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This paper deals with an infinite-capacity multi-server queueing system with a second optional service 
(SOS) channel. The inter-arrival times of arriving customers, the service times of the first essent ial service 
(FES) and the SOS channel are all exponentially distributed. A customer may leave the system after the 
FES channel with a probability (1 � h), or the completion of the FES may immediately require a SOS with 
a probability h (0 6 h 6 1). The formulae for computing the rate matrix and stationary probabilities are 
derived by means of a matrix analytical approach. A cost model is developed to simultaneously deter- 
mine the optimal values of the number of servers and the two service rates at the minimal total expected 
cost per unit time. Quasi-Newton method and Particle Swarm Optimization (PSO) method are employed to
deal with the optimization problem. Under opt imal operating condit ions, numerical results are provided 
from which several system performance measure s are calcu lated based on the assumed numerical values 
of the system parameters.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction 

In day to day life, one encounter s numerous examples of queue- 
ing models through which all arriving customer s need an essential 
service but only some require an additional optional service. In this 
paper, the quasi-birth–death (QBD) process and matrix analytic 
methods are used to analyze an M/M/ R queue with a second op- 
tional service channel. An algorithm is developed to calculate the 
rate matrix and the stationar y probabilities of the QBD process. A
cost model is also constructed to search the optimal parameters 
at a minimum cost.

A possible application of our model is in a manufacturing sys- 
tem for a pump based on the work of Yang, Wang, and Kuo 
(2011). Consider a pump manufactur ing industry that manufac- 
tures different kinds of pumps which require shafts of various 
dimensions . The arrival of shafts from the turning center to the 
CNC (computer numerical control) copy turning center follows a
random process, in which the center owns multiple CNC machines.
The mechanics set up the template in these CNC machines to per- 
form the copy turning process for shafts, i.e., the first essential ser- 
vice. The good quality items are kept in storage and are sold. Some 
of the served (processed) shafts are defective. The defective ones 
need to be reworked (re-served) to meet the required specifica-
tions. In this scenario, the mechanics (including the CNC-ma- 
chines) and the re-served action of defective items correspond to
the channels and the second optional service, respectively.

It is assumed that customers arrive according to a Poisson pro- 
cess with parameter k. Customers arriving at the system form a
single waiting line and are served in the order of their arrival, that 
is, first-come-first-served. There are R channels (servers) that pro- 
vide the first essential service (FES) as well as the second optional 
service (SOS) to arriving customers. The FES is needed by all arriv- 
ing customers. The service times of FES and the SOS are exponen- 
tially distributed with means 1/l1 and 1/l2, respectively . As soon 
as the FES of a customer is complete d, they may leave the system 
with a probability (1 � h) or, opt for the SOS provided by the same 
server with a probability h (0 6 h 6 1). Each channel can serve only 
one customer at a time and it also provides only either FES or SOS 
at one time. Customers who, upon entry into the channel facility,
find that all channels are busy are required to wait in the queue un- 
til a channel becomes available. The various stochastic (arrival or
service) processes involved in the system are independent of each 
other.

Analytic steady-state solutions of an M/M/ R queue with a sec- 
ond optional service channel have not been found. A pioneering 
work in this queueing situation was proposed by Madan (2000),
who first introduced the concept of the SOS. Madan (2000) studied
an M/G/1 queue with SOS using the supplementar y variable tech- 
nique in which he considered a general service time distribution 
for the FES and an exponential service time distribution for the 
SOS. He also cited some important applications of this model in
many real-life situation s. Medhi (2002) derived the transient 

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cie.2013.02.017&domain=pdf
http://dx.doi.org/10.1016/j.cie.2013.02.017
mailto:jauchuan@nutc.edu.tw
mailto:duckboy614583@gmail.com
mailto:wlpearn@mail.nctu.edu.tw
http://dx.doi.org/10.1016/j.cie.2013.02.017
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie


J.-C. Ke et al. / Computers & Industrial Engineering 65 (2013) 216–225 217
solution and steady-state solution for the ordinary M/G/1 queue 
with the SOS using the same technique. Medhi’s M/G/1 model 
was also investigated by Al-Jararh a and Madan (2003), in which 
they developed the time-dependent probability generating func- 
tions involved in Laplace transforms and further obtained the cor- 
responding steady-state results. Choudhury and Madan (2005) and 
Choudhury and Paul (2006) studied the queue size distribution at a
random epoch as well as at a departure epoch for an M[x]/G/1
queueing system with a second optional channel and different con- 
siderations under N-policy. They also derived a simple procedure 
to obtain the optimal stationary policy under a suitable linear cost 
structure. Tadj, Choudhury, and Tadj (2006a, 2006b) investigated
some bulk service queueing systems under N policy. The reliability 
measures were examined by Wang (2004) regarding the ordinary 
M/G/1 queue with channel breakdow ns and SOS. Recently, Ke
(2008) investigated a batch arrival M[x]/G/1 queueing system with 
J optional services. He derived the steady-state results, including 
the system size distribution at a random epoch and at a departure 
epoch, the distribution s of idle and busy periods, and the waiting 
time distribution in the queue. Choudhury and Tadj (2009) gener-
alized this type of model by introducing the concept of a server 
breakdown and a delay-repair -period. Recently, Choudhury and 
Tadj (2011) studied the optimal management of an Mx/G/1 unreli- 
able server queue with optional service under a Bernoulli vacation 
schedule. Existing work with optional service mentioned earlier,
mainly focused on single-server queue . The main reason for this is
such that the steady-state probabili ty vector of a multi-server 
queue with SOS is not easily derived. This motivates us to investi- 
gate an infinite capacity M/M/ R queueing system with a second op- 
tional service channel which includes parameter optimizati on at a
minimum cost.

