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Abstract This study proposes an intelligent algorithm with tri-state architecture for real-
time car body extraction and color classification. The algorithm is capable of managing both
the difficulties of viewpoint and light reflection. Because the influence of light reflection is
significantly different on bright, dark, and colored cars, three different strategies are
designed for various color categories to acquire a more intact car body. A SARM (Separating
and Re-Merging) algorithm is proposed to separate the car body and the background, and
recover the entire car body more completely. A robust selection algorithm is also performed
to determine the correct color category and car body. Then, the color type of the vehicle is
decided only by the pixels in the extracted car body. The experimental results show that the
tri-state method can extract almost 90% of car body pixels from a car image. Over 98% of
car images are distinguished correctly in their categories, and the average accuracy of
the 10-color-type classification is higher than 93%. Furthermore, the computation load
of the proposed method is light; therefore it is applicable for real-time systems.

Keywords View-invariant . Light reflection . Tri-state architecture . Image segmentation .

Car body extraction . Color classification

1 Introduction

With the rapid growth of surveillance equipments, recognizing vehicles by their visual
features is currently a popular issue. Color is a dominant visual feature on vehicles, and is
widely used in intelligent transportation systems (ITS) and content-based image retrieval
(CBIR) systems. For ITS, the color feature is used to enhance car recognition accuracy for
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crime detection, entrance security, or road charging. For CBIR systems, vehicle colors assist
users to query their desired vehicle images from the Internet or a large image database.

Current vehicle color classification methods construct color histograms from car images
before matching the color distribution with the templates. Kim et al. [14] determined the
optimal bin numbers of the histogram of hue, saturation and intensity axes to acquire optimal
performance. In [16], a method based on vector matching was proposed and the color
distribution in HSI color space was claimed to be more distinguishable than in the RGB
or YCbCr color space. In [3], an example-based algorithm was proposed, which exhibited
the potential to reduce the effects caused by lighting variations when the vehicle pose was
restricted.

The Support Vector Machine (SVM) is a useful tool for classification when combined
with the color histogram methods. In [7], the SVM method was introduced to classify the
dominant color of vehicles. In [2], not only color, but the sizes of cars were classified by
SVM. In [21], a grid kernel method, which detects color information from not only a pixel
but also its neighboring pixels, was proposed to achieve a superior recognition rate.
However, these SVM related techniques usually encounter a considerable problem. A
number of undesired pixels on the windshield, headlights or the background often interfere
with the color histogram, thereby decreasing the classification accuracy. Therefore, recent
studies only considered the pixels that were included in the car body to calculate color
histograms.

A car body comprises metallic parts, as follows: the hood, the roof, and the side panels
(excluding the windshield, headlights, and wheels). The work of extracting the car body
from a car image is another challenging problem and usually requires a number of
restrictions. In [4], the vehicle was captured in the front view. Subsequently, a fixed
position rectangle, which was guaranteed to cover the most significant part of the car
body, such as the hood of the car, was acquired. A homogeneous region with a
similar color was extracted within the rectangle and the vehicle color was identified
by only the pixels of this homogeneous region. In [19], cars were captured in the rear
view. The significant part of the car body was also extracted and the vehicle color
was identified by the pixels within the significant part.

The restriction, in that the camera viewpoint is limited to the front or rear views, must be
removed for wider and more realistic applications. In [26], the camera was fixed and the lane
direction was predetermined. A rectangle box, in which the region of hood can be detected,
was subsequently defined and termed as the first sight window. The frame difference
technique [27] was used to localize the vehicle within the window. A homogeneous region
on the vehicle body was subsequently extracted for color classification. In [25], the vehicle
was assumed to be located near the center of the tested image and occupied most parts of the
image. A number of removal rules were defined to reject the undesirable pixels. The
remaining parts were considered the car body. The background subtraction technique [10]
was adopted in this approach to generate an image that enclosed the vehicle. For a moving
vehicle or known background cases, as in ITS scenarios, the frame difference method [27] or
the background subtraction method [10] is able to detect the contour of the car; therefore, the
tested car can be placed near the center of the image. However, if the tested car is static and
the background is unknown, as in CBIR systems, the car images may be captured from any
viewpoint and appear in any location. It is more difficult to determine the correct car body in
these scenarios.

The image segmentation techniques may be used to acquire the car body on a vehicle
image without any viewpoint and location constraints. Each image is segmented into
multiple regions, and the car body is composed of one or several regions. Jain et al. [13]
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provided a review of data clustering and image segmentation techniques. The boundary-
based and color-based approaches are commonly used in image segmentation. The
boundary-based approach, such as seeded region growing [20], selected abundant discon-
nected pixels as the seeds. Each seed generates a region composing of the neighboring pixels
and contains similar colors of the seed. In the color-based approaches, [1] (and its previous
paper [18]) selected a set of hills (local maximum) in the color histogram, and the pixels
were grouped into the hills based on the minimal color difference. If the bin number of the
histograms is determined optimally, all pixels that belong to one significant object may be
grouped into one region. The significant object is subsequently extracted and the color of the
object is classified.

The boundary-based approach manages several objects on an image. However, a number
of notable regions may be overlooked if the seeded region growing process encounters
obstacles, such as a group of pixels whose colors are considerably different to the
neighboring pixels. Therefore, when the approach is applied in the car body extraction
topic, a number of significant parts of the car body may be easily overlooked,
because the intensity of the car body varies considerably due to non-homogeneous
light reflection. Hence, the color-based approach is adopted in the proposed system.
Since the above approaches do not seriously consider the various effects of the non-
homogeneous light reflection on different color cars, they are usually bothered with
the effect of the non-homogeneous light.

In [23], a specular-free processing was proposed to effectively overcome the non-
homogeneous light reflection for general colored objects. Hence, the specular-free process-
ing technique was integrated in our system to deal with the non-homogeneous light
reflection for colored cars. However, the main side effect of the technique is that the
extracted car bodies and classified colors for grayscale cars are destroyed.

This study proposes a tri-state architecture system that properly processes the tested cars
in colored, bright, and dark categories. The color-based approach [1] is adopted to segment
the image first. Subsequently, we propose a SARM (Separating and Re-Merging) algorithm
to separate the car body and the background more completely. In addition, the
algorithm carefully merges the regions that belonged to the car body depending on
the color category. Because the effects of the non-homogeneous light reflection vary
considerably in the three color categories, different strategies are designed and the
critical parameters for each category are individually selected. The specular-free
processing [23] is also used before the segmentation processing for colored cars.
The proposed system is capable of managing both the difficulties of various view-
points and non-homogeneous light reflection, thereby facilitating extraction of the car
body, and enabling accurate classification of vehicle colors.

The remainder of this paper is organized as follows. Section 2 presents an overview of the
proposed system. In Section 3, three car body candidates are generated by using various
strategies, for colored, bright and dark categories. Section 4 provides the criteria for selecting
the car body from the candidates and the adopted color classification mechanism is also
introduced in this section. The experimental results and conclusions are offered in Sections 5
and 6, respectively.

2 System overview

Figure 1 shows the flowchart of the proposed car body extraction and color classification
system. The terms utilized in this figure are explained in Table 1. The input of the system is a
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car image (Img) of any color type. The system extracts the car body region (CBRcat) and
distinguishes the color category (cat ∈ {colored, bright, dark}) and the color type (ColorType
∈ {white, gray, black, red, orange, yellow, green, purple, blue, pink}) of the car. The system
comprises three major steps: car body candidate generation, car body determination, and
vehicle color classification.

