by a weighted vertex p-center model
that considers not only uncertain travel times but also relief
demands represented as nodal weights. We also hope this work
can stimulate some other more advanced methods to the RVPC
problem and emergency logistics.
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