The paper is organized as follows. In Section 2, the steady-st ate 
equations and the quasi-birth–death (QBD) model of an infinite
capacity M/M/ R queue with SOS channel are set up. The matrix- 
geometric property (matrix analytic method) is used to calculate 
the rate matrix in Section 3. In Section 4, we develop an efficient
algorithm to obtain the stationary probabilities using a matrix- 
geometric and a recursive method. Some system performanc e
measures are derived in Section 5. In Section 6, a cost model is
developed to determine the optimal values of the number of chan- 
nels and the two different service rates used to minimize the total 
expected cost per unit time. We use the Quasi-Newton method and 
the direct search method to impleme nt the optimization tasks. The 
Particle Swarm Optimization (PSO) method is compared with the 
Quasi-Newton method in establishing the heuristic solution. Some 
numerical examples are provided to illustrate these two optimiza- 
tion methods. In Section 7, we offer our conclusions .
2. Markov chain model 

For an infinite capacity M/M/ R queueing system with second op- 
tional service (SOS) channel, the states of the system are described 
by the pair (i, j), i = 0,1,2, . . . and j = 0,1,2, . . . ,R, where i denotes the 
number of customer s in the FES channel (including customers 
waiting in the queue) and j denotes the number of customers in
the SOS channel. If (i + j) 6 R, i.e., there are available servers, the 
customers upon arrival to the server will get service immediatel y.
If (i + j) > R, i.e., all servers are busy, the newly arriving customer 
must wait in the queue until a server becomes available. We define
the following notations in steady-state:

Pi,j � probability that there are i customers in the FES channel 
and there are j customers in the SOS channel, where i = 0,1,2, . . .

and j = 0,1,2,. . . ,R.
Referring to the steady transition-r ate diagram shown in Fig. 1
and using the birth-and-d eath process, the steady-state equations 
governing the M/M/ R queueing system are:

(i) j = 0
kP0;0¼ð1�hÞl1P1;0þl2P0;1; ð1Þ
ðkþ il1ÞPi;0¼kPi�1;0þðiþ1Þð1�hÞl1Piþ1;0þl2Pi;1; 16 i6R�1; ð2Þ
ðkþRl1ÞPi;0¼kPi�1;0þRð1�hÞl1Piþ1;0þl2Pi;1; R6 i: ð3Þ
(ii) 1 6 j 6 R � 1
ðkþ jl2ÞP0; j ¼ hl1P1; j�1 þ ð1� hÞl1P1; j þ ðjþ 1Þl2P0; jþ1; ð4Þ

ðkþ il1 þ jl2ÞPi; j ¼ kPi�1; j þ ðiþ 1Þhl1Piþ1; j�1 þ ðiþ 1Þ
ð1� hÞl1Piþ1; j þ ðjþ 1Þl2Pi; jþ1; 1 6 i 6 R� j� 1; ð5Þ

½kþ ðR� jÞl1 þ jl2�Pi; j ¼ kPi�1; j þ ðRþ 1� jÞhl1Piþ1; j�1

þ ðR� jÞð1� hÞl1Piþ1; j þ ðjþ 1Þl2Pi; jþ1; R� j 6 i: ð6Þ
(iii) j = R
ðkþ Rl2ÞP0;R ¼ hl1P1;R�1; ð7Þ
ðkþ Rl2ÞPi;R ¼ kPi�1;R þ hl1Piþ1;R�1; 1 6 i: ð8Þ
There is no way of solving Eq. (1)–(8) in a recursive manner to
develop the explicit expressions for the steady-st ate probabilities 
Pi,j, where i = 0,1,2, . . . and j = 0,1,2, . . . ,R. Alternatively, the infini-
tesimal generator Q of the quasi birth-and-dea th (QBD) process 
describin g the M/M/ R queueing system with SOS channel is of
the block-tri diagonal form (see Neuts, 1981 ):

ð9Þ

Each entry of the matrix Q is a square matrix of order R + 1 listed as
follows:

B ¼ kI; ð10Þ

Ai ¼

ai;0

l2 ai;1

2l2 ai;2

. .
. . .

.

Rl2 ai;R

2
666666664

3
777777775
; i ¼ 0; . . . ;R ð11Þ

Ci ¼

ci;0 di;0

ci;1 di;1

ci;2 di;2

. .
. . .