By observing numerous real vehicle images, we found that the influence of light
reflection differs in colored, bright and dark vehicles. For example, under light reflection,
RGB values of colored and dark cars would alter much more than those of bright cars. In

Fig. 1 The framework of the car body extraction and color classification mechanism

Table 1 Terminology table

Terms Definition

Img an input vehicle image

BinNum{large, mid, small} predefined small, medium and large bin numbers of histogram

MergNum{large, small} predefined small and large merge times

CBR{bright, dark, colored} car body candidates for bright, dark or colored categories

CBRselect the selected car body among the candidates

cat the classified category on CBRselect

CBRcat the final extracted car body based on current category

ColorType the final classified color type of the input vehicle
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addition, because light reflection generally originates from strong bright luminance, light
reflection for colored cars can be distinguished more easily from the chromaticity of
the car body. Therefore, this study proposes tri-state architecture for extracting an
intact car body under different light situations. Three car body candidates are generated
simultaneously for the three color categories. The tested car image is optimally
processed for each color category, and finally, one of the candidates is determined
as the extracted car body.

To generate the three candidates, an image segmentation technique [1] based on color
histogram is employed first to segment the input image into multiple color coherent regions.
Generally, the number of the segmented regions is proportional to the bin number (BinNum)
of color histogram. If the bin number is too small, a number of regions in the background are
easily included in the extracted car body. However, when the bin number is too large, the car
body region is split into numerous small pieces, and some of them may be excluded from the
extracted car body. To acquire preferable segmentation, different bin numbers should be
given for different categories.

For colored cars, because the effect of light influence is variable, a specular-free
processing is adopted before segmenting the image. The specular-free process [23]
uses the chromaticity information to generate a specular-free image. Subsequently, the specular-
free image is segmented by adopting a small number of color bins (BinNumsmall) and a
segmented image is produced. For bright and dark cars, since no chromaticity information
exists in the car body, the specular-free processing is not applied to distinguish the
intensity of the car body. Large and medium bin numbers (BinNumlarge, BinNummid)
are required for bright cars and dark cars individually, to prevent the car body from
grouping with the background. However, more small pieces are generated when larger
bin numbers are adopted. Therefore, a merging process is necessary to recover the whole
car body.

To generate the car body candidates (CBRbrigh, CBRdark, and CBRcolored) more accurately,
a SARM (Separating and Re-Merging) algorithm is proposed. The algorithm considers not
only the color feature but also the spatial relationships between each pairs of segmented
regions on vehicle images. Since the influences of light reflection on bright, dark and
colored cars are various, different values are assigned to the number of merging times. For
dark cars, a large merging number (MergNumlarge) is given, since more small pieces are
produced after segmentation. For colored and bright cars, the influence of light reflection
will not make so many small pieces as in the dark car cases. Thus, a small merging number
(MergNumsmall) is sufficient.

When all car body candidates: CBRbright, CBRdark, CBRcolored, for the three cate-
gories have been prepared, a selection scheme that compares the significance and
compactness of each candidate is proposed. After processing this scheme, a car body
(CBRselect) is selected from the candidates and the color category of the selected car
body is classified by SVM technique. Based on the classified category, the candidate
(CBRcat) which has identical category to the classified result is obtained as the
extracted car body.

After the car body of the input car has been extracted, the color type (ColorType) of the
vehicle is decided only according to the pixels in the extracted car body. A hierarchically
structured SVM is adopted in this paper. In the first layer, a binary SVM is utilized to classify
the vehicle into colored or grayscale class. If the vehicle belongs to the grayscale class in the
first layer, a multi-class SVM is designed to classify the image into a black, gray, or white car
in the second layer. If the vehicle is identified to belong to the colored category in the first
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layer, another multi-class SVM is designed to classify the image into a red, orange, yellow,
green, blue, purple or pink car in the second layer.

3 Car body candidates generation

Three different strategies are designed for various color categories because the influence of
light reflection varies considerably on bright, dark, and colored cars. Section 3.1
displays the implementation of the hill-climbing algorithm to segment the tested car
image. Section 3.2 shows specular-free processing prior to image segmentation to
alleviate the reflection effect for colored cars. The SARM (Separate and Re-Merging)
algorithm which can highly improve the capability of separating the car body and the
background and recovering the entire car body is proposed in Section 3.3. The process
to generate triple car body candidates for dark, bright, and colored cars individually is
described in Section 3.4. Process justification and parameter selection are performed in
Section 3.5.

3.1 Image segmentation

To segment a vehicle image into multiple regions with coherent color attributes, abundant
image segmentation techniques have been proposed. Among these studies, a color-based
image segmentation algorithm: hill climbing [1, 18] is adopted in the proposed system, due
to its sufficient effectiveness and efficiency for application in real-time transportation
systems.

In our system, the color histogram in the Lab color model is computed, and a set
of local peaks on the histogram are searched. The adjacency pixels sharing similar
colors to the color of the peak are grouped together and considered a color coherent
segment. The number of peaks calculated via hill-climbing algorithm is under control
by the number of histogram bins; hence, influencing the number of segments
(SegNum) is possible by adjusting the bin number (BinNum). After image segmenta-
tion, a segmented image (SImg) is generated and composed of multiple regions
(Reg1, …, RegSegNum), as Eq. 1.

SImg ¼ Regij1 � i � SegNum
� � ¼ SEG Img;BinNumð Þ ð1Þ

Figure 2(a)–(c) show a white, a black, and an orange car images. The segmented
results via the hill-climbing algorithm are shown in Fig. 2(d)–(f). The pixels grouped
together in the color histogram are represented by a unique color. The color coding
scheme is based on the number of regions and the built-in MATLAB colormap “jet”
[8]. If the number of region is SegNum, SegNum colors selected from the colormap
are acquired to draw the image.

From Fig. 2(d)–(f), some problems can be found. First, some background pixels are
misclassified into the car body. Second, the car body may be disrupted into multiple
large partitions. Third, some small fragments appear on the car body due to light
reflection and these fragments have extremely different colors to the car body. To
overcome these phenomena, the specular-free processing and the proposed SARM
algorithm are addressed in Sections 3.2 and 3.3, respectively, to segment the car
body from images.
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3.2 Specular-free processing

The colored cars can be processed via a specular-free operator to alleviate the influence of
light reflection. The luminance reflected from an object (including cars) can be formulated
by a linear combination of diffuse and specular reflections:

ImgcðxÞ ¼ mdðxÞ � ΛcðxÞ þ msðxÞ � Γ c ð2Þ

where Imgc(x), md(x), ms(x), Λc(x), and Γc are the intensity value in RGB color space (i.e.
c∈{r,g,b}), the diffuse coefficient, the specular coefficient, the diffuse chromaticity, and
specular chromaticity of a pixel x on an image Img.

The diffuse reflection term md(x)×Λc(x) reveals the actual color of the object, while the
specular reflection term ms(x)×Γc originates from the undesirable light reflection. Numerous
studies [11, 17, 23] have developed methods for separating the diffuse and specular
reflections. This study adopts a mechanism [23] capable of transforming the specular image
into the specular-free image (i.e. SFc(x)0md(x)×Λc(x)) to overcome the influence of light
reflection in the car body extraction problem.

