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Abstract

We consider the refinement of the holographic entanglement entropy for the holographic dual theo-
ries to the AdS solitons and AdS black holes, including the corrected ones by the Gauss–Bonnet term.
The refinement is obtained by extracting the UV-independent piece of the holographic entanglement en-
tropy, the so-called renormalized entanglement entropy which is independent of the choices of UV cutoff.
Our main results are: (i) the renormalized entanglement entropies of the AdSd+1 soliton for d = 4,5 are
neither monotonically decreasing along the RG flow nor positive-definite, especially around the decon-
finement/confinement phase transition; (ii) there is no topological entanglement entropy for AdS5 soliton
even with Gauss–Bonnet correction; (iii) for the AdS black holes, the renormalized entanglement entropy
obeys an expected volume law at IR regime, and the transition between UV and IR regimes is a smooth
crossover even with Gauss–Bonnet correction; (iv) based on AdS/MERA conjecture, we postulate that the
IR fixed-point state for the non-extremal AdS soliton is a trivial product state.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Quantum entanglement is an important theoretical probe to understand some particular feature
of the strongly coupled systems [1,2], such as the topological ordered phases which are believed
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to be related to the long-range entanglement [3,4]. On the other hand, the nature of short-range
entanglement for generic ground states yields the famous area law [5,6]. The entanglement en-
tropy is plagued by the UV cutoff, however, some of the encoded information is related to the
counting of number of degrees of freedom. The famous example is the entanglement entropy of
the (1 + 1)-dimensional conformal field theory (CFT), for which the coefficient of the logarith-
mic UV-divergent term is proportional to the central charge of the CFT. Thus, one task for the
physical interpretation of the entanglement entropy is to extract such kind of the UV-independent
piece, or so-called the renormalized entanglement entropy. If these renormalized entanglement
entropies are indeed related to the number of the effective degrees of freedom [20,21,25], then
one may expect that they should obey some sort of C- or F-theorem along the renormalization
group (RG) flow, at least for relativistic quantum field theories [26–28].

However, it is difficult to evaluate the entanglement entropy directly even in the text of
free field theory, which is usually based on replica method [7,8], not mentioning to evaluate
it directly for the strongly coupled theory. Fortunately, it was proposed in [9–11] that in the
context of AdS/CFT correspondence, the holographic entanglement entropy has a simple geo-
metric representation, which is the area of the minimal hyper-surface in the bulk with its UV
boundary coincident with the entangling surface in the dual field theory. As usual, the holo-
graphic entanglement entropy is plagued by the UV cutoff, and one should be careful to extract
the UV-independent piece which is free of the UV cutoff ambiguity. The explicit calculation of
the entanglement entropy of the d-dimensional conformal field theory (CFT) with its holographic
dual the gravity in (d +1)-dimensional anti-de Sitter (AdSd+1) space, gives the following generic
UV scaling structures [11]

S
(d)
UV ∼

⎧⎨
⎩

Rd−2

εd−2 + · · · + R
ε

+ const + ε
R

· · · , d odd,

Rd−2

εd−2 + · · · + R2

ε2 + const log R
ε

+ ε2

R2 · · · , d even,
(1)

where R is the linear size of the entangling surface, and ε is the UV cutoff. This UV structure is
consistent with the one obtained from the fact that the entanglement entropy should be an even
function of extrinsic curvature of the entangling surface [19]. Moreover, the constant parts in
the above are UV-independent pieces, which will not change under the redefinition of the UV
cutoff ε, and should be identified as the renormalized entanglement entropies.

Recently, it is proposed in [18,22] how to extract from (1) the renormalized entanglement
entropy. The basic idea is to construct some d-dependent function fd(R∂R) of differential op-
erator R∂R so that when acting on (1) by this operator one will extract the aforementioned
UV-independent pieces, which are related to the central charges of the CFTs and should be posi-
tive. The detailed form of fd is given in [22]. One then applies the same differential operator fd

to the entanglement entropy of the non-CFTs and extracts the corresponding UV-independent
pieces, which should be the C-functions and are expected to be monotonically decreasing along
the RG flow as R increases. Similar works have recently been done in [23,24].

However, the way of extracting the renormalized entanglement entropy is far from unique as
in the usual case for other renormalized quantities plagued by UV divergence. Despite that, for
the extracting quantities to be related to the number of the underlying degrees of freedom, we
should require it to be positive and obey some C-theorem at least at the very beginning of RG
flow. The aforementioned fd(R∂R) is devised to satisfy these constraints, and is succinct and
scale-adaptive.

In this paper, we would like to generalize the above extraction scheme to the one for the
holographic dual non-CFTs which are gapped or finite temperature version of CFTs, and explore
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the RG flow behavior of the resultant renormalized entanglement entropies. Our motivation for
considering such cases is partly to see if the extraction scheme is universal or not. On the other
hand, there may have topological order for gapped systems, which can be encoded in the constant
piece of the renormalized entanglement entropy, the so-called topological entanglement entropy
[3,4,19]. We will like to examine its existence by the aforementioned extraction scheme for the
holographic duals considered here.2

The holographic duals of the finite temperature version of CFTs are the black holes in AdS
spaces, the UV divergence structure of which is similar to (1), thus we can apply the same differ-
ential operator given in [22] denoted by f

(LM)
d (R∂R) to extract the renormalized entanglement

entropy. As we shall see, the renormalized entanglement entropy shows an expected smooth
crossover from the UV regime to the volume law in the IR regime [35], the latter captures the
extensiveness of the thermal entropy encoded by the black hole horizon as the entangling sur-
face.

On the other hand, the holographic duals of the gapped systems considered here are the so-
called AdS solitons, which can be obtained by double Wick rotation of the AdS black hole metric
and then by compactifying one of the transverse dimensions. The warped size of the compact
circle shrinks to zero at some finite value of AdS radial coordinate so that it caps out the rest of
the original AdS geometry. The capped geometry implies an IR fixed-point of the dual deformed
CFT at finite energy scale by the UV–IR correspondence, thus it is dual to a gapped system.
Moreover, this compact dimension is a spectator for the dual deformed CFT, i.e., the entangling
surface wraps over it, it then yields different UV scaling structure from (1). Instead, for AdSd+1
soliton it looks like

Lθ

R
S

(d)
UV (2)

where Lθ is the fixed proper size of the compact circle, and S
(d)
UV is the UV structure of AdSd+1

given in (1). We shall then adopt a differential operator to extract the UV-independent piece of the
entanglement entropy, denoted as SUV-ind, also called the “renormalized entanglement entropy”
for short. Since the two UV scaling structures are related, it is straightforward to see that the
differential operator

gd(R∂R) := 1

R
f

(LM)
d (R∂R)R (3)

will retain the salient feature of f
(LM)
d proposed in [22], namely, being succinct and scale-

adaptive, and to result in a positive C-function obeying C-theorem at the UV regime. For ex-
ample, in the UV limit, the renormalized entanglement entropy extracted from AdSd+1 soliton
is cd/R where cd is the renormalized entanglement entropy extracted from pure AdSd+1 space
(central charge of the dual CFT). After some manipulations, we can write down the RG flow of
the renormalized entanglement entropy as follows

dSUV-ind

dR
=

{ 1
(d−2)!! (R

d
dR

+ 1)(R d
dR

− 1) · · · (R d
dR

− (d − 4)) dS
dR

, d odd,

1
(d−2)!! (R

d
dR

+ 2)R d
dR

· · · (R d
dR

− (d − 4)) dS
dR

, d even,
(4)

where S is the holographic entanglement entropy for the AdSd+1 soliton, whose UV scaling
behavior is related to the one for AdSd+1 space via (2). Despite the nice feature in the UV

2 For earlier studies on the UV structure of the holographic entanglement entropy for the AdS solitons, see [13–16].
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Fig. 1. Upper: The procedure of MERA or equivalently quantum state renormalization group transformation for the
gapped system. The circle at each step denotes the surface enclosing the chosen region, and the links crossing it denote
the entangled pairs which contribute to the entanglement entropy after tracing out the wave function outside/inside the
circle. The length of the link is the distance between the entangled pair, and signifies the entanglement at that length scale.
At each step of MERA, the entanglements at the corresponding scale are removed. There are two possible end states at
the IR fixed-point: (4a) the trivial product state and (4b) the entangled state protected by symmetry or topological order.
Lower: The corresponding holographic minimal surfaces in the bulk AdS soliton. The (4a) and (4b) in MERA yield
the minimal surfaces of cylinder and disk topologies, respectively. Moreover, the entanglement entropy at each scale
of MERA is encoded in the area of the minimal surface above the yellow bar at that scale. As seen, such area for (4a)
is negligible compared to (4b). It then suggests that (4a) is a product state without entanglement but (4b) is not. More
detailed explanation will be given in Section 5. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

regime, we may not expect the C-theorem to be held along the RG flow due to the nature of
the gapped systems, since in higher dimensions the universal part of the entanglement entropy
is sensitive to the shape of the entangling surface, and for the AdS soliton case the entangling
surface acquires different topology from the pure AdS case due to the compact dimension. This
makes the evaluation of the RG flow of the renormalized entanglement entropy for the gapped
systems an interesting task. It is indeed the main goal of this paper.

Besides, if there is no topological order, one may expect the IR fixed-point of the gapped
system will be a trivial product state after performing proper local unitary transformation to
remove the short-range entanglement. If so, it implies that the rate of change of the renormal-
ized entanglement entropy along the RG flow approaches to zero in the IR limit. One may also
reveal this kind of feature geometrically in the holographic dual gravity. We will try to argue
this is indeed the case based on the proposal of AdS/MERA (multi-scale entanglement renor-
malization ansatz) [50,51] by just looking into the dominant topology of the large holographic
entangling hyper-surfaces. We briefly summarize the idea of AdS/MERA and the associated en-
tangled nature of IR fixed-point state in Fig. 1, and the more detailed explanation will be given
in Section 5.