.

ci;R�1 di

0

2
6666666666664

3
7777777777775
; i ¼ 1; . . . ;R ð12Þ

where I is the identity matrix of order R + 1, and 



Fig. 1. Steady-transition-rate diagram for an M/M/R queueing system with second optional service channel.
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ai;j ¼
�ðkþ il1 þ jl2Þ; 1 6 iþ j 6 R;

�½kþ ðR� jÞl1 þ jl2�; iþ j > R;

�
ð13Þ

ci;j ¼
ið1� hÞl1; 1 6 iþ j 6 R;

ðR� jÞð1� hÞl1; iþ j > R;

�
ð14Þ

di;j ¼
ihl1; 1 6 iþ j 6 R;

ðR� jÞhl1; iþ j > R:

�
ð15Þ

Let

F ¼ CR þ AR þ B; ð16Þ

It is clear that F is an irreducible generato r (see Neuts, 1981 ). Let 
X = [x0,x1, . . . ,xR], a 1 � (R + 1) vector, is the invariant vector of F.
Then, F satisfies the linear equations:

XF ¼ 0 and Xe ¼ 1; ð17Þ

where 0 and e are column vectors with dimens ions R + 1 and all ele- 
ments are equal to zero and one, respective ly. Solving the linear Eqs.
(16) and (17), X could be obtained easily. Next, the stability condi- 
tion could be establish ed by Theorem 3.1.1 of Neuts (1981), the 
standard drift conditio n is:

XBe < XCRe; ð18Þ

which is the necessary and sufficient conditio n for stability of the 
QBD-Q process. First, we solve xF = 0 x = [x0,x1, . . . ,xR] and write fol- 
lowing (R + 1) equations:

Rhl1x0 ¼ x1l2; ð19aÞ
�ðR� iþ 1Þhl1xi�1 þ ½ðR� iÞhl1 þ il2�xi � ðiþ 1Þl2xiþ1

¼ 0; 1 6 i 6 R� 1; ð19bÞ

hl1xR�1 ¼ Rl2xR: ð19cÞ

Eq. (19a) implies that x1 ¼ chl1
l2

x0. Solving Eqs. (19b) and (19c) recur-
sively, we get:

xiþ1 ¼
ðR� iÞhl1

ðiþ 1Þl2
xi; i ¼ 1; . . . ;R� 1: ð19dÞ

Finally , we have:

xiþ1¼
ðc� iÞhl1

ðiþ1Þl2
xi¼
ðc� iÞðc� i�1Þ
ðiþ1Þi

hl1

l2

� �2

xi�1¼���¼
c

iþ1

� �
hl1

l2

� �iþ1

x0; i¼1; . .. ;R�1: ð19eÞ

Using the normaliz ation conditio n x0 + x1 + � � � + xR�1 + xR = 1, x0 can
determine x0 as:

x0 ¼
XR

i¼0

R

i

� �
hl1

l2

� �i
" #�1

¼ 1þ hl1

l2

� ��R

: ð19fÞ

Substitu ting B and CR into Eq. (18) and using (19f), we have:

l1ðR� L2Þ > k; ð20aÞ

which is equivalent to:

k
l1ðR� L2Þ

< 1; ð20bÞ

where
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L2 ¼ x1 þ 2x2 þ � � � þ RxR ¼
XR

i¼1

ixi ¼
XR

i¼1

i
R

i

� �
hl1

l2

� �i

x0

¼ Rhl1

l2
x0 ¼

Rhl1

l2
1þ hl1

l2

� ��R

ð21Þ

denotes the expected number of customer s in the SOS channe l. It is
noted that if h = 0 or l2 ?1 (i.e., L2 = 0), Eq. (20) could be reduced 
to the stabilit y conditio n for the ordinar y M/M/ R queuein g system 
without the SOS channe l.

3. The matrix geometric property 

Because the infinitesimal generator given in (9) is a special case 
of Eq. (5.2.1) of Neuts (1981), we know that the QBD is periodic and 
a positive recurrent. Denote by P the stationary probability vector 
of Q. This implies that the unique solution of the system PQ = 0
under stability condition s. We partition the vector P as P = [P0,P1,
P2, . . . ,PR�1,PR,PR+1, . . .], where Pi = [Pi,0,Pi,1, . . . ,Pi,R] is a row vector 
with a dimension of R + 1. Our aim is to obtain the steady-state 
vector P by means of the matrix analytic method and normaliza- 
tion. By applying the matrix-geom etric method, the steady-state 
probabilitie s [PR+1,PR+2,PR+3, . . .] can be obtained as Pi = PRTi�R, for 
i P R + 1, where T is the minimal nonnegative solution to the ma- 
trix quadratic equation:

T2CR þ TAR þ B ¼ 0: ð22Þ

The matrix T is a very important matrix needed in the evalua tion of
the performan ce measures of a QBD process. It is known as the rate 
matrix of the Markov chain Q. Develop ing a closed- form solution for 
the rate matrix by taking the nonlinea r Eq. (22) is very difficult be- 
cause the matrix structu re of AR, B and CR is not consiste nt. We de- 
velop some matrix analytic properti es to approximat e the rate 
matrix T.

Let us decompo se the level space into two groups as
‘(J) = {‘(0),‘(1), . . . ,‘(R)} and ‘(K) = {‘(R + 1),‘(R + 2), . . .}. The QBD 
model of this paper is partially level-dep endent up to a certain le- 
vel (group ‘(J)) and thereafter becomes a infinite level-independ ent 
(group ‘(K)). An infinite level-indepe ndent QBD has a matrix-g eo- 
metric form which can be solved from the matrix quadratic equa- 
tion (Latouche & Ramaswa mi, 1999 ). The level-independ ent 
structure in our paper can be solved by Cramer’s rule. Thus, we
can use the finite level-depend ent algorithm first and then the 
algorithm of infinite level-indepe ndent QBDs to derive the state 
probabilitie s.