To construct a specular-free image, a luminance-normalized image with pure white
specular components is first produced. A non-linear shift function is then computed to
transform the intensity and chromaticity of each pixel to the normalized image while
retaining the color information. Figure 3(a)–(c) show the specular-free images derived from
the images in Fig. 2(a)–(c).

In Fig. 3(a) and (b), specular-free processing is unsuitable for application on
grayscale (dark or bright) cars. Since the diffuse components of all grayscale pixels
approximate to zero, the car body is severely destructed and becomes ever more
difficult for segmentation. Hence, this study only applies specular-free processing for
colored cars. In Fig. 3(c), a specular-free processing is performed on the orange car.
The segmented result of Fig. 3(c) is shown in Fig. 3(f). Since the influence of light

Fig. 2 a a white car image, b a black car image, c an orange car image. The image segmentation results by
hill-climbing of the d white, e black, and f orange car image
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reflection has been evidently alleviated, the car body of the orange car (and also for
other colored cars) can be segmented more effectively. The segmented car images are
processed via the separating and re-merging method to improve segmentation performance, as
described in Section 3.3.

3.3 Separating and re-merging

From the previous sections, the significant part of the vehicle image may include
impure background pixels (environment) or improper foreground pixels (windshield,
lights, wheels, etc.); therefore the segmented regions must be “separated”. Because the
car body may be disrupted into several large partitions or small fragments, a “merg-
ing” process must be performed next to recover the entire car body. In addition, the
large partitions and the small fragments usually have various characteristics. For
example, a small fragment incurred by the strong light reflection generally has
considerably high intensity. Whereas, a large partition caused by environmental lumi-
nance usually has the intensity value close to that of the car body. Therefore, the
merging strategies of small fragments and large partitions must be designed
differently.

Three functions for large partition separating, small fragment merging, and large
partition merging are proposed, which are referred to partitionSeparate, microMerge,
and macroMerge, respectively. These functions are integrated into the SARM (Sepa-
rating and Re-Merging) algorithm. To separate the background and merge multiple
partitions into a car body, the algorithm simultaneously considers color feature and
spatial relationships and properly controls the parameters. The procedures of these
functions are described as follows.

Function partitionSeparate This function separates the disconnected partitions of each
consistent color region in the original segmented image (SImg) produced by the hill-

Fig. 3 a–c The specular-free images of the white, black, and orange cars, d–f the segmented results of the
specular-free images via hill-climbing algorithm
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climbing algorithm. Because the algorithm segments images only considering the color
features, the pixels with a similar color are clustered regardless of whether they are
far away from each other. This function considers the spatial relationships between the
regions to generate a new segmented image (SepImg). It contains three steps as shown
in List 1.

In step 1, the regions in the input segmented image, the sizes of which are larger than
a size-threshold (thsize0200 pixels, empirically), are collected; otherwise, the small
regions are not separated. In step 2, for each collected region, the 8-connectivity is
accessed by the algorithm (8-ConnectivityCheck) in [12]. After the process of 8-
ConnectivityCheck, each region (Regi) is separated into k partitions (Par1

i,…Par k
i). In

step 3, each partition is considered as a new region, and assigned a distinct label. Finally,
the new labeled regions (SepReg1,…, SepRegm) compose of a new segmented image
(SepImg).

List 1 The procedure of partitionSeparate function

Function microMerge This function merges the small size regions on the input segmented
image (SepImg) and creates a new segmented image (MergSepImg) only containing suffi-
ciently large regions. The function contains three main steps, which are described in List 2.

In step 1, the segmented regions are classified into small-size fragments (smallFrag1,…,
smallFragsmallCount) and large-size partitions (MergSepReg1,…, MergSepReglargeCount) by
comparing their areas with thsize.

In step 2, for each pair of small-size fragment (smallFragi) and large-size partition
(MergSepReg j), check whether the large-size partition is neighboring to the small-size
fragment. If any pixel of the large-size partition is in the neighboring area (7×7 pixels) of
the boundary pixels of the small-size fragment, they are considered to be neighbored. The
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function NeighborTest will return 1, and then the step 3 is executed. Otherwise, the function
NeighborTest returns 0, and then the step 3 is skipped.

In step 3, the hue, saturation, and intensity differences (diffhue, diffsat, diffint)
between the small fragment and all its neighboring large partitions are computed.
Among the large partitions whose color differences (diffhue, diffsat, diffint) are all
smaller than the corresponding thresholds (thhue, thsat, thint), the largest partition is
selected. The small fragment is merged into the selected large partition. Step 2 and
step 3 repeat until all pairs of small-size fragments and large-size partitions have been
checked.

The thresholds differ on categories because the light reflection influence on dark cars
differs from that of the white or colored cars. The thresholds for each category are discussed
in Section 3.4. Finally, the large merged partitions compose the new segmented image
(MergSepImg). Although the fragments are merged into the large partitions, their colors
are not counted to the average color of the large partitions. The colors of the merged
fragments are adapted to be equal to the average color of the large partitions which the
fragments are merged to.

List 2 The procedure of microMerge function

Function macroMerge This function selects one or multiple regions from the new segment-
ed image (MergSepImg) to compose the car body (CBRcat). The function consists of four
steps and is described in List 3.
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List 3 The procedure of macroMerge function
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In step 1, a connection table is constructed which describes the connectivity of each pair
of the large partitions. For each boundary pixel in each large partition, check the other large
partitions whether appearing in the neighboring (7×7 pixels) area. If two large partitions
have over numneighbor pixels (empirically, numneighbor060) appearing in the neighboring
area, these two partitions are considered to be connected. The connectivity relationships
between all pairs of the partitions in MergSepImg are recorded in the connection table.

In step 2, a seed region that will merge the other regions is selected. In general, the central
part of an image is more significant than the boundary part [15]. Therefore, the image is firstly
divided into the following two parts: inner part (InnerImg), and outer part (OuterImg) by two
parameters δx, δy. The parameters are defined as a fraction (for example, 1/10) of the width and
the height of the image. The area with width ranging from [δx, wid-δx] and height ranging from
[δy, len –δy] is considered as the inner part, and the remaining area is considered as the outer part.
For each segmented region, the pixel number in the inner part (InPxNum) and the pixel number
in the outer part (OutPxNum) are both computed. If a region which its pixels in the outer part are
more than a predefined threshold (thOutPxNum) or its ratio ofOutPxNum over InPxNum is greater
than another predefined threshold (thOutInRatio), the region is considered as the background.
Subsequently, the number of the pixels in the inner part is ignored and set to zero. Then, this
region will not be selected as the seed region.

Furthermore, the average saturation of each region is computed and used to decide the seed
region. If the input category (cat) is bright or dark, the regions with high saturation (i.e. larger
than a predefined threshold thupboundsat) are not selected as the seed region and their pixel
numbers in the inner part are set to zero. If the input category is colored, the regions with low
saturation (i.e. lower than a predefined threshold thlowboundsat) are not selected as the seed region
and their pixel numbers in the inner part are set to zero. Next, the top three largest partitions in
MergSepImg and passed the above tests are selected as the seed candidates. If the category is
bright, the candidate which has the highest average intensity is selected as the seed region. If the
category is dark, the candidate which has the lowest average intensity is selected as the seed
region. If the category is colored, the candidate with the largest area is selected as the seed region.