Our paper is organized as follows. In Section 2, we will extract the UV-independent piece
of the holographic entanglement entropy for the AdSd+1 soliton with generic form of metrics.
Then, we will evaluate numerically the RG behavior of the UV-independent piece. We also dis-
cuss how to extract the topological entanglement entropy from the UV-independent piece. In
Section 3, a similar consideration goes for AdS black holes. In Section 4, we will extract the
UV-independent piece of the entanglement entropy and its RG flow for the AdS5 soliton and
black hole corrected by the Gauss–Bonnet term. We then conclude our paper in Section 5 by
discussing the entangling nature of the IR fixed-point state of the holographic dual theory based
on the proposal of AdS/MERA.
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2. Holographic renormalized entanglement entropy for AdS solitons

In this section, we will first discuss how to extract the UV-independent piece of the en-
tanglement entropy for the AdS soliton, which is free of the UV cutoff and the associated
ambiguity. Then we will discuss how to extract the topological entanglement entropy from the
UV-independent piece, which should be encoded in the constant piece in its IR limit.

We will consider the AdS soliton with following form of metrics in the Poincare coordinates,
which can be obtained from the double Wick rotation of some asymptotically AdS space:

ds2 = L2
AdS

z2

(
dz2

f (z)
+ f (z) dθ2 − dt2 + dr2 + r2 dΩd−3

)
, (5)

where the harmonic function f (z) can take the general form as follows

f (z) =
(

1 − k1
z

z0

)(
1 − k2

z

z0

)(
1 +

∑
n=1

cnz
n

)
. (6)

We assume the cn’s are chosen appropriately such that 1 + ∑
n=1 cnz

n does not contain poles
and zeros at z = z0. The parameters k1 and k2 can be tuned to yield different IR behaviors. The
metrics include the pure AdS space by choosing k1 = k2 = cn = 0.

The simplest AdS soliton is the one with k1 = 1 and k2 = −1 and with cn chosen so that
f (z) = 1 − ( z

z0
)8−d . By choosing the proper period of θ -coordinate, denoted by Lθ to remove

the conical singularity, this metric has a smooth tip at z = z0 which corresponds to the IR gap of
the dual theory. Note that the proper size

√
gθθLθ of the θ -direction depends on the RG scale z

so that it yields a d-dimensional UV theory but a (d − 1)-dimensional IR theory since the proper
size of θ shrinks to zero there. One can also turn on some deformation operators to the dual
boundary theory of pure AdS soliton, which are encoded in cn’s capturing the deviation from
the ones for f (z) = 1 − ( z

z0
)8−d . For example, one can double Wick rotate the AdS5 charged

black hole with the harmonic function f (z) = 1 − mz4 + q2z6. This is then dual to a boundary
theory with non-zero current density condensate or magnetic fluxes. More complicated case can
be obtained from other deformations of the pure AdS metric, such as the hairy scalar AdS black
hole [36,37] or even AdS R-charged black hole [40].

For simplicity, we will set LAdS = 1 and focus on d = 4 and d = 5 case, but also including
d = 3 case for completeness. Here we refer d to the space–time dimension of the UV theory.
In some literature, it refers instead to the space–time dimension of the IR theory, which is one
dimension less than the UV one.

2.1. Extracting the renormalized entanglement entropy

We choose the entangling surface to be specified as follows by the coordinates z = 0, r = R

with the spatial coordinates of the world-volume: 0 � θ � Lθ and Ωd−3. It then has the geometry
S1 × Sd−3. To evaluate the holographic entanglement entropy, one should find out the minimal
surface with its boundary enclosing the entangling surface. This is done by finding the solution
of the equation of motion derived from the action for the area of the above hyper-surface, i.e.,

A =
∫ √

detgind = Ωd−3

zm∫
dz

rd−3

zd−1

√
1 + f ṙ2 := Ωd−3

zm∫
dzL, (7)
ε ε
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Fig. 2. Disk (blue) and cylinder (red) topology of the minimal surface for AdS soliton. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

where gind is the induced metric on the hyper-surface, and ṙ = dr
dz

. The holographic entanglement

entropy S is related to the area A by S = Lθ

4GN
A.3

The equation of motion for r(z) explicitly is

2(d − 1)f 2rṙ3 + 2z(d − 3 − rṙḟ )

+ f
(
2(d − 3)zṙ2 − r

(−2(d − 1)ṙ + zḟ ṙ3 + 2zr̈
)) = 0, (8)

where ḟ = df (z)
dz

. The minimal surface will have different IR behaviors depending on the linear
size R. For generic AdS soliton metric, the small R minimal surface will have a disk topology
and zm is the turning point such that r(zm) = 0. On the other hand, the large R one will end on
the z = z0, thus zm = z0 with a cylinder topology, see Fig. 2. However, for the case with extremal
harmonic function, i.e., k1 = k2 = 1, only exists disk topology for all R.

Varying A with respect to R with z = ε fixed, and using the Hamilton–Jacobi method, we find
that [22]

dA

dR
= −H(zm)

dzm

dR
− Π(ε)

dr(ε)

dR
= −Π(ε)

dr(ε)

dR
, (9)

where

Π := δL
δṙ

= rd−3f ṙ

zd−1
√

1 + f ṙ2
, H = Πṙ −L = − rd−3

zd−1
√

1 + f ṙ2
. (10)

The first term in the first equality of (9) is dropped because of the IR boundary condition for the
minimal surface, i.e.,

r(zm) = 0 s.t. H(zm) = 0 for disk topology, (11)
dzm

dR
= dz0

dR
= 0 for cylinder topology. (12)

Note that dA
dR

only depends on the UV behavior of the solution r(z). So the resulting scaling
behavior should hold for both disk and cylinder topologies. However, since the UV boundary

3 For simplicity, hereafter we will omit the angular factor Ωd−3 and will not distinguish between A and A/Ωd−3 and
similarly for the quantities related to A such as S, Sfinite and SUV-ind.
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condition alone cannot determine the full solution, some IR information will be encoded in r(z)

and affect the renormalized entanglement entropy implicitly.
Therefore, we only need to extract the UV behavior of the solution r(z) to yield dA

dR
, from

which we can obtain the RG flow of the holographic entanglement entropy after subtracting off
the UV divergence and its associated ambiguity. We postulate the UV behavior of the solution
r(z) as

r(z) = R + b0 log
z

R
+

∑
n=1

(
an + bn log

z

R

)
zn, (13)

we then plug it into (8) to determine an’s and bn’s.

2.1.1. AdS5 soliton
For concreteness, we consider d = 4 case first. We find that

r(z) = R − z2

4R
+ a4(R)z4 + (c1 − k1 − k2)z

3

6Rz0

+
(

z4

32R3
− (c1 − k1 − k2)z

5

40R3z0

)
log

z

R
+ · · · , (14)

where · · · denotes the higher order terms which can be determined by a4, ki ’s and cn’s but are not
relevant for our purpose. An important point is that the equation of motion at the UV expansion
cannot determine a4(R). Instead one should determine it by solving the full equation of motion.
In other word, a4(R) encodes some IR information of the minimal surface and the non-trivial
RG flow of the holographic entanglement entropy. Especially, it should tell when the phase tran-
sition occurs between disk and cylinder topologies by tuning R. This phase transition is nothing
but the deconfinement/confinement phase transition [12] with disk topology corresponding to
deconfined phase at small R, and the cylinder one to the confined phase at large R [13,14].

Plugging (14) into (9), we obtain

dA

dR
= −4Ra4(R) + −k2

1 − k2
2 − k1k2 + c1(k1 + k2) − c2

1 + c2

2z2
0

− 3

32R2

+ UV-divergent terms +O(ε), (15)

where O(ε) terms vanish at ε → 0 limit and are not relevant. The UV-divergent terms are

1

2ε2
− 1

8R2
log

(
ε

R

)
(16)

which are only defined up to the redefinition of the UV cutoff ε. For example, redefining ε by
a0ε(1 + a1ε + · · ·) will then shift (16) by terms of O(R0) and O(R−2) with finite UV cutoff-
dependent coefficients. This means that the terms of O(R0) and O(R−2) in (15) are not universal
but depend on the UV cutoff. To obtain an UV cutoff-independent refinement of the holographic
entanglement entropy, i.e., the renormalized entanglement entropy, we shall then subtract these
kind of terms from (15).

In this paper, we will consider the differential subtraction scheme given in (3) and (4). To
demonstrate how (4) is arrived, we take the current example, i.e., d = 4. Using f4(R∂R) given
in [22] and (3), after some manipulations the differential operator acting on A to extract S

(4)
UV-ind

is
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Fig. 3. Left: The a4(R) for AdS5 soliton with f (z) = 1 − z4. Right: Finite part of on-shell action Sfinite for the solutions
around the critical point. (For interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)

g4(R∂R) = 1

2
(R∂R + 1)(R∂R − 1). (17)

From S
(4)
UV-ind := g4(R∂R)A and using the commutator relation [∂R,R∂R] = ∂R , we can then

obtain

dS
(4)
UV-ind

dR
= 1

2
(R∂R + 2)(R∂R)

dA

dR
. (18)

This is the d = 4 case in (4).
Usually in higher dimensions, the renormalized entanglement entropy is determined not only

by the intrinsic geometry of the entangling surface, but also its embedding in the space–time,
and in particular related to trace anomaly [30]. For d = 4 QFT there are two kinds of anomalies,
related to the Euler density (A-type) and the square of the Weyl tensor (B-type) of the entan-
gling surface, respectively. For our present case, the entangling surface is just S1 × S1, of which
the Euler number is zero, hence only the B-type anomaly would be singled out. It is indicated
that there is no universal C-theorem for B-type anomaly, although in some theories one do have
C(UV) > C(IR) [31,27]. We will then check the RG flow behavior of the renormalized entan-
glement entropy in the following.