Note from the matrix (9) that starting from level ‘(R) the matri- 
ces CR�1 and AR�1 change to CR and AR, respectively . This implies 
that the process holds an infinite level-independ ent QBD with 
group ‘(K). First, we reduce the QBD- Q into a finite level-depen- 
dent QBD- Q⁄ as:

ð23Þ

From Neuts (1981), we know that the QBD- Q⁄ is a periodic and irre- 
ducible infinitesimal generato r with finite dimens ions. The matrix 
H in (23) represe nts the transiti ons between the states belongi ng
to the imagina ry level group ‘(K). The boundary steady-stat e prob- 
ability vector PR+1 based on ‘(R + 1) is given by solving the following 
equations:
PRBþ PRþ1H ¼ PRþ1; ðfrom QBD- Q �Þ ð24aÞ
PRBþ PRþ1AR þ PRþ2CR ¼ PRþ1: ðfrom QBD- Q Þ ð24bÞ

Solving Eqs. (24a) and (24b), we obtain:

H ¼ AR þ TCR: ð25Þ

Substitutin g (25) into Eq. (23) yields the following system of linear 
equations :

KQ � ¼ ½P0;P1;P2; . . . ;PRþ1�

A0 B
C1 A1 B

C2 A2

. .
. . .

. . .
.

AR B
CR ARþTCR

2
6666666664

3
7777777775
¼0; ð26Þ

where Pi = [Pi,0,Pi,1,Pi,2, . . . ,Pi,R], i = 0,1,2, . . . ,R + 1.
By the arguments of Latouche and Ramaswa mi (1999), there ex- 

ists an infinitesimal generator U of the transient continuous-ti me
Markov chain that is restricted to level ‘(R + 2) before it reaches 
‘(R + 1) from group level ‘(J). It is given by:

U ¼ AR þ Bð�UÞ�1CR ¼ AR þ BG ¼ AR þ TCR;

where

T ¼ Bð�UÞ�1
;

G ¼ ð�UÞ�1CR;

H ¼ U:

Based on the analysis above, we summarize an algorithm to ob- 
tain the approximat ion for the rate matrix T (see Latouche &
Ramaswa mi, 1999 ).

Algorithm 1. Linear Progressi on Algorithm 
INPUT B, AR, CR, e = [1, . . . ,1]T, I is the identity matrix, and the 
tolerance d.

OUTPUT approximat e solution T
Step 1 G = (�AR)�1CR

Step 2 while ke � GekP d do Step 3–4
Step 3 set H = AR + BG
Step 4 and G = (�H)�1CR

Step 5 set T = B(�H)�1

Step 6 OUTPUT 
4. Probability computation 

By solving Eq. (24) recursivel y, we obtain:

P0 ¼ P1C1ð�A0Þ�1 ¼ P1/1; ð27aÞ
P1 ¼ P2C2½�ð/1Bþ A1Þ��1 ¼ P2/2; ð27bÞ
P2 ¼ P3C3½�ð/2Bþ A2Þ��1 ¼ P3/3; ð27cÞ

..

.

PR�1 ¼ PRCR½�ð/R�1Bþ AR�1Þ��1 ¼ PR/R; ð27dÞ
PR ¼ PRþ1CR½�ð/RBþ ARÞ��1 ¼ PRþ1/Rþ1; ð27eÞ
PRT½/Rþ1BþH� ¼ 0: ð27fÞ

where /1 = C1(�A0)�1,/2 = C2[�(/1B + A1)]�1, . . . ,/i = Ci[�(/i�1B +
Ai�1)]�1, and /R+1 = CR[�(/RB + AR)]�1. Conseque ntly, the Pi

(0 6 i 6 R � 1) steady-st ate probabilitie s Pi (0 6 i 6 R � 1) in Eqs.
(27a)–(27f) can be written in terms of PR as P0 ¼ PR

Q1
i¼R/i;
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P1 ¼ PR
Q2

i¼R/i; . . . ;PR�1 ¼ PR
QR

i¼R/i, and the rest of the steady-stat e
vector [PR,PR+1,PR+2, . . .] can be determine d recursively using 
Pi = PRTi�R, for i P R. Once the level probability PR is obtained , the 
steady- state solution s [P0,P1,P2, . . . ,PR�1,PR,PR+1, . . .] can be deter- 
mined. The steady-stat e probability PR can be solved by using the fol- 
lowing normaliz ation equation:

X1
n¼0

Pne¼ PR

Y1

i¼R

/iþPR

Y2

i¼R

/iþ . . .þPR

YR

i¼R

/iþPRþPRTþPRT2þ . . .

" #
e

¼PR

XR

k¼1

Yk

i¼R

/iþ IþTðI�TÞ�1

" #
e¼1:

ð28Þ

It is clear that we need O(R + 2) equations to obtain the steady-stat e
probability PR. Solving Eqs. (27f) and (28) in accordanc e with Cra- 
mer’s rule, we obtain PR. Next, computin g the prior state probabil- 
ities [P0,P1,P2, . . . ,PR�1] from (27) we obtain [PR+1,PR+2, . . .] by the 
formula, Pi = PRTi�R, i P R + 1. We summarize the procedu re below:

Algorithm 2. Recursive Solver 

INPUT R, B, A0,A1, . . . ,AR, C1,C2, . . . ,CR, T, and H
OUTPUT approximat e solution P0,P1,P2, . . .

