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Abstract—This study demonstrates how the insertion of a
thin silicone layer into a dual-layer remote phosphor structure
enhances light extraction in white light-emitting diodes (WLEDs).
In the experiment, a dual-layer phosphor structure yielded a
higher intensity of blue and yellow components than a conven-
tional structure. Moreover, the lumen flux was 5% higher than
a conventional remote phosphor package at the same correlated
color temperature (CCT). Using a TFCalc32 simulation, the
electric field intensity was calculated for different thicknesses of
the dual-layer remote phosphor structures, and the enhanced use
of blue rays was verified. Additionally, the dual-layer structure
reduces chromaticity deviations as the driving current increases.

Index Terms—Coatings, GaN, light-emitting diodes, optoelec-
tronic devices, packaging, phosphor.

I. INTRODUCTION

P HOSPHOR-CONVERTED white light-emitting diodes
(WLEDs) are a promising light source because of their

small size, high energy efficiency, low cost, and color stability
[1]–[4]. WLEDs apply the principle of complementary colors:
Blue light from a blue chip is combined with yellow light
from phosphor [5]. WLEDs have the potential to be used
in solid-state lighting, but their luminous efficiency must be
enhanced [6]. Generally, freely dispersed coating is the most
common method used to fabricate white light. In this process,
transparent encapsulated resin is combined with phosphor
powder and is dispersed on the phosphor package. Although
this approach allows the thickness of the phosphor layer to
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be controlled easily and reduces much of the cost, it does not
produce high-quality WLEDs [7]. Therefore, the conformal
coating method can be used as an alternative. This method
distributes colors uniformly, resulting in angular homogeneity
of correlated color temperature (CCT) [8]. However, the disad-
vantage of a conformal phosphor structure is the backscattering
effect, which reduces luminous efficiency.
Previous studies have demonstrated the concept of separating

the chip and the phosphor layer of remote phosphor structures
[9], [10]. The enhanced light extraction internal reflection
(ELiXIR) structure, which uses a polymer hemispherical shell
lens with interior phosphor coating, is known to increase
extraction efficiency [11]. Furthermore, an air-gap embedded
structure can enhance luminous efficiency by reflecting down-
ward light [12].
In addition to the structure of the package, the concentration

of phosphor plays an important role on luminous efficiency. The
re-absorption loss in the phosphor layer raises when the phos-
phor concentration increases. Therefore device luminous effi-
ciency would be degraded, especially at lower CCTs [13]. Sim-
ilarly, Narendran et al. demonstrated that high occurrence of
scattering and reflecting also reduces luminous efficiency [14].
Therefore, it is essential to enhance the emission of blue and
yellow rays and reduce the amount of light lost from backscat-
tering and reflection.
In this study, a dual-layer phosphor structure was employed

in a remote phosphor package to increase light output com-
pared to a conventional remote phosphor structure at the same
CCT. The experimental results indicate that a dual-layer phos-
phor structure yielded higher light transmission than a conven-
tional phosphor structure. Furthermore, a TFCalc32 simulation
demonstrated that the power intensity between the silicone layer
and the phosphor layers was enhanced. The chromaticity coor-
dinate deviations were also improved by increasing the driving
current of the LED.

II. EXPERIMENT

In this experiment, a dual-layer structure was fabricated using
the pulse spray coating method, which creates a uniform phos-
phor layer [15]–[17]. The phosphor powder was YAG:
with the particle size of 13 . An InGaN-based blue LED
with a peak emission wavelength of approximately 450 nm was
bonded on silver glue with gold wire in a lead-frame package.
The schematic cross-sectional view of a dual-layer remote phos-
phor structure is shown in Fig. 1. The samples were fabricated
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Fig. 1. Schematic cross-sectional view of (a) dual-layer and (b) conventional
remote phosphor structures.

by the following steps: First, the silicone encapsulant was filled
in a commercial plastic lead-frame package.
The pulse spray coating method was then employed to spray

phosphor and silicone binder on the surface of each layer of the
remote phosphor structure. Finally, phosphor was sprayed on
top of the remote phosphor structure to obtain the same CCT as
the conventional remote phosphor structure. In the experiment,
the total density of the phosphor in the experiment is set up as
6 for all the samples and the density of phosphor is
approximately 1.0 mg/cm2 from one spray coating step. To ob-
tain the better luminous efficiency of the devices, the thickness
of the top and bottom phosphor layers was adjusted. Thus, the
ratio of the sample A, B, and C represent the different density
of phosphor layer in the dual-layer structure.

III. RESULTS AND DISCUSSION

The effect of changing the ratios of the first and the second
layers of the phosphor structure is shown in Fig. 2(a), which
represents the transmission of the different samples in relation
to the wavelength. The remote phosphor package composed of
a dual-layer structure yielded the highest transmission at wave-
lengths ranging from 400 to 800 nm. The sample containing
the optimized ratio, Sample C, produced greater transmission
than the other samples in the experiment. Enhanced transmis-
sion means that the LED device emits more photons, reducing
light reflection and increasing light output.
The drop in intensity at a wavelength of 460 nm can be

attributed to the absorption of phosphor. Fig. 2(b) shows a
comparison of the lumen enhancement of the different sam-
ples. Sample C exhibits a 5% lumen enhancement over the
conventional remote phosphor structure. The transmission
measurement verified that this was the result of increased
extraction of rays in the yellow band. Therefore, increasing
light extraction is critical to improving the luminous efficiency
of LED structures.
The emission spectra of Sample C and the conventional re-

mote phosphor structure are shown in Fig. 3(a). These struc-
tures had the same CCT at approximately 5400 K, and both op-
erated at a current of 120 mA. The dual-layer structure produced
a higher intensity in blue and yellow components and yielded
a higher light output than the conventional structure. Fig. 3(b)
shows the luminous flux and the luminous efficiency of both
Sample C and the conventional remote phosphor structure, each
driven at currents from 20 to 420 mA. Since the optical trapping
in the phosphor layer degrades device luminous efficiency due

Fig. 2. (a) The transmission of the different ratios of phosphor layers as wave-
length increases (b) The lumen enhancement of the amount of phosphor in the
second layer under the regular operation current.