In step 3, the partition (MergSepRegmaxPartIdx) with maximal area is selected and excluded
at the end of loop. The connectivity and average color of the selected partition is assessed
with the seed region. If the color difference between the partition and the seed is smaller than
the thresholds (thhue, thsat, thint), the connectivity between them are further assessed. The
partition is merged into the seed region if it is connected to the seed. Otherwise, it is added
into a merge list (MacroMergList). All of the partitions in the merge list are assessed again
when any new partition is merged into the seed region. If the connectivity between any
partition in the merge list and the new partition (MergSepRegmaxPartIdx) exists, the partition in
the merge list is excluded from the merge list and merged into the seed region. In step 4, the
number of iteration (iter_count) and the input parameter MergNum are assessed. If they are
equal, the function returns the merged result. Otherwise, step 3 is repeated.

The car body of the tested car can be recovered more completely through the processing
of the SARM algorithm. Figure 4 shows the segmentation results after the SARM algorithm
processing. A number of weaknesses, as shown in Figs. 2 and 3, are effectively overcome.

3.4 Tri-state car body candidate generation

Three car body candidates for dark, bright and colored cars are generated. The procedure is
formed with the image segmentation technique, the specular-free operator, and the SARM
algorithm, as described in Sections 3.1, 3.2, and 3.3, respectively. Various input parameters are
assigned to extract the intact car body in any category, and the methodology is described in List 4.
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In List 4, the input data comprised the following: (1) a vehicle image (Img), (2) the
category of current state: cat ∈ {bright, dark, colored}, (3) the bin number of color
histogram (BinNum) for each category, (4) the merging times (MergNum) of macroMerge
for each category, and (5) several predefined thresholds (thcolor) for each category. The
output of this process is an extracted car body region (CBRcat) depending on the current
category (cat). The procedure consists of five steps described as follows.

In step 1, if the category is colored, the specular-free operator (SF) is executed on the
input image (Img) and a specular-free image is produced. This operator is not performed in
the bright or dark categories. In step 2, the output image of step 1 is segmented by the
function SEG, as described in Section 3.1, and a segmented image (SImg) is produced.
Because the bin number of the histogram (BinNum) affects the capability of separating the
car body and the background, this parameter should be set carefully.

In step 3, the function partitionSeparate is executed to generate a new segmentation
image (SepImg) which clusters the pixels by not only considering the color but also the
connectivity relationship. The disconnected partitions with the consistent color region in the
original segmented image (SImg) are separated.

In step 4, the function microMerge is invoked to prevent the generation of
numerous mini regions in the new segmented image (SepImg). The mini regions in
SepImg are merged with their neighboring larger regions and a new segmented image
(MergSepImg) is generated. In this step, a very large value is set to the intensity
threshold (microTHdark

int) for dark cars to resist the substantial influences of strong
light reflection. For bright and colored cars, the medium values are assigned to the
saturation threshold and the intensity threshold (microTHbright

sat, microTHbright
int) or

(microTHcolored
sat, microTH

colored
int) so that the mini region will not be merged to the

large region whose color is obviously different to the color of the mini region, even
they are neighboring.

In step 5, the function macroMerge is called to construct the whole car body
CBRcat. A seed region is selected first, and one or more partitions in the segmented
image (MergSepImg) are selected and merged to the seed region if they are connected
and have similar colors. The thresholds for color difference on each category are settled
differently. For bright or dark cars, a large intensity threshold (empirically, macroTHbright

int0
macroTHdark

int090, if hue, saturation, and intensity values are ranged from 0 to 255) and a
small saturation threshold (empirically, macroTHbright

sat0macroTH
dark

sat030) are settled to
collects most car body partitions and not to include the background regions with obvious colors.
A considerably large value is assigned to the hue threshold (empirically, macroTHbright

hue0
macroTHdark

hue0255), because the hue value of grayscale color is meaningless. For colored
cars, the saturation and hue values are more meaningful than the intensity value. Hence, the
small values are defined for macroTHcolored

hue and macroTH
colored

sat, and a considerably large

Fig. 4 a–c The extracted car body candidates of the a white, b black, and c orange cars after the process of the
SARM algorithm
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value is set tomacroTHcolored
int (e.g. (macroTH

colored
hue,macroTH

colored
sat, macroTH

colored
int)0

(20, 30, 255)). In this step, the number of the merging times (MergNum) must also be properly
controlled for dark, bright, and colored cars individually to recover the entire car body.

List 4 Tri-state car body candidate generation process

3.5 Process justification and parameter selection

In this section, process justification and parameter selection based on the characteristics of
the color histograms and the spatial relationship of the background and cars of various colors
are performed. We justify two critical processes: (1) the strategy of selecting the seed region
and (2) the tri-state architecture. We also determine two key parameters: (1) the number of
the color bins (BinNum) and (2) the number of macro merging times (MergNum), according
to the requirements of optimization.

In Fig. 5(a)–(f), the color histogram distributions of six cars (blue lines) with black, white,
dark-gray, light-gray, red, and yellow colors are demonstrated. Because the grayscale cars
can only be distinguished by the intensity, the intensity histograms for the grayscale cars are
shown in Fig. 5(a)–(d). Because the saturation reveals useful information to distinguish the
colored cars, the grayscale cars, and the background, the saturation histograms for the
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colored cars are shown in Fig. 5(e)–(f). In these figures, the histogram of the background
(red line) is averaged over several backgrounds of complex images. Moreover, the values of
the blue and red lines in y-axes represent the ratio of the accumulated pixel number that
belongs to each intensity (or saturation) value over the total pixel number of the car body or
the background.

In Fig. 5(a), the intensity histogram of a black car has a peak region in the low intensity
interval. Numerous pixels which belong to the car body and have considerably dark colors
contribute to this peak. Therefore, a part of the car body can be included in the top three
candidates and selected as the seed region by our proposed seed selection strategy. However,
because of the effect of light reflection, the intensity distribution of the car body is widely
spread and considerably overlapped with the intensity distribution of the background. If a
small number of color bins (BinNum) are assigned, some parts of the car body may be easily
merged by the background. Therefore, a larger number of color bins (BinNum) are required.
Under this condition, the car body will be divided into many small pieces. Hence, a larger
value must be assigned to the number of macro merging times (MergNum) to collect these
small pieces and form up the whole car body.

In Fig. 5(b), the intensity histogram of a white car has a peak region in the high intensity
interval. Abundant pixels that belong to the car body with very bright color appear in the car
image. Therefore, a part of the car body can be included in the top three candidates and
selected as the seed region by our proposed seed selection strategy. The intensity distribution
of the white car is not spread as widely as that of the black car indicating that the effect of
light reflection on white cars does not split the car body into numerous small pieces.

Fig. 5 a–f The intensity a–d and saturation e–f histograms of six cars (blue lines) with black, white, dark-
gray, light-gray, red and yellow colors and the background (red lines)
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Therefore, a finite number (for example, 3~5) of the macro merging times (MergNum) is
sufficient to form up the whole car body. However, the intensity distributions of the car body
are still overlapped by the distribution of the background. A larger number of color bins
(BinNum) are required to separate the car body and the background.