Step 1 set /1 = C1(�A0)�1

Step 2 for i = 2 to R
Step 3 set /i = Ci[�(/i�1B + Ai�1)]�1

Step 4 end 
Step 5 set /R+1 = CR[�(/RB + AR)]�1

Step 6 for k = 0 to R � 1

Step 7 set Uk ¼
Qkþ1

i¼R /i

Step 8 end 
Step 9 Solving 

PRT½/Rþ1BþH� ¼ 0; PR
PR

k¼1
Qk

i¼R/i þ Iþ TðI� TÞ�1
h i

e ¼ 1

Step 10 for i = 0 to R � 1
Step 11 set Pi = PRUi

Step 12 end 
Step 13 for i = R + 1 to . . .

Step 14 set Pi+1 = PiT
Step 15 end 
Step 16 OUTPUT 
5. System performance measures 

The system performance measure s, such as the expected num- 
ber of customers in the FES channel (denoted by L1), the expected 
number of customers in the SOS channel (denoted by L2), the ex- 
pected number of idle servers (denoted by E[I]) and the expected 
number of busy servers in the system (denoted by E[B]), can be
evaluated from the steady-state probabilities Pi = [Pi,0,Pi,1,Pi,2, -
. . .,Pi,R]. The expressions for L1, L2, E[I] and E[B] are given by:

L1 ¼
X1
i¼1

iPie ¼
XR�1

i¼1

iPi þ RPR þ ðRþ 1ÞPRTþ � � �
" #

e

¼
XR�1

i¼1

iPi þ RPRðI� TÞ�1 þ PRTðI� TÞ�2

" #
e;

ð29Þ

L2 ¼
X1
i¼0

PiJ ¼
XR�1

i¼1

Pi þ PR þ PRTþ � � �
" #

J

¼
XR�1

i¼1

Pi þ PRðI� TÞ�1

" #
J; ð30Þ
Ls ¼ L1 þ L2

¼
XR�1

i¼1

Piðieþ JÞ þ PRðI� TÞ�1ðReþ JÞ þ PRTðI� TÞ�2e; ð31Þ

E½I� ¼
XR�1

i¼0

Pivi; ð32Þ

E½B� ¼ R� E½I�: ð33Þ

where J and e are column vectors with dimension R + 1 as
[0,1,2, . . .,R]T and [1, . . . ,1]T, respective ly. For each 0 6 i 6 R � 1,
the jth element of vector vi is max (0,R � i � j + 1), j = 1,2, . . . ,R. That 
is,

vi ¼

maxð0;R� i� 1þ 1Þ
maxð0;R� i� 2þ 1Þ
maxð0;R� i� 3þ 1Þ

..

.

maxð0;R� i� Rþ 1Þ

2
66666664

3
77777775
¼

maxð0;R� iÞ
maxð0;R� i� 1Þ
maxð0;R� i� 2Þ

..

.

maxð0;�iþ 1Þ

2
66666664

3
77777775

ð34Þ

For an infinite capacity M/M/ R queuein g system with the SOS chan- 
nel, the numerica l results of Ls are obtained by considering the fol- 
lowing three cases with different values of R:

Case 1: l1 = 15, l2 = 5, h = 0.05, vary the values of k from
0.5 to 10.
Case 2: k = 10, l1 = 15, h = 0.05, vary the values of l2 from
2.5 to 10.
Case 3: k = 10, l2 = 5, h = 0.05, vary the values of l1 from
15 to 25.

Results for LS are depicted in Figs. 2–4 for Cases 1–3, respec- 
tively. One sees from Fig. 2 that Ls drastically increases as k in-
creases for R = 1, while Ls slightly increases as k increases for 
R P 2. From Figs. 3 and 4 we can see that Ls drastically decrease s
as l1 or l2 increases for R = 1, while LS is not sensitive to l1 or
l2 for R P 2.

6. Optimization analysis 

We construct the total expected cost function per customer per 
unit time based on the system performanc e measures presented in
the previous section. Our main objective is to determine the opti- 
mum number of servers R, say R⁄, and the optimal value of the ser- 
vice rate l = (l1,l2), say l� ¼ l�1;l�2

� �
, simultaneously , so that the 

expected cost function is minimized. To do this, we define the fol- 
lowing cost elements:

Ch � cost per unit time per customer present in the system,
C1 � cost per unit time when one server is busy,
C2 � cost per unit time of providing a service rate l1,
C3 � cost per unit time of providing a service rate l2,
C4 � fixed cost for purchase of one server.

Using these cost elements listed above, the expected cost func- 
tion F(R,l1,l2) per customer per unit time is given by:

FðR;l1;l2Þ ¼ ChLs þ C1E½B� þ C2l1 þ C3l2 þ C4R: ð35Þ

The cost function in (30) is assumed to be linear in the mean num- 
ber of indicate d quantity and it would have been a difficult task to
develop analytic results for the optimum value R�;l�1;l�2

� �
because

the expected cost function is highly complex and non-linea r in
terms of (R,l1,l2). In the next sectio n, we first use the Quasi-New -
ton method to find the optimal value of the continu ous variable 



Fig. 2. The expected number of customers in the system versus k.