We numerically solve a4(R) for the AdS soliton with f (z) = 1 − z4 and the result is shown
in the left plot of Fig. 3, in which the blue and red curves denote contributions from disk and
cylinder topologies, respectively. The a4(R) is not single-valued near the phase transition be-
tween disk and cylinder topology. Since we have no other criterion for picking out a preferred
value of a4(R), to remove the additional branches we have to compare the on-shell actions of
the solutions with both disk and cylinder topologies around the critical point. Solutions with the
smallest on-shell actions are chosen to be the dominant phase.

To determine the dominant topology, we introduce Sfinite denoting the finite part of the on-shell
action. For AdS5 solitons, this is obtained by subtracting the divergent part S

(4)
div ∼ R

2ε2 + 1
8R

log ε
R

numerically from the total on-shell action. The Sfinite is different from the SUV-ind defined in (18)
in the sense that the UV cutoff-dependent terms not being removed. In fact, Sfinite is related to
SUV-ind via SUV-ind = g4(R∂R)Sfinite. On the other hand, the Sfinite could be used to determine
the dominant phase, since it contains the total information of the entanglement entropy, up to a
divergent part which is the same at every value of R for different branches.



400 M. Ishihara et al. / Nuclear Physics B 872 [PM] (2013) 392–426
Fig. 4. Left: The
dS

(4)
UV-ind
dR

for AdS5 soliton with f (z) = 1 − z4. Right: The corresponding S
(4)
UV-ind.

The numerical results of the Sfinite are shown in the right plot of Fig. 3,4 which indicates
that for R < 0.703 the disk topology dominates, while for R > 0.703 the cylinder topology
dominates. Hence the additional branches of a4(R) in the left plot of Fig. 3 are removed. The
discontinuous jump indicates a quantum phase transition. In fact, we can use the renormalized
entanglement entropy SUV-ind as an order parameter to characterize this quantum phase transi-
tion.

By using (18) and the results in Fig. 3 we numerically calculate the RG flow of the renor-

malized entanglement entropy,
dS

(4)
UV-ind
dR

, which is shown in the left plot of Fig. 4. We find there
is a sharp jump around the critical point, indicating the quantum phase transition from the de-
confining phase in the UV regime to the confining phase in the IR regime. The C-theorem holds
in the UV regime, which is expected since we define our subtraction scheme in the UV limit.
However, the S

(4)
UV-ind becomes sharply increasing away from the critical point, indicating an in-

crease of the number of degrees of freedom. This seems at odds with the C-theorem, however,
since our choice of entangling surface singles out B-type anomaly [17] and there is evidence that
any combination that involves B-type anomaly dose not satisfy a-theorem in 4D [17,22,27], there
should be no conflict with C-theorem. On the other hand, the renormalized entanglement entropy
remains almost constant in the IR regime, which is consistent with expectation for the confining
phase or the IR mean field state of a gapped systems, i.e., almost all the degrees of freedom are
gapped out and the ground state is a trivial product state.

As a check of consistency, we also calculated S
(4)
UV-ind directly through g4(R∂R)Sfinite and the

result is shown in the right plot of Fig. 4. It is hard to tell whether the quantum phase transition
is of first-order or second-order because of the numerical error. The fact that S

(4)
UV-ind is neither

monotonic nor positive-definite is similar to the result of GPPZ flow obtained in [22].
We now consider the special cases of AdS solitons, the extremal AdS solitons. For such cases,

there are only solutions with disk topology. Technically, this fact could be realized from the IR
expansion. Suppose that there exist solutions with cylinder topology, which end on z = z0 at
r0 = r(z0). We could expand the solution r(z) around r = r0 as following:

r(z) = r0 + d1(z0 − z) + d2(z0 − z)2 + d3(z0 − z)3 + · · · . (19)

4 Note that the Sfinite in Fig. 3 is negative such that it cannot be directly interpreted as the entanglement entropy or the
number of degrees of freedom. Instead, SUV-ind is positive at least in the UV regime as guaranteed by the large initial
UV value 1 for small R, thus it could be thought as the number of degrees of freedom.
8R
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Fig. 5. Left: The
dS

(4)
UV-ind
dR

for extremal charged AdS5 soliton with f (z) = 1 − 3z4 + 2z6. Right: The corresponding

S
(4)
UV-ind.

For non-extremal AdS soliton, we could work out the coefficients d1, d2, d3, . . . order by order
from the expansion of the equation of motion; however for extremal AdS soliton, one find that
the coefficients d1, d2, d3, . . . turn out to be infinity, which indicates that z′(r0) tends to zero.
This means that one can never reach the boundary from z = z0, that is, solutions with cylinder
topology do not exist.

On the other hand, the difference from the non-extremal case is that the proper size of the
compact circle becomes infinite for the extremal one, this means that all the associated Kaluza–
Klein (KK) modes become massless. That is, the dual field theory is a gapless system, and the IR
behavior of the disk topology solution reflects this fact. More discussions on this will be given in
Section 5.

By adopting the same differential subtraction scheme as for the non-extremal case, our nu-

merical results for
dS

(4)
UV-ind
dR

as well as S
(4)
UV-ind for extremal charged AdS5 soliton with f (z) =

1 − 3z4 + 2z6 are shown in Fig. 5. Using again the S
(4)
UV-ind as the order parameter, we conclude

that there is no phase transition. However, the monotonicity and positive-definiteness are still
violated for R greater than some specific value, and the IR behavior is also similar to the one for
the non-extremal case.

2.1.2. AdS6 soliton
Similarly, we now consider the d = 5 AdS soliton. The UV expansion of the solution r(z)

takes the following form

r(z) = R − z2

3R
+ 2(c1 − k1 − k2)z

3

9Rz0
+ a4(R)z4 + a5(R)z5 +O

(
z6) (20)

where

a4(R) = −k2
1 − k2

2 − k1k2 + c1(k1 + k2) − c2
1 + c2

6Rz2
0

− 5

54R3
(21)

but a5(R) cannot be determined from the UV expansion and should be solved from the full
equation of motion. From the above expansion, we obtain

dA

dR
= −5R2a5(R) + 2(c1 − k1 − k2)

3Rz0
+ B

2R

3z3
0

+ UV-divergent terms +O(ε), (22)

where the coefficient B depends only on the detailed form of the metric, i.e.,
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Fig. 6. The a5(R) on different scales for AdS6 soliton with f (z) = 1 − z3: Fractal vortex structure around the critical
point. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

B = c3
1 − 2c1c2 + c3 − c2

1k1 + c2k1 + c1k
2
1 − k3

1 − c2
1k2 + c2k2 + c1k1k2 − k2

1k2

+ c1k
2
2 − k1k

2
2 − k3

2 . (23)

The UV-divergent terms take the form

2R

3ε3
. (24)

Note that there is no log-divergent term as expected for d = odd case. It seems a bit miraculous
that there is also no O(1/ε) term in (22), however there is such a term if we integrate (22) over R.
To see this, we substitute (20) into the action (7), expand the integrand in series of z and then
integrate, we will find an additional divergent term − 4

9ε
. Since it is independent of R, we could

not find it in (22). The R scaling behaviors of the UV-dependent terms are also different from the
CFT case.

We numerically solve a5(R) for the AdS6 soliton with f (z) = 1 − z3 and the result is shown
in Fig. 6. Again the blue and red curves denote contributions from disk and cylinder topologies,
respectively. It is interesting that near the critical point Rc ∼ 0.9415, there seems to be a fractal
vortex structure, as is shown on different scales in Fig. 6. This indicates that a5(R) is multi-valued
near the critical point.

To determine the dominant phase, we numerically calculated the finite part of the on-shell

action with the divergence Sdiv ∼ R2

3ε3 − 4
9ε

subtracted, and the result is shown in the right plot of
Fig. 7. The situation is similar to the right plot of Fig. 3 of the AdS5 soliton case, though it is a bit
hard to distinguish the red and blue curves since they nearly coincide with each other. From this
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Fig. 7. Left: The a5(R) in detail for AdS6 soliton with f (z) = 1 − z3, with additional branches removed. Right: Finite
part of on-shell action for solutions around the critical point. (For interpretation of the references to color in this figure,
the reader is referred to the web version of this article.)

Fig. 8. Left: The
dS

(5)
UV-ind
dR

for AdS6 soliton with f (z) = 1 − z3. Right: The corresponding S
(5)
UV-ind.

plot we read the phase transition point R = 0.9355. For R < 0.9355 the disk topology is domi-
nant, while for R > 0.9355 the cylinder topology is dominant. The a5(R) on the corresponding
scale with additional branches removed is shown in the left plot of Fig. 7. Note that the fractal
vortex structure around Rc ∼ 0.9415 is totally removed, hence it will not bring additional phase
transitions.

The RG flow
dS

(5)
UV-ind
dR

is calculated straightforwardly by using (4) for d = 5 and is shown in
the left plot of Fig. 8. The qualitative behavior is similar to the one for AdS5 soliton. It also
indicates the occurrence of the deconfinement/confinement phase transition and an increase of
the number of degrees of freedom in the confining phase. The S

(5)
UV-ind is also calculated through

g5(R∂R)Sfinite and is shown in the right plot of Fig. 8, which is again neither monotonic nor
positive-definite, indicating a first-order phase transition.