The intensity histogram of a dark-gray car and a light-gray car are displayed in Fig. 5(c)
and (d). One or more peak regions are observed in these histograms. Under our seed region
selection strategy, the region with either the minimal (in dark car category) or the maximal
(in bright car category) intensity from the top-three largest regions will be selected as the
seed region. When the region with minimal intensity is selected, some large parts which
usually appear in the darker interval but belong to the background or undesirable foreground
(for example, the shadow, windshield, or bumper) may be selected as a wrong seed. While, if
the region with maximal intensity is selected as the white car cases, a correct seed region
which is selected from the car body can still be obtained.

In general, the histogram of the background is less distributed in high intensity interval
than in low intensity interval, because the effect of light reflection is not as obvious in the
background as in the car body. Since only the top-three largest regions in the inner part are
considered as the seed candidates, the small regions or the regions which extend to the outer
part will not be selected as the seed region, even they have colors with high intensity.
Moreover, light reflection usually changes the colors of some car body parts to colors with
higher intensity. One of these parts which has the high intensity would belong to the top-
three largest regions. Therefore, this region will be correctly selected as the seed region by
the proposed seed selection strategy for bright car category.

If we create the fourth state which selects the seed region whose average intensity is
mostly close to the middle of the histogram, some parts of the background such as asphalt
road or cement wall may easily be selected as a wrong seed region. Furthermore, a bad car
body will be determined. Increasing the number of the states does not improve (usually
degrade) the performance of the system. Therefore, triple states (i.e. two states for grayscale
cars and one state for colored cars) for seed selection are adequate to extract the car body and
further improve the color classification.

In some extreme cases where the intensity of a gray car is very dark, the seed selection
strategy for bright car may not be suitable. No large parts of the car body with high intensity
belong to the top-three largest regions. A wrong seed belonging to the background with
middle intensity may be selected. However, the seed selection for dark car category is
invoked simultaneously and it may select a more proper seed region. If the very dark and
undesirable regions are not included in the top-three largest regions, a part of the car body
can be correctly selected as the seed region. Even in the worse case, a considerably
dark and undesirable region, such as the shadow, windshield, or bumper, is selected as
the seed region. Because these regions are neighboring to the car body and they have
colors with similar intensity, the car body can be merged by the seed region and the
whole car body can still be recovered; though some undesirable regions are also
included. Therefore, triple states strategy for seed selection is sufficient to handle these
extreme cases.

From Fig. 5(c) and (d), because the intensity distribution of the car body in dark-gray and
light-gray cases is mostly overlapped with those of the backgrounds, a larger number of
color bins (BinNum) are required. Moreover, a finite number of the macro merging times
(MergNum) is sufficient to form up the whole car body because the essential parts of the
intensity distribution are concentrated.

In the colored car cases as shown in Fig. 5(e) and (f), the saturation distributions of the
red and the yellow cars are concentrated and distinguishable from the background after the
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car image is processed through the specular-free processing. The proposed seed selection
strategy for colored cars can extract the correct seed by comparing the saturation and
selecting the partition with the largest area. To consider the efficiency of the system,
a small number of color bins (BinNum) and a small number of macro merging times
(MergNum) are sufficient for the red and yellow cars. In fact, all types of colored
cars have concentrated saturation distributions. Therefore, the same processes and
parameters are adopted. Single colored category is sufficient to cover all colored car cases.

Next, we analyze the performance in a quantitative manner. The covering accuracy
(CovAcc), which is defined by Eq. 3, is considered as the performance index. The ground
truth of the car body (CBRgt) is manually extracted on each vehicle image. The covering
accuracy computes the intersection of the extracted car body (CBRcat) and the ground truth
car body. The parameters which extract the car body with maximal covering accuracy are
considered the optimal parameters.

CovAcc CBRcatð Þ ¼ # of px 2 CBRcat \ CBRgt þ # of px =2CBRcat \ CBRnot gt

# of px 2 Img
ð3Þ

For the parameter BinNum, 8, 12, 16, 20, and 24 are tested, and for the parameter
MergNum, 0, 4, 8, 12, 16, 20, and N (the number of segmented regions) are tested. The
tri-state algorithm is executed by using these parameters on the car images that are stored in
our collected datasets. The average covering accuracies on black, white, dark-gray, light-
gray, and colored cars are shown in Fig. 6(a)–(e), respectively. The results with optimal
parameters are marked in these figures. From Fig. 6(b)–(d), we can see that the optimal
parameters in the dark-gray cars and the light-gray cars are identical to those in the white

N N N

N N

N

a b c

d e f

Fig. 6 The CovAcc analysis with various BinNum and MergNum parameters for a black, b white, c dark-
gray, d light-gray, and e colored cars. f Optimal parameters collection table
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cars. As previous analysis, the seed region selection strategies for these three cases are also
identical. To simplify the system architecture, we integrated the white, light-gray, and dark-
gray cars into one group and termed as the bright car category. The dark car category covers
the black cars and the extreme cases of dark-gray cars with very low intensity. All types of
colored cars are integrated as the colored car category. Therefore, a tri-state (dark, bright,
colored) architecture is proposed. Three states are separately executed with their (nearly)
optimal parameters, listed in Fig. 6(f).

4 Car body determination and color classification

After three car body candidates: CBRbright, CBRdark, and CBRcolored have been generated;
one of these candidates is selected as the car body. The candidates are tested using two
criteria defined in Section 4.1. A hierarchical SVM framework introduced in Section 4.2
classifies the vehicle colors.

4.1 Car body determination

A car body should be the most significant object in a vehicle image. If a region
contains large number of pixels included in the inner part, the region is more
significant. Hence, Eq. 4 shows a significance factor that is the number of pixels in
the inner part minus the number of pixels in the outer part, and the result is divided
by the area size of the inner part. If the candidate is not the car body, it may be split
into many small pieces. Therefore, a compactness factor, defined in Eq. 5, is utilized
to test the scatter degree of each CBR candidate. The scatter degree is related to the
number of involved edge pixels of the CBR. The pixel is considered an edge pixel
when it at least has a neighboring (7×7) pixel not belonging to the CBR. The
compactness factor is the ratio of non-edge pixels to all pixels in the CBR candidate.
After normalizing the two factors within the range of [0, 1], they are multiplied
together, and the candidate with the highest score is selected to be the car body as
Eq. 6.

SignðCBRiÞ ¼ # px 2 CBRi \ InnerImg � # px 2 CBRi \ OuterImg

# px 2 CBRi \ InnerImg
; i 2 fbright; dark; coloredg

ð4Þ

CompðCBRiÞ ¼ # px =2edgeðCBRiÞ
# px 2 CBRi

; i 2 fbright; dark; coloredg ð5Þ

CBRselect ¼ argmax
CBRi

ðSignðCBRiÞ � CompðCBRiÞÞ i 2 fbright; dark; coloredg ð6Þ

Table 2 shows the three CBR candidates, and their respective significance and compact-
ness factors for the three cars shown in Fig. 2(a)–(c). For the white car, an improper dark
seed from the windshield generates CBRdark; therefore, it has low significance. Because the
specular-free operator is unsuitable for white cars, the compactness and significance of
CBRcolored are small. CBRbright has good significance and compactness and is selected as the
extracted car body. For the orange car, the dark seed in CBRdark leads to low significance and
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low compactness. Since the specular-free operator is adopted, the significance and compact-
ness of CBRcolored is evidently higher to those in CBRbright, enabling selection of CBRcolored.
For the black car, the specular-free operator destroys the image, so the compactness of
CBRcolored is small. In addition, an improper seed generates CBRbright, so that the signifi-
cance and the compactness are poor. By having a proper seed and merging process,
CBRdark displays good significance and compactness and is selected as the extracted
car body for the black car.