Fig. 3. The expected number of customers in the system versus l2.

Fig. 4. The expected number of customers in the system versus l1.
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(l1,l2), say l�1;l�2
� �

, and then use the direct search method to
search for the optimal value of discrete variable R, say R⁄.

6.1. Quasi-Newton method 

In practice, the number of servers is bounded by a positive inte- 
ger RU P 1 because of the purchase budget. We want to find the 
joint optimal value l�1;l�2

� �
for each given R in the feasible set 

{1,2, . . . ,RU}. The cost minimizatio n problem can be illustrated 
mathematical ly as:

F R;l�1;l
�
2

� �
¼ min

and s:t:ð20Þ
fFðR;l1;l2ÞjRg; R ¼ 1;2; . . . ;RU ð36Þ

For the optimization problem in (31), it is difficult to show the 
convexity of F(R,l1,l2) in (l1,l2).We note that the derivative of
the cost function F with respect to (l1,l2) indicates the direction 
in which the cost function increases. It means that the optimal va- 
lue l�1;l�2

� �
can be found along this opposite direction of the gradi- 

ent (see Chong & Zak (2001)). That is, for a fixed R, the Quasi- 
Newton method is employed to search (l1,l2) until the minimum 
value of F(R,l1,l2) is achieved, say F R;l�1;l�2

� �
. An effective proce- 

dure that makes it possible to calculate the optimal value 
R;l�1;l�2
� �

is presented as follows:

Algorithm 3. Quasi-Newton Method 

INPUT Cost function F(R,l1,l2), R, k, h initial value 

lð0Þ ¼ lð0Þ1 ;lð0Þ2

h iT
, and the tolerance e.

OUTPUT approximat ion solution l�1;l�2
� �T.

Step 1 Set the initial trial solution for l(0), and compute F(l(0)).
Step 2 While j@F/@l1j > e or j@F/@l2j > e do Step 3–4

Step 3 Compute the cost gradient ~rFðlÞ ¼ ½@F=@l1; @F=@l2�
T

and the cost Hessian matrix 

HðlÞ ¼ @2F=@l2
1 @2F=@l1@l2

@2F=@l2@l1 @2F=@l2
2

" #
at point ~lðiÞ.

Step 4 Find the new trial solution 

lðiþ1Þ ¼ lðiÞ � ½HðlðiÞÞ��1~rFðlðiÞÞ.
Step 5 OUTPUT 

To demonst rate the validity and the process of the optimization 
method, some examples are given in Table 1 which consider the 
following cost parameters 

Ch ¼ $250=customer=unit-time; C1 ¼ $180=server=unit-time;
C2 ¼ $15=unit-time; C3 ¼ $30=unit-time; and C4 ¼ $60=server

Under other given parameters, one can find from Table 1 that
the minimum expected cost per unit time of 1682.21 is achieved 
at l�1;l�2

� �
¼ ð27:3756;14:0267Þ using six iterations, which is

R = 3 based on Case (i) with the initial value (l1,l2) = (20,10).
Based on Case (ii) with R = 2 and initial value (l1,l2) = (20,20),
the minimum expected cost per unit time of 1737.30 is achieved 
at l�1;l�2
� �

¼ ð28:8310;18:7206Þ using six iteration s.

6.1.1. Direct search method 
After we obtain the joint optimal value l�1;l�2

� �
of the contin- 

uous variable (l1,l2), we will use the direct search method to
obtain the optimal R such that the expected cost function 
F R;l�1;l�2
� �

attains a minimum, say F R�;l�1;l�2
� �

. Therefore,
the cost minimizatio n problem can be illustrate d mathemati cally 
as:

F R�;l�1;l
�
2

� �
¼ min

R2f1;2;...;RUg
F R;l�1;l

�
2

� �	 

ð37Þ

The procedure to find the optimal solution is described below. A
numerica l example is shown in Table 2 and is based on: (i)
(k,h) = (15,0.5) and (ii) (k,h) = (20,0.8).

Algorithm 4. Direct Search Method 

INPUT RU, F⁄ = M which M is a sufficiently large number 
OUTPUT approximat ion solution S� ¼ R�;l�1;l�2

� �
and

F� ¼ F R�;l�1;l�2
� �

.
Step 1 for R = 1 to RU

Step 2 Set a initial trial solution (l1,l2)
Step 3 Use Quasi-Newton method to find the optimal 
value l�1;l�2

� �
and the cost function F R;l�1;l�2

� �
Step 4 If the algorithm is diverge, back to step 2 end if
Step 5 If F R;l�1;l�2

� �
< F�

Step 6 F� ¼ F R;l�1;l�2
� �

and S� ¼ R;l�1;l�2
� �

Step 7 end if
Step 8 end 
Step 9 OUTPUT S⁄ and F⁄

Based on Table 2, it is noted that the optimal value 
R�;l�1;l�2
� �

¼ ð3;22:86016;11:64466Þ and the correspondi ng mini- 
mum cost F⁄ = 1463.830 for Case (i). For Case (ii),
R�;l�1;l�2
� �

¼ ð4;25:40649;16:13801Þ and F⁄ = 1891.530 are opti- 
mal. Finally, we perform a sensitivity investiga tion to the optimal 
value R�;l�1;l�2

� �
based on changes in specific values of the system 

paramete rs. The numerical results are shown in Table 3 for various 
values of h and k. We find that (i) R⁄ increases as k or h increases;
and (ii) l�1 l�2

� �
increases as k (h) increases. Moreove r, the minimum 

expected cost increases as k or h increases.
6.2. Particle Swarm Optimization 

In this section, the PSO method is implemented to deal with 
the cost optimization problem. A comparison between the Quasi- 
Newton method and the PSO method are also performed. The 
PSO algorithm, introduce d by Kennedy and Eberhart (1995)
and Kennedy, Eberhart, and Shi (2001), works by having a pop- 
ulation of particles and includes the idea of exploitation and 
explorati on searches . Each particle having a position and velocity 
denotes a candidate solution. Each particle’s movement is influ-
enced by its best known local and global positions in the search- 
space.

Algorithm 5. Particle Swarm Optimization 

INPUT R, initial solution X, learning paramete r w and the 
tolerance d

OUTPUT approximat e solution l̂ ¼ ½l̂1; l̂2� and FðR; l̂Þ
Step 1 Initialization, do Step 2 to Step 4
Step 2 Initialize partial best solution PB = X
Step 3 Initialize global best solution 

GB = arg min x{F(R,x);x 2 PB}
Step 4 Initialize velocity V = 0



Table 1
The illustration of the implement process of the Quasi-Newton method.

Iterations 0 1 2 3 4 5 6

Case (i): (k,h) = (20,0.5) with R = 3 and initial value (l1,l2) = (20,10)
F(R⁄,l1,l2) 1862.22 1735.76 1689.68 1682.43 1682.21 1682.22 1682.21 
l1 20 22.7766 25.5320 27.0701 27.3668 27.3756 27.3756
l2 10 11.4360 12.9115 13.8155 14.0192 14.0267 14.0267
@F
@l1

�32.3746 �12.3033 �3.53768 �0.51339 �0.01504 �0.00001 �3 � 10�9

@F
@l2

�74.8311 �28.6228 �8.49048 �1.33248 �0.04521 �0.00005 �4.7 � 10�9

Ls 2.88890 2.22232 1.83577 1.67455 1.64478 1.64379 1.64379 
E[B] 2.00000 1.75253 1.55783 1.46265 1.44412 1.44350 1.44350 

Case (ii): (k,h) = (15,0.8) with R = 2 and initial value (l1,l2) = (20,20)
F(R⁄,l1,l2) 1829.50 1760.25 1739.61 1737.33 1737.30 1737.30 1737.30 
l1 20 23.8016 27.0887 28.6094 28.8273 28.8310 28.8310
l2 20 19.2062 18.8294 18.7303 18.7207 18.7206 18.7206
@F
@l1

�30.3036 �10.9797 �2.84444 �0.32356 �0.00538 �1.8 � 10�6 0.
@F
@l2

�6.92424 �3.14200 �1.01269 �0.13222 �0.00232 �9.9 � 10�7 �3 � 10(�10)

Ls 2.26602 1.72458 1.73603 1.66634 1.65691 1.65674 1.65674 
E[B] 1.35000 1.25501 1.19104 1.16498 1.16134 1.16128 1.16128 

The bold value means that the optimum value of li.

Table 2
The optimal value (l1,l2) and the corresponding minimum expected cost.

R Initial value Coverage value l�1;l�2
� �

Iteration Cost ⁄

(i) (k,h) = (15,0.5)
R = 1 [30,25] [44.20521,24.33688] 7 2022.146 
R = 2 [20,20] [27.50290,14.50211] 6 1527.743 
R = 3 [15,15] [22.86016,11.64466] 6 1463.830 
R = 4 [15,10] [21.33382,10.71376] 6 1492.969 
R = 5 [15,10] [20.88151,10.44900] 5 1545.927 

(ii) (k,h) = (20,0.8)
R = 1 [50,30] [61.14970,40.31473] 9 2890.717 
R = 2 [40,30] [35.80379,23.29807] 8 2056.578 
R = 3 [30,25] [28.23610,18.09640] 8 1896.310 
R = 4 [25,20] [25.40649,16.13801] 5 1891.530 
R = 5 [20,15] [24.38956,15.44162] 5 1933.145 
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Step 5 Generate two random numbers U1 � U(0,1) and 
U2 � U(0,1)

Step 6 Update the particle’s velocity and positions as:

V ¼ wV þ U1ðPB� XÞ þ U2ðeGB� XÞ and X ¼ Xþ V:

Step 7 Update the partial best solution PB and
GB = arg min x{F(R,x);x 2 PB}

Step 8 Repeat Step 5 to Step 7 until 
max{F(R,x1) � F(R,x2);x1,x2 2 PB} < d

Step 9 Output approximate solution l̂ ¼ GB and FðR; l̂Þ
Table 3
The optimal value R�;l�1 ;l�2

� �
and minimum expected value F R�;l�1 ;l�2

� �
for various value

(k,h) (5,0.2) (10,0.2) (20,0.2)