2.1.3. AdS4 soliton
For completeness of the discussion on AdS solitons, we also give the results of the simplest

d = 3 AdS soliton. The UV expansion of the solution r(z) is simply

r(z) = R + a3(R)z3 +O
(
z4), (25)

where a3(R) encodes the IR information and should be solved from the full equation of motion.
From the above expansion we obtain
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Fig. 9. Left: The a3(R) for AdS4 soliton with f (z) = 1 − z5. Right: Finite part of on-shell action.

Fig. 10. Left: The
dS

(3)
UV-ind
dR

for AdS4 soliton with f (z) = 1 − z5. Right: The corresponding S
(3)
UV-ind.

dA

dR
= −3a3(R) +O(ε). (26)

There is no UV-dependent divergent term in (26), but substituting (25) into the action (7) yields
the divergent term 1/ε. It is independent of R, hence does not appear in (26).

For d = 3 AdS soliton, the cylinder solution is trivially r(z) = R, as could be seen from
the equation of motion (8). As we will see, it is the dominated topology for large R. From
the action (7) we obtain the on-shell action S = 1

ε
− 1

z0
. For this case we have a3(R) = 0 and

Sfinite = − 1
z0

.
We now concentrate on the disk solution which dominates over cylinder one at small R. The

a3(R) and Sfinite for AdS4 soliton with f (z) = 1 − z5 is calculated numerically and plotted in
Fig. 9, respectively. There is a phase transition at R = 0.3686. For R < 0.3686 the disk topology
dominates, while for R > 0.3686 the cylinder topology is dominant.

Based on the above result, we now apply the differential scheme (4) with d = 3 to obtain
dS

(3)
UV-ind
dR

for AdS4 soliton with f (z) = 1 − z5, and employ g3(R∂R)Sfinite to get the correspond-

ing S
(3)
UV-ind. Both of the results are shown in Fig. 10. There is no violation of C-theorem even

there is a first-order phase transition at R = 0.3686. The renormalized entanglement entropy be-
comes constant after the quantum critical point. This is consistent with the expectation for the
entanglement entropy of a (1 + 1)-dimensional gapped system.
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2.2. Extracting the topological entanglement entropy

According to the study of the strongly coupled condensed matter systems, the entanglement
entropy contains both the short-range and the long-range ones [45–49]. The short-range entan-
glement is responsible for the area-law nature of the entanglement entropy which measures the
number of the entangled pairs with one particle inside the chosen region and the other one out-
side. On the other hand, the long-range entanglement is a constant topological invariant, which
is independent of both the UV and IR scales, and should be associated with existence of the
topological order. Especially, there are some exactly solvable model with topological order in
(2 + 1)-dimensions, and their entanglement entropies have the structure [3,4]

S = αR − γ (27)

where α and γ are some constants. A non-zero γ encodes the quantum dimensions of the anyonic
excitations in the topological ordered phase, and is called the topological entanglement entropy.
See [19] for the discussion of the topological entanglement entropy for the higher dimensional
theory, which again should be a constant piece in the entanglement entropy.

Since the topological entanglement entropy should be independent of the UV and IR scales,
it should be encoded in the UV-independent piece. Note that the differential operator for AdS
solitons (3) indicates

SUV-ind =
{ 1

(d−2)!!R
d

dR
(R d

dR
− 2) · · · (R d

dR
− (d − 3))S, d odd,

1
(d−2)!! (R

d
dR

+ 1)(R d
dR

− 1) · · · (R d
dR

− (d − 3))S, d even,
(28)

hence the topological term would survive the differential operator in even dimensions, while in
odd dimensions we could never observe such term in SUV-ind. Let’s focus on AdS solitons in
even dimension below.

To obtain S
(d)
UV-ind by integrating

dS
(d)
UV-ind
dR

over R, one will get an integration constant. How-
ever, this constant is not relevant for topological order since it can be fixed by the UV part of
the UV-independent piece, namely, S

(d)
UV-ind(R = 0). To look for the topological entanglement

entropy encoding long-range entanglement, one instead should look for the IR behavior of the
UV-independent piece. More precisely, one should extract the constant piece in the large R ex-
pansion of S

(d)
UV-ind. This piece will be independent of both UV and IR scales and should encode

topological order.
To avoid the numerical uncertainty, we here introduce an analytic way to extract the topo-

logical piece of entanglement entropy. The method is to consider the large R expansion of both
action (7) and the associated equations of motion, and then order by order solve ri ’s which are
the coefficient functions in

r(z) = r0(z)R + r1(z) + r2(z)

R
+O

(
1

R2

)
(29)

where ri ’s satisfy the UV boundary condition r0(0) = 1 and ri �=0(0) = 0 so that r(0) = R. It is
easy to see that r0(z) cannot be non-trivial from the leading order of equations of motion. Thus
we set r0(z) = 1.

To be specific, we consider d = 4 case. The action (7) in the large R expansion is

A =
zm∫

dz

(√
1 + f ṙ2

1

z3
R +

r1

√
1 + f ṙ2

1

z3
+ f ṙ1ṙ2

z3
√

1 + f ṙ2
+O

(
1

R

))
, (30)
ε 1
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and the equation of motion in the large R expansion yields

0 = R∂z

(
f ṙ1

z3
√

1 + f ṙ2
1

)
+O

(
1

R0

)
. (31)

Solving (31) with the boundary condition r1(0) = 0 yields r1(z) = 0 by using the fact that
f (0) = 1 and ṙ1(0) is finite such that ṙ1(0) = 0. This implies that the R-independent term in (30)
is zero irrespective of the topology of the holographic entangling hyper-surface because we only
use the UV geometry to yield r1(z) = 0. From (28), we conclude that the topological entangle-
ment entropy is zero for both extremal and non-extremal AdS5 solitons.

3. Considerations for the AdS4 black holes

We now consider another setting by turning on the temperature and chemical potential for
the dual CFT. This is just to consider the AdS black hole with the following metric [38] (to be
specific we consider the AdS4 planar black hole)

ds2 = L2
AdS

z2

(
−f (z) dt2 + dz2

f (z)
+ dr2 + r2 dφ2

)
(32)

with

f (z) = 1 −
(

1 + z2+μ2

2γ 2

)(
z

z+

)3

+ z2+μ2

2γ 2

(
z

z+

)4

, (33)

where μ is the chemical potential for the dual CFT and the parameter γ 2 = e2L2
AdS

κ2 is the di-
mensionless ratio of the Newtonian and Maxwell couplings. Moreover, the temperature T of the
black hole or the dual CFT is related to the position of horizon z+ and chemical potential μ by

T = 1

4πz+

(
3 − z2+μ2

2γ 2

)
. (34)

The extremal black hole has T = 0 by choosing
z2+μ2

2γ 2 = 3.
The thermal entropy density of the dual CFT is given by the Bekenstein–Hawking area law,

sthermal = 2π

κ2

Ah

V2
= 2πL2

AdS

κ2z2+
(35)

where V2 is the field theory volume and Ah is the event horizon area.
Now consider the holographic entanglement entropy in background (32). The entangling sur-

face is defined by z = 0, r = R and 0 � φ � 2π . The area of the minimal surface is determined
by the action

A =
∫ √

detgind =
zm∫
ε

dz
r

z2

√
1

f
+ ṙ2 :=

zm∫
ε

dzL. (36)

From (36) we obtain

Π = ∂L
∂ṙ

= rṙ

z2
√

1
f

+ ṙ2
, H = Πṙ −L = − r

z2
√

f (1 + f ṙ2)
, (37)

which appear in (9).
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Fig. 11. Left: The a3(R) for non-extreme AdS4 black hole with f (z) = 1 − 2z3 + z4. Right: Finite part of the on-shell
actions.

For the AdS black holes, one may also expect that there are minimal surfaces of either disk
or cylinder topologies. Since the horizon is just the coordinate singularity, one might expect that
the minimal surfaces of “cylinder topology” would extend into the region inside the horizon and
have turning points there, that is, they are in fact of disk topology with the tip shadowed behind
the horizon. However, it was pointed out in [39] that the minimal surfaces could not extend all
the way to the horizon, hence they cannot penetrate the horizon. We therefore just focus on the
solutions with disk topology.

Solving the equation of motion for the minimal surface in the UV expansion, we have

r(z) = R − z2

2R
+ a3(R)z3 +O

(
z4) (38)

where the higher order terms are not relevant for UV-independent piece of the entanglement
entropy, and again a3(R) should be obtained by solving the full range of the equation of motion,
and depend on the IR behavior of the minimal surface. Using (9), we have

dA

dR
= 1

ε
− 3Ra3(R) +O

(
ε2). (39)

To extract the RG flow behavior of the renormalized entanglement entropy, we can apply the
differential subtraction scheme given in [22]. By using the commutator relation [∂R,R∂R] = ∂R ,
we obtain

dS
(3)BH
UV-ind

dR
= R∂R

dA

dR
= R∂R

(−3Ra3(R)
)
. (40)

We first consider the case of non-extremal black hole. We solve a3(R) numerically and the
result is shown in the left plot of Fig. 11. The on-shell actions with divergent part S

(3)BH
div ∼ R/ε

subtracted are shown in the right plot of Fig. 11. Since there are only solutions with disk topology,
there would be no phase transition along the RG flow.