Fig. 3. (a) The emission spectra (b) Luminous flux and luminous efficiency of
the dual-layer and the conventional remote phosphor structures driven at cur-
rents from 20 to 420 mA.

to the self-absorption of phosphor [18]. Comparing to the refer-
ence structure (the single-layer structure), the dual-layer struc-
ture can reduce the optical trapping of the phosphor layer, and
increase luminous flux.
In general, yellow rays scatter in all directions when pumped

by a blue ray. Consequently, most of the downward rays are lost
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Fig. 4. Thickness-dependent of (a) the dual-layer and (b) the conventional
LEDs by TFCalc32 simulation.

in the package and light output is reduced. Conversely, in the
dual-layer phosphor structure, a thin silicone layer with a low
refractive index is inserted into the phosphor layer. The refrac-
tive indices of the phosphor and silicone encapsulants used in
this study were 1.8 and 1.4, respectively.
According to Snell’s law, the total reflection angle needed

to be increased because of the phosphor/encapsulant layer. Re-
flecting the blue ray could improve its use because it increases
the probability of phosphor excitation [12]. Therefore, a TF-
Calc32 simulation was employed to observe the actual effect
of blue photons coupling to the phosphor layer.
In the simulation, the lengths of the first and second silicone

layers were approximately 850 and 70 , respectively.
The lengths of the first and second phosphor layers were ap-
proximately 100 and 20 , respectively. Regarding the
conventional phosphor structure, the silicone layer was approx-
imately 850 , and the phosphor layer was roughly 120 .
These layers were simultaneously subjected to 450 nm light by a
GaN LED. The results of this simulation are displayed in Fig. 4,
which shows the electric field intensity for the different thick-
nesses of dual-layer and conventional phosphor structures. The
electric field intensity in the second silicone layer was higher
than in the conventional phosphor structure. Therefore, the ad-
vantage of the former structure is that the incident blue ray can
be trapped in the lower refractive index medium, increasing the
absorption ability of the phosphor layer and transferring more
yellow rays than the conventional structure.
The power intensity of dual-layer and conventional remote

phosphor structures in WLEDs can be calculated as shown in

Fig. 5. The chromaticity deviations of (a) CIE coordinate and (b) CIE
coordinate with dual-layer and conventional remote phosphor structures at dif-
ferent LED injection currents.

(1)–(2) at the bottom of the page, where and are the re-
fractive indices silicone and phosphor, and is the electric
field intensity.
According to (1) and (2), the power intensities of the dual-

layer and conventional remote phosphor structures were 20.2%
and 13.8%, respectively, at a wavelength of 450 nm. Further-
more, the power intensity reached a maximum of 46.4%, an en-
hancement that mainly occurred between the thin silicone layer
and the phosphor layers. The enhanced electric field intensity
allows more blue rays to be trapped and raises the probability
of phosphor excitation. In turn, this recycling of photons allows
for the production of more yellow rays.
Fig. 5 shows the chromaticity deviations of (a) CIE co-

ordinate and (b) CIE coordinate with dual-layer and con-
ventional remote phosphor structures from 20 to 420 mA, the
light quality of the dual-layer and conventional remote phos-
phor structures can be compared. As the current increased, inci-
dent blue rays were generated from the blue chip and converted
the phosphor layer to yellow photons. Therefore, the manner in
which the phosphor layer is used determines the quality of color
mixing in WLEDs, especially at different currents. The lowest-

(1)

(2)
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quality color-mixing structure occurred in the conventional re-
mote phosphor structure. Conversely, the dual-layer structure
exhibited less color deviations because it better uses the phos-
phor layer to maintain almost the same CCT at different cur-
rents. Therefore, the dual-layer remote phosphor structure not
only enhanced the luminous flux of the WLED, but also pro-
vided greater stability of CIE coordinates as the driving current
increased.

IV. CONCLUSION

This study demonstrates that a dual-layer remote phosphor
structure enhances the luminous efficiency ofWLEDs. Inserting
a thin silicone layer into the phosphor layer and optimizing the
ratio of the different layers increased transmission, thereby in-
creasing light output. Moreover, TFCalc32 simulation results
verified that more incident blue rays were reflected in the thin
silicone layer of the dual-layer structure, increasing the proba-
bility of phosphor excitation and producing higher yellow com-
ponents in the emission spectra. Accordingly, the luminous flux
of the dual-layer structure was 5% higher than that of the con-
ventional remote phosphor package at a driving current of 120
mA. Finally, the dual-layer structure reduces chromaticity de-
viations as the driving current increases. These results establish
WLEDs as a capable source of solid-state lighting.
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