4.2 Vehicle color classification

Numerous vehicle color classification methods have been proposed in the past decade. HSV
color model reduces the effect of circumstance luminance compared to RGB color space [22],
and SVM shows excellent capability for identifying features [5, 24]. Although some studies
claim a good successful rate, their performances are still influenced by impure background
pixels and improper foreground pixels [25]. Since this study executed a beneficial car body
extraction algorithm as described in the previous sections, the color classification methods can
achieve high performance by only considering the selected car body.

Table 2 The generated CBRs for the white, orange, and black cars in Fig. 2(a)–(c). The significance and
compactness factors for each generated CBR are shown below the CBR. For each car, the CBR with the red
boundary is selected as the car body region
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For each pixel in CBR, the RGB color value (RCBR, GCBR, BCBR) is converted to the HSV
color value (HCBR, SCBR, VCBR) before computing the 3D HSV color histogram of the pixels
in the CBR. Figure 7 shows the hierarchical SVM classifier to identify the color type of the
extracted car body. A binary SVM classifier: SVM2

CG(SCBR) is performed on the SCBR
(Saturation) channel to distinguish the colored cars from the grayscale cars in the first layer.
In the second layer, the more precise color types are going to be classified. If the category is
colored, a multi-class SVM: SVMM

colored(HCBR) is performed on the HCBR (Hue) channel to
classify the car body into one of the colored types: red, orange, yellow, green, blue, purple,
and pink. If the category is grayscale, the other multi-class SVM: SVMM

WSB(VCBR) is
performed on the VCBR (Value) channel to classify the car body into one of the grayscale
types: white, gray, and black.

5 Experimental results

5.1 Experimental description

Two other car body extraction and color classification methods were implemented for
comparison to reveal the advantages of the proposed algorithm. Three algorithms are tested
and compared in the experiments.

1) Homogeneous SVM (homo-SVM) method: After the image is segmented into multiple
regions, the largest part in the inner part, in which all its pixels have similar colors, is
selected. This part is subsequently fed into the SVM [2] to classify its color. Through
the process for parameter selection, as in the proposed method described in Section 3.5,
the number of color bins (BinNum) used in this method is selected as 12.

2) Removal rule method [25]: After the image is segmented into multiple regions, the
dominant color of the central part is computed. The segmented regions are subsequently
excluded with average colors that differ from the dominant color, and the regions with
an excessively large or small average intensity are removed. Finally, the remaining
regions are grouped as the car body and the color is classified based only on the pixels
within the car body. Through the process for parameter selection, the number of color
bins (BinNum) used in this method is selected as 16.

3) Tri-state method: The proposed method of this study. The procedure of the tri-state
framework is performed as shown in Fig. 1. This method provides distinct strategies for

Fig. 7 Hierarchical SVM of color type classification
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selecting seeds from bright, dark, and colored cars. In addition, the seed region is not
confined to similar color to the dominant color of the central part of the image. Anti-
reflection design (SARM algorithm) is also provided to enhance the performance of car
body extraction and color classification. Through the process of parameter selection, the
number of color bins (BinNum) and the number of macro merging times (MergNum) are
selected according to the results decided in Section 3.5.

The above three methods were implemented on an AMD Athlon II X2 240, 2.0 GB
RAM, 2.81 GHz PC with a Language C environment and working on the datasets as
described in Section 5.2. The four criteria to evaluate the performances of car body
extraction and color classification are provided in Section 5.3. Experimental data was
collected according to the requirement of the evaluation criteria. Finally, in Section 5.4,
the performances of these three methods are evaluated and compared based on the
experimental results.

5.2 Collected datasets

To test the proposed tri-state method and the two compared methods on the intelligent
transportation system (ITS) and the content-based image retrieval (CBIR) system, this
study collected two vehicle image datasets for the ITS and CBIR systems. In addition,
the CBIR dataset is regrouped into two subsets depending on the complexity of the
background

The first dataset captures car images from real traffic streams obtained using cameras, to
simulate the ITS scenario. The camera is placed at a fixed position; hence the view of the
captured vehicle is usually fixed or known. Because of the static background, a background
subtraction technique [6] is adopted. The vehicle images in this dataset include only the
interesting foreground regions of the vehicles. The viewpoint constraint and the background
subtraction facilitate achieving the vehicle classification, and most studies test their methods
in this scenario. Seven common colors are present in the dataset: white, black, gray, red,
yellow, green, and blue. Each color set contains 100 car images. Table 3 displays several
sample images from this dataset.

To simulate the CBIR scenario, the second dataset collects car images from the Internet.
Since vehicle images on the Internet may be captured from any viewpoint and the back-
ground model cannot be constructed, vehicle color classification in this scenario is more
challenging. In addition, not only the seven color type cars exist as in ITS dataset, but the
cars with three rare color types: pink, purple, and orange, are also collected in this dataset.
Each color type contains about 30 car images, and the total number of images is over 310.
We further divide these images into two equivalent quantity subsets. One subset contains the
images with more complicated backgrounds, such as complicated building. Furthermore, car
bodies may not be certainly located at the central part, or not guarantee to occupy a sufficient
large partition of the image. We term this dataset as the CBIR-complex dataset. The rest
images are collected as the CBIR-simple dataset. Several sample images of these two
datasets are listed in Table 4.

In the experiments, the ten-fold cross validation is adopted to evaluate the performances.
In other words, each dataset of ITS, CBIR-simple, and CBIR-complex is divided into ten
subsamples. When each dataset is tested, the operation of using one subsample for testing
and the other nine subsamples for training is repeated for ten times. The successful rates for
color classification are averaged over all the subsamples. The datasets and the implementa-
tion of the proposed system are available at [9].
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5.3 Performance criteria

Four criteria: covering ratio (CovRat), color deviation (ColDev), classification accuracies of
color category (ACcat), and color type (ACColorType) are defined to evaluate the performances
of the aforementioned three algorithms.

Covering ratio which is defined as the percentage of pixels covering both the extracted
car body CBRcat and the ground truth car body CBRgt can be taken as the performance index.
The covering ratio comprises the covering precision (CovPrec) and the covering recall
(CovRec), as defined by Eqs. 7 and 8. The covering precision shows the percentage of the
pixels in the extracted car body belongs to the real car body. And, the covering recall shows
the percentage of the pixels in the real car body has been extracted.

CovPrec CBRcatð Þ ¼ # of px 2 CBRcat \ CBRgt

# of px 2 CBRcat
ð7Þ

CovRec CBRcatð Þ ¼ # of px 2 CBRcat \ CBRgt

# of px 2 CBRgt
ð8Þ

Table 3 Sample images from the ITS dataset
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Covering accuracy (CovAcc) used in Section 3.5 is also a proper criterion to evaluate the
covering ratio. Since the covering precision and the covering recall reveals different infor-
mation on car body extraction, they are both adopted for performance evaluation.

Color deviation (ColDev) shows the average color difference between the extracted car body
CBRcat and the ground truth car body CBRgt. Manually select k pixels spreading in the CBRcat to
attain the hue (H1

gt,…Hk
gt) and intensity (I

1
gt,…Ikgt) values of these pixels as the ground truth colors

of the car. For colored cars, the color deviation is computed by the average difference between the
hue values of the pixels (px) in theCBRcat and the ground truth hue, as shown in Eq. 10. For bright
or dark cars, color deviation (ColDev) is computed by the average difference between the intensity
values of the pixels in the CBRcat and those of the ground truth intensity, as shown in Eq. 11.