The RG flow of the renormalized entanglement entropy is then followed from (40) and the

numerical result is shown in Fig. 12. We see that
dS

(3)BH
UV-ind
dR

is always positive, implying that more
and more states are thermally excited as we go to higher temperature regime, or equivalently
lower energy scale. For large R it is consistent with the linear running of the thermal entropy,
i.e.,

dS
(3)
thermal = 2πRsthermal. (41)

dR
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Fig. 12. The
dS

(3)BH
UV-ind
dR

for non-extreme AdS4 black hole with f (z) = 1 − 2z3 + z4.

Fig. 13. Left: The a3(R) for extreme AdS4 black hole with f (z) = 1 − 4z3 + 3z4. Right: The corresponding
dS

(3)BH
UV-ind
dR

.

Hence there is no phase transition but a smooth crossover interpolating between the renormalized
entanglement entropy for the ground state in the IR regime and the thermal entropy in the UV
regime. This fact supports the conjecture proposed in [35].5

We also consider the case of extremal black hole, its a3(R) and the RG flow of S
(3)
UV-ind are

solved numerically and the results are plotted in Fig. 13. Again we see the crossover from the IR
regime to the UV one.

4. Considerations for the AdS5 solitons and black holes with Gauss–Bonnet correction

In this section we will consider the effect of the Gauss–Bonnet term to the refinement of the
holographic entanglement entropy for both AdS5 soliton and black hole. The bulk theory we
consider is given by the action

I = − 1

16πGN

∫
d5x

√
g

(
− 12

L2
+R+ λGBL2

2
LGB

)
(42)

5 Their conjecture refers to the finite part of the entanglement entropy, the Sfinite. Instead, we are considering the UV-
independent piece, the SUV-ind. In this sense, our results yield a refined version of their conjecture. One main difference
is that the area-law piece of Sfinite in the UV regime is UV-ambiguous and cannot be included in SUV-ind. In contrast,
the volume-law piece in the IR regime is UV-unambiguous.
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where λGB is the coupling constant for the Gauss–Bonnet term with the Lagrangian

LGB =RμνρσRμνρσ − 4RμνRμν +R2. (43)

In the dual theory, the higher curvature terms correspond to some perturbation in the sub-leading
order of inverse ’t Hooft coupling.

The Gauss–Bonnet coupling λGB should be in the interval [0,1/4] for the metric to be well-
defined outside the horizon of the AdS black hole or the IR end-point of the AdS soliton.
Moreover, for the black hole in (4+1)-dimensional AdS–Einstein–Gauss–Bonnet gravity theory,
it was shown in [32,33] that the dual CFT will violate microcausality and render inconsistency
when λGB > 9

100 . We will then explore this effect to the refinement of entanglement entropy by

studying dSUV-ind
dR

for various values of 0 � λGB � 1/4. At the same time, we will check whether
the Gauss–Bonnet term would affect the crossover from the UV regime to the volume law in the
IR regime. On the other hand, for the boundary dual theory of the AdS soliton we will simply
pick a specific value of 0 � λGB � 1/4 in the following discussion.

We will now first consider the RG flow of the renormalized entanglement entropy for the
Gauss–Bonnet corrected AdS soliton, and then for the corrected black hole.

4.1. Renormalized entanglement entropy for the Gauss–Bonnet corrected soliton

The AdS soliton solution in (4 + 1)-dimensional AdS–Einstein–Gauss–Bonnet gravity theory
is given by the metric6 [34]

ds2 = L2
(

dz2

z2f (z)
+ L2

L2
AdS

dxμ dxμ

z2
+ f (z)

dθ2

z2

)
, μ = 0,1,2 (44)

where

f (z) = 1

2λGB

(
1 −

√
1 − 4λGB

{
1 −

(
z

z0

)4})
, (45)

f0 = lim
z→0

f (z) = 2

1 + √
1 − 4λGB

, (46)

LAdS = L√
f0

, and θ ∼ θ + Lθ, Lθ = πz0. (47)

For λGB → 0, the metric (44) reduce to the AdS soliton part of (5). Note that L is different from
LAdS, and in the numerical study of this section we will set L = 1 instead of LAdS = 1. From
(45) and (46) it is easy to see that λGB should be in the interval [0,1/4] so that the metric (44)
has the well-defined Euclidean section for 0 < z < z0.

Consider a disk on the boundary with radius R, the induced metric of the minimal surface is
given by

ds2
ind = L2

(
1

z2

(
L2

L2
AdS

ṙ(z)2 + 1

f (z)

)
dz2 + L2

L2
AdS

r(z)2

z2
dφ2 + f (z)

z2
dθ2

)
, (48)

where r and φ are the radial and angular coordinates of the disk respectively. The minimal surface
is determined by specifying r(z).

6 In [16], the UV divergence structure of the holographic entanglement entropy of this metric for the stripe region has
been studied. They also studied the entropic phase transition by varying λGB.
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The holographic entanglement entropy in the Gauss–Bonnet gravity is given by minimizing
the functional [29,16]

A =
∫
γA

dx3
√

h
(
1 + λGBL2R

) + 2λGBL2
∫

∂γA

dx2
√

hbK, (49)

where R is the intrinsic curvature of the induced metric h; hb is the induced metric on ∂γA and
K is the trace of its extrinsic curvature. The second term is the so-called Gibbons–Hawking term.
From (48) we obtain

√
h
(
1 + λGBL2R

)
= L4r

L2
AdSz3

√
L2

AdS + L2f ṙ2 + λGB
L4(2f r − zḟ r − 2zf ṙ + z2ḟ ṙ)

z3
√

L2
AdS + L2f ṙ2

+ q̇, (50)

where

q(z) = λGB
L4(4f r − zḟ r − 2zf ṙ)

z2
√

L2
AdS + L2f ṙ2

. (51)

Integrating the term q̇(z) on γA gives rise to a surface term which cancels the Gibbons–Hawking
term in (49). Therefore, the functional we need to minimize is

A =
zm∫
ε

dz

(
L4r

L2
AdSz3

√
L2

AdS + L2f ṙ2 + λGB
L4(2f r − zḟ r − 2zf ṙ + z2ḟ ṙ)

z3
√

L2
AdS + L2f ṙ2

)

:=
∫

dzL. (52)

The equation of motion for (52) turns out to be

0 = L6f 2r(−6f + zḟ )ṙ5 + 2L6
AdSz

(−1 + 2λGBf − 2λGBzḟ + λGBz2f̈
)

+ L4L2
AdSf ṙ2[zḟ r(3 − λGBzḟ )ṙ + 4λGBf 2(−2zṙ2 + r(3ṙ + 2zr̈)

)
+ 2f

(
z(−1 + 2λGBzḟ )ṙ2 + r

(
ṙ
(−6 − 3λGBzḟ + λGBz2f̈

)
+ z(1 − 2λGBzḟ )r̈

))] + L2L4
AdS

[
zḟ ṙ

(
2r(1 + λGBzḟ ) − 3λGBz2ḟ ṙ

)
+ 4λGBf 2(r(z)(3ṙ − zr̈) + zṙ(−ṙ + 3zr̈)

) + 2f
(
zṙ

(
ṙ
(−2 + 3λGBzḟ + λGBz2f̈

)
− 3λGBz2ḟ

)
r̈
) + r

(
ṙ
(−3 − 6λGBzḟ + λGBz2f̈

) + z(1 + λGBzḟ )r̈
)]

. (53)

4.1.1. Solutions of the minimal surfaces
First, we consider the solution of (53) in the small R regime. In this regime, the solution has

a disk topology as the blue line in Fig. 14. Near r = 0 it can be expanded as

z(r) = zm + z2r
2 +O

(
r4), (54)

where zm is defined as

zm = z(r = 0). (55)

By plugging (54) in (53), we find that the coefficient z2 satisfies the following quadratic equation,

az2 + bz2 + c = 0, (56)
2
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Fig. 14. Disk (blue), cusp (green) and cylinder (red) solutions of the minimal surface for AdS soliton with higher deriva-
tive correction with λGB = 0.05, z0 = 1. Since there are infinite number of cusp solutions with the same R, we plot a
typical one. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 15. Relation between b2 − 4ac and zm with λGB = 0.05 and z0 = 1.

where

a = −12z4
0z

2
mλ2

GB(−1 − γ + 2λGB)
[
2z4

mλGB + z4
0

(
1 − ξ + 2λGB(ξ − 2)

)]
, (57)

b = −2z4
0zm(1 + γ )λGB

[
2z4

mλGB(−8 + 8λGB + 3ξ)

+ z4
0

(−5 + 24λGB − 16λ2
GB + 5ξ − 14λGBξ

)]
, (58)

c = 8z8
mλ2

GB + z4
0z

4
mλGB(13 − 20λGB − 7ξ) + 3z8

0

(
1 + 4λ2

GB − ξ + λGB(−5 + 3ξ)
)
, (59)

and for simplicity, we introduce γ and ξ as

γ ≡ √
1 − 4λGB, (60)

ξ ≡
√

1 − 4λGB

(
1 −

(
zm

z0

)4)
. (61)

The discriminant D(zm) ≡ b2 − 4ac of (56) as a function of zm is shown in Fig. 15. There is
zm = zd which satisfies D(zd) = 0. Therefore, the solutions of disk topology exist only for

0 � zm � zd, i.e., 0 � R � Rd ≡ R(zd). (62)
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In the following we will take λGB = 0.05 and z0 = 1, and in this case Rd = 0.528.
Next, we consider the solution of (53) in the large R regime. In this regime, the solution has a

cylinder topology as the red line in Fig. 14. Expand the solution near z = z0 as

r(z) = r0 + r1(z − z0) +O
(
(z − z0)

2), (63)

where

r0 ≡ r(z0), (64)

and

r1 =
−r0γ

2 + γ

√
r2

0 γ 2 − 3z2
0(1 + γ )λGB(1 + 8λGB)

12z0λGB
. (65)

For

r0 =
√

3z0(1 + γ )λGB(1 + 8λGB)

γ
≡ rcyl, (66)

the expression inside the square root in (65) becomes zero. Thus, the solutions of cylinder topol-
ogy exist only for

rcyl � r0, i.e., Rcyl ≡ R(rcyl) � R. (67)

In the case of λGB = 0.05 and z0 = 1, Rcyl = 0.963.
For Rd < R < Rcyl, solutions of (53) have a cusp shape as shown in Fig. 14. For this solution,

z′(r = 0) �= 0. However, the cusp solutions for a fixed R are not unique because we can adjust
both z(r = 0) and z′(r = 0) to have the same R at UV.7 The absence of the smooth solution and
the non-uniqueness of the cusp solutions suggests that there is no saddle point for prescription of
[10] in evaluating the holographic entanglement entropy in this regime of R. This may suggest
the need of some quantum version of prescription of [10] to deal with such a case. Since we do
not have such a prescription yet, in the following we will just skip discussion of the RG behavior
for this regime.

4.1.2. Renormalized entanglement entropy and its RG flow
Recall (9) for the RG flow of the on-shell action,

dA

dR
= −H(zm)

dzm

dR
− Π(ε)

dr(ε)

dR
, (68)

where

Π = δL
δṙ

= L4(z2λGBL4
AdSḟ + f L2

AdS(−2zλGBL2
AdS + L2r(1 + zλGBḟ )ṙ) + L2f 2rṙ(−2λGBL2

AdS + L2ṙ2))

z3L2
AdS(L2

AdS + L2f ṙ2)3/2

(69)

and

7 In fact for R < Rd and R > Rcyl there are also cusp solutions, which were ignored because of their non-uniqueness.
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Fig. 16. The a4(R) of disk (blue) topology solutions for 0 � R � Rd = 0.528 and cylinder (red) topology solutions for
Rcyl = 0.968 � R with λGB = 0.05, z0 = 1. For Rd < R < Rcyl, the solutions have cusp shape but are not unique. It
suggests the absence of saddle point. We thus leave it open in the plot. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

H = Πṙ −L

= −L4(L2zλGBf (−2f + zḟ )ṙ3 + r(L2
AdS(1 + 2λGBf − zλGBḟ ) + L2f (1 + 4λGBf − 2zλGBḟ )ṙ2))

z3(L2
AdS + L2f ṙ2)3/2

.

(70)

After simplification, the first term in (68) becomes

H(zm)
dzm

dR
= L3λGB(2f (zm) − zmḟ (zm))

z2
m

√
f (zm)

dzm

dR
, for disk topology, (71)

H(zm)
dzm

dR
= 0, for cylinder topology because

dzm

dR
= dz0

dR
= 0. (72)

Note that it is not zero for the disk topology, unlike the case with λGB = 0.
The UV behavior of the solution r(z) is

r(z) = R + a2z
2 + a4z

4 + b4z
4 log

z

R
+ · · · , (73)

where

a2 = −1 + γ − 2λGB

8R
, b4 = (1 + γ )λ3

GB

32R3(1 − γ − (3 − γ )λGB)
. (74)

Again the coefficient a4 cannot be determined from the UV expansion, and should be solved
from the full equation of motion.

Plugging (73) into (68), we obtain

dA

dR
= −H(zm)

dzm

dR
+ KRa4(R) + UV-dependent terms +O(ε), (75)

where

K = −L3 8
√

2(1 − 4λGB)√
1 + γ (1 + γ − 2(2 + γ )λGB)

. (76)

and O(ε) terms vanish at ε → 0 limit and are not relevant. The UV-dependent terms are

c1
2

+ c2
2

log

(
ε

)
+ 3c2

2
(77)
ε R R 4R
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Fig. 17. H(zm)
dzm
dR

with λGB = 0.05, z0 = 1 for disk topology solutions.

Fig. 18. The dSUV-ind
dR

for the disk (blue) topology for 0 � R � Rd = 0.528 and the cylinder (red) topology for Rcyl =
0.968 � R with λGB = 0.05, z0 = 1. For Rd < R < Rcyl, solutions have cusp shape. In this region, there is no way to

find the unique dSUV-ind
dR

with fixed R. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

where

c1 = L3 1 + γ + 4λGB√
2(1 + γ )3/2

, c2 = −L3
√

1 + γ (1 + γ − 4λGB)

16
√

2
. (78)

We solve a4(R) and H(zm)dzm

dR
(for disk topology only) numerically, and the results are given

in Fig. 16 and Fig. 17, respectively. On the other hand, for the cylinder topology, H(zm)dzm

dR
= 0.

Using the above numerical data, we can then apply the same differential subtraction scheme
given in (18) to extract from (75) the RG flow of the renormalized entanglement entropy in this
case, and the numerical result is shown in Fig. 18.

Compared with Fig. 4 for the λGB = 0 case, we find that the Gauss–Bonnet interaction brings
ambiguity to the transition between UV and IR regimes, since there appears a blank window
between these two phases in which only non-unique cusp solutions exist. Despite this, the C-
theorem still holds in the UV regime, and the feature that the renormalized entanglement entropy
tends to constant in the IR regime is still retained.
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4.1.3. Extracting the topological entanglement entropy
In order to extract the topological entanglement entropy, we perform the large R expansion

for the action (52) and equation of motion (53) as following:

A =
zm∫
ε

dz

{
L4(L2

AdS(1 + 2λGBf − λGBzḟ ) + L2f ṙ2
1 )

L2
AdSz3

√
L2

AdS + L2f ṙ2
1

R

+ L4

L2
AdSz3(L2

AdS + L2f ṙ2
1 )3/2

[
r1

(
L2

AdS + L2f ṙ2
1

)(
L2

AdS(1 + 2λGBf − λGBzḟ )

+ L2f ṙ2
1

) + ṙ1
(
L4

AdSλGBz2ḟ + L2f 2(L2ṙ2
1 ṙ2 − 2L2

AdSλGB
(
zṙ2

1 + ṙ2
))

+ L2
AdSf

(−2L2
AdSλGBz + L2(ṙ2 + λGBzḟ

(
zṙ2

1 + ṙ2
))))] +O

(
1

R

)}
, (79)

0 = {
L6f 2ṙ5

1 (−6f + zḟ ) + L4L2
AdSf ṙ2

1

(
12λGBf 2ṙ1 + zḟ ṙ1(3 − λGBzḟ )

+ 8λGBzf 2r̈1 + 2f
(−6ṙ1 − 3λGBzḟ ṙ1 + zr̈1 − 2λGBz2ḟ r̈1 + λGBz2f̈ ṙ1

))
+ 2L2L4

AdS

(
zḟ ṙ1 + λGBz2ḟ 2ṙ1 + 2λGBf 2(3ṙ1 − zr̈1) + f

(−3ṙ1 − 6λGBzḟ ṙ1

+ zr̈1 + λGBz2ḟ r̈1 + λGBz2f̈ ṙ1
))}

R +O
(
R0). (80)

For the cylinder topology which dominates at large R, we have ṙ1 finite when z → 0, for which
equation (80) gives

ṙ1(0)
{[

f 2
0 ṙ1(0)2 + (1 − λGBf0)

]2 − λ2
GBf 2

0

} = 0. (81)

Since the term in the curly braces of (81) are positive-definite, we have ṙ1(0) = 0. Note that
r1(0) = 0 and the fact that ṙ1 = 0 is a solution of equation (80). We then conclude that the unique
solution to (80) is r1 = 0. Then, it is straightforward to see that the R-independent terms in (79)
vanish. This yields zero topological entanglement entropy. This is consistent with the expectation
in [44] that the topological order will not show up in the leading order of 1/N expansion, which
captures up only classical phenomena and not the quantum ones such as the topological order.

4.2. Renormalized entanglement entropy for the Gauss–Bonnet corrected black hole

Now we turn to case of AdS5 black hole with Gauss–Bonnet correction. The bulk theory is the
same as for the Gauss–Bonnet corrected AdS5 soliton, and the black hole metric is the doubled
Wick rotation of (44), which takes the form as

ds2 = L2

z2

(
−f (z) dt2 + 1

f (z)
dz2 + f0

(
dr2 + r2(dθ2 + sin2 θ dφ2))) (82)

where f (z) and f0 are the same as (46).
By considering a disk on the boundary with radius R, the induced metric of the minimal

surface becomes
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ds2
ind = L2

(
1

z2

(
1

f (z)
+ f0ṙ(z)

2
)

dz2 + f0r(z)
2

z2

(
dθ2 + sin2 θ dφ2)) (83)

where r , θ and φ are radial, polar and azimuth coordinates respectively.
The functional for the entanglement entropy is the same as (49). Using (83) we obtain

√
h
(
1 + λGBL2R

) = 2f0r
2
√

1 + f0f ṙ2

z3
√

f
+ λGB

4(z2 + f0f (r2 − 2zrṙ + 2z2ṙ2))

z3
√

f
√

1 + f0f ṙ2
+ q̇,

(84)

where

q(z) = λGB
8f0

√
f r(r − zṙ)

z2
√

1 + f0f ṙ2
. (85)

Integrating the term q̇(z) in the bulk yields a surface term cancelling the Gibbons–Hawking term,
then (49) becomes