ColDev CBRcatð Þ ¼ HueDev CBRcatð Þ
IntDev CBRcatð Þ

�
; if cat 2 colored
; if cat 2 bright or dark

ð9Þ

Table 4 Sample images from the CBIR-simple and CBIR-complex datasets
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HueDev CBRcatð Þ ¼

P
px2CBRcat

min
1�i�k

jHue pxð Þ � Hi
gtj

� �

# px 2 CBRcat
ð10Þ

IntDevðCBRcatÞ ¼

P
px2CBRcat

min
1�i�k

ðjIntðpxÞ � I igtjÞ

# px 2 CBRcat
ð11Þ

The accuracies of color category (ACcat) and color type (ACColorType) demonstrate the
performance of color classification. For each image in a dataset, the color category and the
color type are decided using several support vector machines (SVM). Two binary SVM:
SVM2

CG and SVM2
BD compose a function SVMcat to determine the color category of the

extracted CBRcat, as shown in Eq. 12. The SVM: SVM2
CG distinguish colored cars from

grayscale cars by saturation histogram. The SVM: SVM2
BD separates bright and dark cars by

intensity histogram. A color type decision function SVMColorType comprises two multi-class
SVM: SVMM

colored and SVMM
WSB, to determine the color type of the extracted CBR, as

shown in Eq. 13. The SVM: SVMM
colored identifies multiple colors from the colored

category. The SVM: SVMM
WSB, further recognizes white, gray and black cars from the

grayscale vehicles.

ACcat ¼
P# of images

i¼1 SVMcatðCBRiÞ ¼¼ SVMcatðCBRgt
i
Þ

# of images in the dataset
ð12Þ

ACColorType ¼
P# of images

i¼1 SVMColorTypeðCBRiÞ ¼¼ SVMColorTypeðCBRgt
i
Þ

# of images in the dataset
ð13Þ

5.4 Performance evaluation

This section presents the evaluation of the performance metric: (1) accuracy of color
category classification, (2) covering ratio for car body, (3) color deviation, (4) accuracy of
color type classification and (5) computation load.

(1) Accuracy of Color Category Classification
Table 5 shows the confusion matrices of color category classification of the proposed

tri-state method performing on the ITS, CBIR-simple and CBIR-complex datasets. In the
ITS dataset, the car images with categories of 230 bright, 170 dark and 400 colored are

Table 5 Confusion matrices of color category classification on ITS, CBIR-simple and CBIR-complex
datasets

ITS CBIR-simple CBIR-complex

T/D Bright Dark Colored ACcat Bright Dark Colored ACcat Bright Dark Colored ACcat

Bright 228 0 2 99.1% 30 0 0 100.0% 30 0 0 100.0%

Dark 0 170 0 100.0% 0 20 0 100.0% 1 19 0 95.0%

Colored 0 0 300 100.0% 1 0 104 99.1% 3 0 102 97.1%
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tested. Only two bright cars are misclassified into the colored category, and all dark and
colored cars are correctly classified into their categories. The average accuracy of color
category classification on the ITS dataset is 99.7%. In the CBIR-simple dataset, 30 bright,
20 dark, and 105 colored car images are classified. Only 1 colored car is misclassified by
the tri-state method. The average accuracy of color category classification on the CBIR-
simple dataset is 99.3%. In the CBIR-complex dataset, 30 bright, 20 dark and 105 colored
car images are classified their categories. Only 1 dark car and 3 colored cars are
misclassified. The average accuracy of color category classification on the CBIR-
complex dataset is 97.4%.

(2) Covering Ratio for Car Body
Figures 8 and 9 show the covering precisions and the covering recalls of the homo-

SVM method, the removal rule method, and the tri-state method on the ITS, CBIR-
simple, and CBIR-complex datasets, respectively.

In Fig. 8(a), the covering precisions of the three methods are tested on the ITS
dataset. Because most of the background pixels are subtracted in this scenario, the car
body can be detected more easily so that all the three methods can provide satisfactory
covering precisions. The average covering precisions of the homo-SVM, removal rule
method, and tri-state approaches are 81%, 78% and, 87%, respectively. The tri-state
method is slightly superior to the other two methods. In Fig. 9(a), the average covering
recalls of these three methods are 56%, 71% and, 88%, respectively. The average
covering recall of the homo-SVM is inferior to that of the other approaches because
only the most significant part is selected. The tri-state method has smart merging
process with (nearly) optimal parameters for various color car category, the average
covering recall of the tri-state method is obviously superior to the other two
approaches.

In Figs. 8(b) and 9(b), the three compared methods are tested on the CBIR-simple
dataset. The average covering precisions of these three methods are 81%, 75% and,
92%, respectively. And, the average covering recalls of these three methods are 60%,
75% and, 92%, respectively. The performances of three methods in this dataset are
similar to those in the ITS dataset. The tri-state method provides significantly superior
covering recall to the other two methods.

Figure 8(c) shows the covering precisions of the three compared methods on the
CBIR-complex dataset. In this scenario, the multi-colored background is included in
the image; therefore, the regions with the same color to the vehicle are easily falsely
distinguished as the car body by the homo-SVM method. Hence, the average covering
precisions of the homo-SVM method decrease to 57%. In addition, the car body in this
scenario may not completely appear in the central part of the image. Therefore, the

Fig. 8 Covering precisions of three compared methods on a ITS, b CBIR-simple, and c CBIR-complex
datasets for each color category
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average covering precisions of the removal rule method only achieve 65%. The
average covering precisions of the tri-state method are 81%. Although the covering
precision of the tri-state method in the CBIR-complex scenario is slightly lower than
those in the ITS and CBIR-simple scenarios, its superiority to the other methods is very
obvious. In Fig. 9(c), we see that the covering recalls of the homo-SVM method and
the removal rule method are only 45% and 61%, respectively. However, the average
covering recall of the tri-state method can still achieve 88%, even in this CRIR-
complex scenario. We conclude that the tri-state method can provide significantly
superior covering precision and covering recall to the homo-SVM method and the
removal rule method on the ITS, CBIR-simple, and CBIR-complex scenarios.

(3) Color Deviation
The extracted car body may involve numerous pixels that do not belong to the actual

car body. Hence, the color histogram may be deviated by these pixels. The color
deviation, as defined in Eqs. 9–11, represent the purity of color in the extracted car
body. The hue deviations of the car bodies that are extracted from the three methods are
computed for the colored car cases on the ITS, CBIR-simple and CBIR-complex
datasets. The intensity deviations are also computed for the grayscale car cases. The
accumulated percentage of these car bodies for colored and grayscale cars are shown in
Figs. 10 and 11, respectively.