A =
zm∫
ε

dz

(
2f0r

2
√

1 + f0f ṙ2

z3
√

f
+ λGB

4(z2 + f0f (r2 − 2zrṙ + 2z2ṙ2))

z3
√

f
√

1 + f0f ṙ2

)
,

:=
∫

dzL, (86)

from which we derive the equation of motion for r(z) as follows

0 = 1

z4
√

f (1 + f0f ṙ2)5/2
f0

(−6z2λGB
(
zḟ ṙ − 2f0f

2ṙ3 − 2f (ṙ − zr̈)
)

+ 4zr
(
1 + zλGBḟ + 4λGBf 2

0 f 3ṙ4 − 2f
(
λGB + f0(−1 − zλGBḟ )ṙ2)

+ f0f
2ṙ

(
2λGBṙ + f0ṙ

3 − 6zλGBr̈
))

+ f0r
2(−zḟ ṙ + f

(
6(1 + zλGBḟ )ṙ − zf0ḟ ṙ3 − 2zr̈

)
+ 2f0f

3ṙ2(−6λGBṙ + 3f0ṙ
3 − 4zλGBr̈

)
− 2f 2(6λGBṙ − 6f0ṙ

3 − 2zλGBr̈ + zf0ḟ
2r̈

)))
. (87)

The UV behavior of the solution r(z) is obtained as

r(z) = R + λGB(−1 − γ + 4λGB)

2R(−1 + γ + 4λGB)
z2 + a4(R)z4 + · · · (88)

where γ is defined in (60) and a4(R) should be determined by solving the full equation of
motion (87).

Unlike the complication for the Gauss–Bonnet AdS5 soliton case, there are well-defined so-
lutions of disk topology for all R. As for the AdS4 black hole, we just need to consider the disk
topology. The RG flow of the on-shell action is given by (68), and we need to see if the first term
in (68) has no zero contribution or not. From (86) we can obtain

Π := δL
δṙ

= 2f0
√

f (−4zλGBr + 2z2λGBṙ(3 + 2f0f ṙ2) + f0r
2ṙ2(1 + f (−2λGB + f0ṙ

2)))

z3(1 + f0f ṙ2)3/2

(89)
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and

H := Πṙ −L

= −2(2z2λGB − 4zλGBf 2
0 f 2rṙ3 + f0r

2(1 + 4λGBf0f
2ṙ2 + f (2λGB + f0ṙ

2)))

z3
√

f (1 + f0f ṙ2)3/2
.

(90)

For disk topology,

dr

dz

∣∣∣∣
z=zm

= ∞, r(zm) = 0. (91)

By plugging (91) into (90), we get

H(zm) = 8λGB
√

f0r(zm)

z2
m

= 0. (92)

Then the first term of (68) becomes zero.
From (68), (88) and (89), we get

dA

dR
= 1

R
√

2γ λ2
GB

√
1 − γ

λGB

[−λ2
GB

(
1 + γ − 2(4 + 3γ )λGB + 16λ2

GB

)
− 4R3(−1 + γ + 2λGB)(−1 + 4λGB)a4(R)

]
+ UV-dependent terms +O(ε) (93)

where the UV-dependent divergent terms becomes

R

√
2 − 2γ

λGB

(1 + γ + 4(−1 + γ )λGB)

(1 + γ − 4λGB)

1

ε2
. (94)

In fact in the action there is an additional R-independent logarithmic UV-divergent term, which
does not appear in (93). To see this, we substitute the UV expansion of r(z) (88) into the action
(86) and find it as√

λGB

2 − 2γ
(1 + γ − 12λGB) log

ε

R
, (95)

which should be subtracted along with the quadratic divergence when evaluating Sfinite.
We then numerically solve a4(R) and the finite part of the on-shell action Sfinite for different

values of 0 � λGB � 1/4, and the results are plotted in Fig. 19 and Fig. 20, respectively. To
extract the RG flow dSUV-ind

dR
from (93), we again apply the differential subtraction scheme based

on [22]. Explicitly, it is

dSUV-ind

dR
= 1

2
(R∂R + 1)(R∂R − 1)

dA

dR
. (96)

The numerical results are shown in Fig. 21.
The Gauss–Bonnet interaction corresponds to some operator at the sub-leading order in the in-

verse ’t Hooft coupling expansion. It denotes the finite coupling correction to the infinite ’t Hooft
coupling limit in the dual field theory. First, we notice that for λGB = 0, i.e., corresponds to the
AdS5 black hole of Einstein gravity, the UV behavior of dSUV-ind is different from the one for
dR
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Fig. 19. The a4(R)’s for Gauss–Bonnet corrected AdS5 black holes with z0 = 1 and λGB = 0 (purple), 0.05 (blue), 0.09
(cyan), 0.2 (green), respectively. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 20. The Sfinite’s for Gauss–Bonnet corrected AdS5 black holes with z0 = 1 and λGB = 0 (purple), 0.05 (blue), 0.09
(cyan), 0.2 (green), respectively. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

the AdS4 black hole case. In the latter case, the dSUV-ind
dR

is always positive, but here it is negative
at UV and then turn to become positive to capture the volume-law nature at IR. We can see that
the effect of the Gauss–Bonnet interaction is to change the UV behavior of dSUV-ind

dR
so that it

becomes all positive even at UV for large enough λGB.
Despite the discrepancies in the UV behaviors for different λGB’s, the qualitative behaviors

of the results are the same: the on-shell actions catch the volume law of the thermal entropy in
a smooth way as R becomes large, just like the AdS4 black hole case. This again supports the
postulate proposed in [35]. We thus conclude that the crossover is not effected by turning on the
Gauss–Bonnet interaction.

In [32,33] it is pointed out that the holographic dual field theory with λGB > 9
100 will violate

microscopic causality, however, although the small R behaviors of Sfinite and RG flow become
quite different for sufficiently large λGB, e.g., λGB = 0.2 in Fig. 20 and Fig. 21, nothing exotic
happens in this regime. This agrees with the same consideration for the Gauss–Bonnet corrected
AdS5 soliton in [16]. However, there are some concern about the relation between the quantum
entanglement and the causality formulated from the consideration of the quantum information
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Fig. 21. Left: The dSUV-ind
dR

’s for Gauss–Bonnet corrected AdS5 black holes with z0 = 1 and λGB = 0 (purple), 0.05
(blue), 0.09 (cyan), 0.2 (green), respectively. Right: Zoom-in of the region with the sign-change. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 22. Left: The a2(R) for λGB = 1/4 and z0 = 1. Right: The corresponding RG flow of the refinement.

sciences [41,42], it may deserve further study to understand this issue in the context of holo-
graphic entanglement entropy.

Finally, we would like to give the numerical results for the λGB = 1/4 case, for which the
viscosity to entropy ratio vanishes for the holographic dual field theory. The peculiar feature of
the geometry is the harmonic function f (z) becomes 1 − ( z

z0
)2, which is quite different from the

one for asymptotic AdS5, namely, 1 − ( z
z0

)4. The UV behavior of the solution is different from
the λGB < 1/4 cases and is given by

r(z) = R + a2z
2

+ a2z
4(3(z2

0 + 16a2
2z4

0) + 64R(a2z
2
0 + 12a3

2z4
0) + 4R2(1 + 96a2

2z2
0 + 768a4

2z4
0))

4z2
0(3z2

0 + 48a2Rz2
0 + 4R2(1 + 48a2

2z2
0))

+ · · · (97)

where a2(R) instead of a4(R) should be determined by solving the full equation of motion, and
the result is shown in the left plot of Fig. 22. From (97) and (68) we can obtain

dA

dR
= 4

√
2R

ε2
− 2

(√
2

((
4 + 8R2

z2
0

)
a2 + 48Ra2

2 + 128R2a3
2 + R

(
1

z2
0

− 2
da2

dR

)))

+O
(
ε2). (98)

The result of the RG flow is shown in the right plot of Fig. 22, from which we see again the
volume law for large R as well as the crossover.
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5. Conclusions and discussions: IR fixed-point state from AdS/MERA

In this paper, we have considered the refinement of the holographic entanglement entropy
and its RG flow behavior for the systems dual to AdS solitons and black holes. The holographic
entanglement entropy for AdS solitons has different scaling behavior from AdS cases, so does
the UV-independent piece, i.e., the renormalized entanglement entropy. As for the cases of AdS
black holes, our results yield the refined version of the conjecture given in [35] that the transition
of the UV cutoff-independent piece of the entanglement entropy between the IR and UV regimes
is a smooth crossover even with the correction of the Gauss–Bonnet interaction. On the other
hand, for the AdS soliton cases, we find that the renormalized entanglement entropy for d = 4,5
is not monotonically decreasing along the RG flow, nor are they always positive-definite. In d = 4
case, such behavior is related to the geometry of the entangling surface (torus) which singles out
the B-type anomaly and there is no conflict with the C-theorem. Generally, one should expect the
renormalized entanglement entropy to play the role of a C-function when the entangling surface
is spherical only [22].

Turning on the Gauss–Bonnet interaction will make the region around the confinement phase
transition become ill-defined. Similarly, the irrelevance of the Gauss–Bonnet interaction to the
topological entanglement entropy is also checked so that there is no non-trivial topological order
for the AdS5 soliton and its Gauss–Bonnet cousins.

Before ending this paper, we would like to devote the rest of the discussions on how to under-
stand the entangling nature of the IR fixed-point states of the holographic dual theory based on
the conjecture of AdS/MERA proposed in [50,51]. We will argue that non-extremal AdS soliton
has the product state as its IR fixed-point state, and the extremal AdS soliton instead has the
non-trivial entangled state as the IR fixed-point state. The different nature of the IR fixed-point
states depends on the topology of the large R entangling hyper-surfaces. If our arguments here
hold, this may be seen as another triumph of AdS/CFT in using the simple geometric picture
to characterize the entangled mean field states. Further development along this line may reveal
the holographic and geometric classification of the topologically ordered phases in the strongly
interacting condensed matter systems.