Figure 10(a) shows the hue deviation when the ITS dataset are tested for the three
compared methods. If the hue deviation smaller than 30 is tolerable, the accumulated
percentages of hue deviation by the homo-SVM method, the removal rule method, and
the tri-state method are 85%, 82%, and 96%, respectively. When the tolerance of the

Fig. 9 Covering recalls of three compared methods on a ITS, b CBIR-simple, and c CBIR-complex datasets
for each color category

Fig. 10 Accumulated percentage of hue deviation by three compared methods on colored car images in a
ITS, b CBIR-simple and c CBIR-complex datasets

412 Multimed Tools Appl (2013) 65:387–418



hue deviation increases to 60, the accumulated percentages by these three methods are
91%, 93%, and 98%,, respectively. The performance of the homo-SVM method is
superior to that of the removal rule method when more colors are required to be
classified. If only a few types of colors, such as four colors: red, blue, yellow and
green, to be required for classification, the removal rule method is superior to the
homo-SVM method. The tri-state method extracts purer colors than the homo-SVM
method and the removal rule method so that the tri-state method has better performance
on hue deviation.

Figure 10(b) shows the hue deviation when the CBIR-simple dataset are tested for
the three compared methods. If the hue deviation smaller than 30 is tolerable, the
accumulated percentages of hue deviation by the homo-SVM method, the removal rule
method, and the tri-state method are 86%, 82%, and 96%, respectively. When the
tolerance of the hue deviation increases to 60, the accumulated percentages by these
three methods are 92%, 93%, and 99%,, respectively. Because the removal rule method
may obtain an incorrect dominant color due to the various viewpoints in CBIR
scenario, the accumulated curve increases slower than the curve in the ITS scenario.
The homo-SVM extracts purer color car body than the removal rule method because
the background is more easily distinguished. The tri-state method selects more proper
seeds than the other two methods and it can work well without the limitation of
viewpoint. Hence, the improvement of the tri-state method to the other approaches is
notable in the CBIR-simple dataset.

Figure 10(c) shows the hue deviation when the images in the CBIR-complex
dataset are tested for the three compared methods. If the hue deviations smaller
than 30 is tolerable, the accumulated percentages of hue deviation by the homo-
SVM method, the removal rule method, and the tri-state method are 74%, 78%,
and 90%, respectively. When the tolerance of the hue deviation increases to 60,
the accumulated percentages of hue deviation by these three methods are 85%,
89%, and 99%, respectively. Because of the interference of the complicated
background, much more incorrect seed region are selected by the removal rule
method and the homo-SVM method. The tri-state method generates the triple car
body candidates by proper strategies with (nearly) optimal parameters for various
color car category. Therefore, the car body can be extracted more accurately and
purer colors which approximate the real colors of tested cars are obtained. In this
CRIR-complex scenario, the superiority of the tri-state method to the other two
compared methods is very obvious.

Fig. 11 Accumulated percentage of intensity deviation by three compared methods on grayscale car images
in a ITS, b CBIR-simple and c CBIR-complex datasets
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The grayscale cars are also tested on ITS, CBIR-simple, and CBIR-complex
datasets and their intensity deviations are shown in Fig. 11(a)–(c), respectively.
In Fig. 11(a), excluding the considerably small intensity deviation cases, the tri-
state method is consistently superior to the other approaches. The removal rule
method is superior to the homo-SVM method, when the tolerable intensity
deviation is larger than 15. While in Fig. 11(b), the removal rule is worse than
the other methods due to the effect of viewpoint varying. In Fig. 11(c) the
homo-SVM method and the removal rule method are competitive and both of
them obtain poor performance. The tri-state method is consistently superior to
these two compared methods. By comparing Fig. 10(c) and 11(c), the superior-
ities of the tri-state method to the two compared methods are even more
significantly in the grayscale car cases than in the colored car cases when they
work on the CBIR-complex dataset.

(4) Accuracy of Color Type Classification
After the car body region has been extracted, the color histogram of the car body is

computed and then the SVM function depicted in Fig. 7 is utilized to classify the color
type. Figure 12(a)–(c) show the accuracies of the color type classification on the
extracted CBR by the three compared methods on ITS, CBIR-simple and CBIR-
complex datasets, respectively.

In Fig. 12(a), the average accuracies of color type classification by the homo-
SVM method, the removal rule method, and the tri-state, method on the ITS
dataset are 91%, 94%, and 97%, respectively. For the colored cars in ITS
scenario, because only four kinds of colors: red, blue, green and yellow, are
needed to be classified, the hue deviation tolerance can be large. For the
grayscale images, only three kinds of colors: black, gray and white, are needed
to be classified, the intensity deviation can also be large. All methods perform
well under a large tolerance, but the tri-state method still provides approximately
6% and 3% improvements of classification accuracy compared with the homo-
SVM method and the removal rule method, respectively.

In Fig. 12(b), there are ten color types to be classified in the CBIR-simple
dataset; hence, the tolerances of hue deviation should be smaller. The accuracies
of color type classification will get lower and the removal rule method works the
worst. From Fig. 9(b), the average accuracy of color type classification by the
tri-state method is 94%. The superiorities of the proposed tri-state method to the
homo-SVM method and the removal rule method are more significant and they
are over 8% and 11%, respectively.

In Fig. 12(c), ten color type cars are classified in the CBIR-complex dataset.
Due to the interference of complicated backgrounds, all methods in this dataset
perform obviously worse than those in the other datasets. However, the average
accuracy of color type classification by the tri-state method can still achieve 91%
and the average improvements of the tri-state method to the homo-SVM method
and the removal rule method are over 18% and 10%, respectively.

(5) Computation Load
The average computation time of each component on an image with 100×100

pixels is reported in Table 6. The entire computation time in the proposed system
is approximately 0.057 s per image. This length of computation time is applica-
ble to most real-time systems for car body extraction and color classification.
The computation time of the two compared algorithms: the homo-SVM and the
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Table 6 Average computation time of each component in the proposed system and in the compared methods

Method Image
segmentation

Candidates
generation

Car body
determination

Color type
classification

Whole system

Homo-SVM 12 ms NULL 1.4 ms 1.6 ms 15 ms

Removal rule 18 ms NULL 1.4 ms 1.6 ms 21 ms

Tri-state colored: 12 ms colored: 0.28 ms 1.8 ms 1.6 ms 57.38 ms

bright: 23 ms bright: 0.28 ms

dark: 18 ms dark : 0.42 ms

Fig. 12 Accuracies of color type classification of the three compared methods on in a ITS, b CBIR-simple
and c CBIR-complex datasets
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removal rule methods are 0.015 s and 0.021 s, respectively. Although the tri-state
method requires slightly more computation time than the two compared methods,
it provides a more intact car body and higher color classification accuracy than
the two compared methods.

6 Conclusion

This study develops an algorithm with a tri-state architecture and including a SARM
algorithm to effectively extract the car body and classify the vehicle color in
challenging cases with unknown car type, unknown viewpoint, and non-
homogeneous light reflection conditions. The characteristics of color histogram and
the spatial relationship of the background and cars of various colors are considered.
The serious effects of the non-homogeneous light reflection on the car body can be
overcome by the proposed algorithm which uses different strategies designed for
three critical color categories and the critical parameters for each category are
individually selected according to the requirements of optimization. Without view-
point and car type constrains, all color type cars can be processed optimally with
high performance and intact car body extraction and accurate color classification can
be obtained simultaneously for wide applications. The computation time of the
proposed method is limited. Therefore, it is applicable for real-time systems.

According to the experimental results, our proposed algorithm can obtain satisfactory
performance for covering ratio of the car body, deviation of color estimation, and accuracies
of color category and color type classifications. The accurate color estimation and color
classification would be useful for ITS and CBIR applications. In our current research, the
extracted car body also provides useful information regarding numerous image processing
issues on vehicles, such as car model recognition and car shape feature extraction.
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