Though the wave function of a many-body system could look quite complicated, it could
be simplified a lot through some appropriate local unitary operations, especially when these
operations are adopted to remove short-range entanglement among neighboring particles. An
example of such unitary operations is the CZ (controlled-Z) operation, which transforms a Bell
state into product state as

CZ
(|0〉|+〉 + |1〉|−〉) = (|0〉 + |1〉)|+〉 = √

2 |+〉|+〉, (99)

where |±〉 = 1√
2
(|0〉 ± |1〉). Moreover, if we are only interested in the low energy behaviors of

the system, we could further coarse-grain the wave function by merging the neighboring sites
after removing the short-range entanglement. After repeating the above two steps, we will obtain
a far more simple wave function at the IR fixed-point, or the so-called mean field state. This is
the so-called quantum state RG transformation [54,55] (see also [56,57] for practical numerical
study) as shown in Fig. 1, and can be adopted to classify the phases of the many-body systems.
That is, all the wave functions flowing to the same fixed-point state under quantum state RG
transformation describe the same phase. According to this scheme of classification, for gapped
systems one may expect two kinds of the IR fixed-point states. One is the product state which
encodes no quantum entanglement. The other kind is the non-trivial topological ordered states,
which encode either long-range entanglement or some short-range entanglement protected by
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Fig. 23. MERA network and its dual AdS geometry. Here the disentanglers are denoted by solid squares, and the isome-
tries by the solid triangles. The links at different levels encode short-range entanglement at different scales. (I) The
MERA for CFT and its dual is the AdS space. Note that the depth of the MERA can be extended indefinitely as its dual
AdS geometry. (II) MERA for gapped system and it dual is the AdS soliton. The MERA and its dual geometry end at
some IR scale. For simplicity, we just plot the one-dimensional MERA, however, it is straightforward to plot for higher
dimensional cases.

symmetries [55]. In this way, one can tell which phase the system belongs to by looking into
the IR fixed-point wave function, instead of the UV ones. In other words, the gapped systems are
classified by the patterns of the quantum entanglement of the IR fixed-point states. Especially, for
1-dimensional spin chain, it was shown that all the ground states will flow to trivial product state
under generic quantum state RG transformation unless some symmetries are preserved during
the RG flow [45–49]. However, the classification of higher dimensional systems are still under
development. The above scheme of looking into the IR fixed-point state is in contrast to what has
been adopted in this paper and summarized in (1) by looking into the UV scaling behaviors of
the entanglement entropy for the relativistic CFTs.

The local unitary operation and the coarse-graining in the quantum state RG transformation
can be implemented as the quantum gates of the quantum circuit with some pre-prepared inputs.
Therefore, the whole procedure can be viewed as some time evolving procedure and then be im-
plemented to solve some many-body systems. This idea then results in algorithm of multi-scale
entanglement renormalization ansatz (MERA) [52], and see [53] for more detailed introduction.
In MERA, the local unitary operations in removing the short-range entanglement are called dis-
entanglers, and the merging operations for coarse-graining are called isometries. Then, the whole
procedure of quantum state RG transformation can be piled up as a network of disentanglers or
isometries. The depth of the MERA network can be thought as the time evolution or RG flow,
and the links in the network denote the short-range entanglement among the neighboring sites.
A typical MERA network for both CFT and gapped system are depicted in Fig. 23. Note that the
depth for the CFT is indefinite due to the scaling invariance and could be infinite for an infinite
UV system. On the other hand, the depth for the gapped system is finite as the RG procedure
must end when reaching the IR mass gap.

In practical, the MERA can be used to solve the ground state of the system by treating the dis-
entanglers and isometries as the variational ansatz, which can then be determined by minimizing
the expectation values of the Hamiltonian. For examples, see [53] for this kind of applications.
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Fig. 24. Minimal surfaces for the entanglement entropy in the MERA and in its dual geometry. The entanglement entropy
is obtained by counting the links which intersect the minimal surface. This implies that the entanglement entropy is
contributed by the short-range entanglement at all length scales smaller than the linear size R of the chosen region.
(III) For the CFT case, the minimal surface is always in the disk topology. (IV) For the gapped systems dual to non-
extremal AdS soliton, the topology of the minimal surface changes from the disk at smaller R to the cylinder at large R.
Compare the minimal surfaces for MERA and AdS soliton, we conclude that the IR fixed-point state (the yellow part
excluded from the minimal surface) is a product state since the links at the top level of MERA have no counterparts at
the geometry side. On the other hand, for the extremal AdS soliton, the minimal surface is always in disk topology, this
is because the extremal AdS soliton has gapless KK modes which may retain the entangled pairs at the IR regime. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

On the other hand, the MERA network yields a geometric picture of the quantum state RG, and
indeed the geometry can be characterized by the aspect ratio of depth to width, i.e., z ∼ log |�x|.
This aspect ratio encodes the block decimation of coarse-graining and is roughly coincident with
the AdS geometry as first observed in [50] and made more precise later in [51]. For the gapped
system, the finite depth is consistent with the geometry of AdS soliton with z0 ∼ log ξ where ξ is
the correlation length. Moreover, by utilizing the unitarity feature of disentanglers and isometries
in the MERA network one finds that a site is only affected by the sites within its causal cone. The
correlation between two distant sites are encoded by the intersection of the causal cones, which
is pretty much the same as the geodesic in the AdS bulk connecting two boundary points. This
then reminds the prescription of evaluating the boundary correlation functions in the AdS/CFT
correspondence [43]. By the aspect ratio of depth to width, the length of the intersecting causal
cone then yields the expected power law for CFT correlation function and the exponential decay
behavior for the gapped one.

Similarly, the geometric picture of the holographic entanglement entropy is encoded in the
minimal surface covering the boundary sites inside the chosen region as depicted in Fig. 24 for
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both CFT and gapped systems (see also Fig. 1). The entanglement entropy is proportional to the
number of the links intersecting with the minimal surface because the links carry the short-range
entanglement between the sites just inside and outside the chosen region. This then results in the
expected area law for both CFT8 and gapped systems. The most interesting point is that the link
at different depth level of the MERA network actually encodes the short-range entanglement at
the corresponding scale. To be more specific, the links at level 0 (the UV boundary) encode the
short-range entanglement between nearest neighboring sites, but the links at level 1 encode the
short-range entanglement between the next-nearest neighboring sites with the distance measured
by the UV scale. Therefore, MERA network geometrically and systematically displays how the
short-range entanglements of different length scales are contributed to the total entanglement
entropy of a chosen region at UV level.

Especially, for the gapped system there exists a top layer in the MERA network, which rep-
resents the IR fixed-point and also encodes the short-range entanglement of the IR fixed-point
state. Therefore, if the fixed-point state is not a product state, its short-range entanglement will
contribute to the total entanglement entropy. Otherwise, there is nothing to contribute for a prod-
uct state. This then corresponds to the following geometric picture. Due to the existence of the IR
top layer, the minimal surface covering the chosen region will have a flat bend-over near the top
layer. If the fixed-point state is the product state, then the flat bend-over region of the minimal
surface collect no entanglement from the fixed-point state. In this case, flat bend-over region can
be effectively removed, and the resultant minimal surface can be effectively viewed as ending on
the top layer. This is indeed the IR dominating cylinder topology found in the non-extremal AdS
soliton case. From our above argument, it implies that the IR fixed-point state is the product state.
This result is consistent with the vanishing topological entanglement entropy9 and the negative
value of the finite part of the holographic entanglement entropy, which could compensate the
positive UV contribution to make zero total entanglement entropy near IR fixed-point.

On the other hand, for the extremal AdS soliton case we see that only disk topology exists so
that the flat bend-over region does contribute to the holographic entanglement entropy. From the
above argument, this could imply that the IR fixed-point state may not be the product state but
a non-trivial entangled state. Geometrically, the difference between extremal and non-extremal
AdS soliton is that the spectator U(1) cycle for the former becomes non-compact at the IR fixed-
point. That is, the IR fixed-point is a gapless state as the KK modes become massless at the
extremal limit. These gapless excitations may retain some entangled pairs at the IR scale indi-
cated by the flat bend-over region.

The above speculation of the entangled properties of the IR fixed-point state from AdS/MERA
can be further exemplified by our study of the AdS black hole. In this case, the AdS geome-
try provides more useful information than MERA, whose finite temperature version is barely
studied. Based on AdS/MERA, the finite temperature MERA network of the CFT is no longer
extended indefinitely but will be terminated by the IR scale fixed by the temperature. This will be
a helpful guideline when implementing the finite temperature MERA for CFT. Moreover, from
our numerical study we see that the dominant topology at large R is the disk one whose refined
holographic entanglement entropy captures the volume law of the thermal entropy. According to
the same consideration as for the AdS soliton case, this implies that the IR fixed-point state has
non-trivial entanglement at IR scale. Indeed, the IR fixed-point state should be a thermally mixed

8 It can also recover the logarithmic behavior for the 1 + 1 CFT.
9 We restrict our discussions here for the AdS5 soliton case, which is dual to the 2 + 1 gapped system. On the other

hand, the nature of the topological entanglement in higher dimensional system is not clear.
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state and is different from the product state dual to the cylinder topology. Though we may need
the pattern of thermal MERA to understand the how the multi-scale entanglements distribute at
non-zero temperature.
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