R⁄ 2 2 3
l�1;l�2
� �

[13.0953,4.35200] [19.9021,6.80977] [26.3424,8.6443

F R�;l�1;l�2
� �

729.6488 1011.985 1391.119 
Ls 0.690286 0.983412 1.346797 
E[B] 0.611596 0.796155 1.221962 

(k,h) (10,0.2) (10,0.5) (10,0.8)
R⁄ 2 3 3
l�1;l�2
� �

[19.9021,6.80977] [17.9854,9.09991] [18.2622,11.627

F R�;l�1;l�2
� �

1011.985 1215.012 1356.801 
Ls 0.983412 1.173003 1.326524 
E[B] 0.796155 1.105460 1.235596 
Since the PSO approach does not include the computation of
the gradient, it is suitable for the non-differen tiable objective 
function. On the basis of system parameters h = 0.5 and 
R = 2,3, . . . ,7, the Quasi-Newton method is impleme nted with 
k = 10, 15, 20, and initial solution l(0) = [k,10] T. Based on same 
condition s, the PSO algorithm is executed with an initial solution 
with 20 particles (randomly generated) and learning paramete r
w = 0.2. Some numerical results, including the approximat e opti- 
mal solutions, computati on time (in seconds), iterations needed 
to reach convergence and the minimum cost obtained by the 
two approaches are shown in Table 4. All numerical results are 
obtained by the mathematical program MAPLE 9, which are per- 
formed using a computer with a CPU-Pentium i3-2100, RAM 
4.00 GB.

6.3. Comparis on

A comparative analysis for the two methods is shown in Ta-
ble 4, with changes in initial values of the decision variables for 
given system paramete rs. It is noted that (i) the approximat e
optimal solutions and the correspondi ng minimum cost estab- 
lished by Quasi-Ne wton method and PSO algorithm are very 
close and (ii) the computation time and convergence iteration s
of Quasi-Newton method are evidently less than those of PSO 
method. That is, the Quasi-Newton method is significantly more 
effective than PSO method because the PSO method has numer- 
ous computations /calculations in updating the candidate solution 
matrix.
s of k and h.

(5,0.8) (10,0.8) (20,0.8)

2 3 4
6] [13.7175,8.80645] [18.2622,11.6276] [25.4065,16.1380] 

976.8809 1356.801 1897.530 
0.958229 1.326524 1.864544 
0.818713 1.235596 1.778650 

(20,0.2) (20,0.5) (20,0.8)
3 3 4

6] [26.3424,8.64436] [27.37559,14.02674] [25.4065,16.1380] 
1391.119 1682.213 1897.530 
1.346797 1.643788 1.864544 
1.221962 1.443501 1.778650 



Table 4
The comparison between the Quasi-Newton method and the PSO method with various values of k and initial solutio ns.

R 2 3 4 5 6 7

(i) k;lð0Þ1 ;lð0Þ2

� �
¼ ð10;10;10Þ

Quasi-Newton method 
Iterations 9 7 7 7 7 7
CPU time 17.110 20.173 21.015 26.844 35.424 47.046 
l�1 20.82313 17.98540 17.18035 16.98173 16.94016 16.93263 
l�2 10.88468 9.099914 8.608544 8.493474 8.470412 8.466353 
F R;l�1;l�2
� �

1228.797 1215.012 1259.429 1316.463 1375.963 1435.886 

Particle Swarm Optimization method 
Iterations 22 23 18 13 27 15
CPU time 119.765 187.532 159.459 158.098 417.968 327.624 
l�1 20.00670 17.96513 17.17655 16.98197 16.73007 16.75662 
l�2 9.544196 9.161628 8.615406 8.493446 8.270186 8.534586 
F R;l�1;l�2
� �

1238.469 1215.027 1259.429 1316.464 1376.148 1435.930 

(ii) k;lð0Þ1 ;lð0Þ2

� �
¼ ð15;15;10Þ

Quasi-Newton method 
Iterations 10 7 7 6 6 6
CPU time 19.798 19.344 21.265 21.000 28.017 34.047 
l�1 27.50290 22.86016 21.33382 20.88151 20.76724 20.74225 
l�2 14.50211 11.64466 10.71376 10.44900 10.38488 10.37130 
FðR;l�1;l�2Þ 1527.743 1463.830 1492.969 1545.927 1604.499 1664.242 

Particle Swarm Optimization method 
Iterations 25 14 16 21 17 29
CPU time 150.061 115.296 133.749 248.909 256.893 559.404 
l�1 23.42697 22.86019 21.33448 20.95719 20.76728 20.42189 
l�2 14.68239 11.64474 10.71396 10.31709 10.38477 10.90717 
F R;l�1;l�2
� �

1542.834 1463.831 1492.968 1545.984 1604.499 1665.103 

(iii) k;lð0Þ1 ;lð0Þ2

� �
¼ ð20;20;10Þ

Quasi-Newton method 
Iterations 15 7 6 6 6 6
CPU time 27.359 17.998 16.859 21.357 27.64 38.028 
l�1 33.86672 27.37559 25.03292 24.24485 24.01695 23.95997 
l�2 17.95195 14.02674 12.60472 12.14069 12.01170 11.98050 
F R;l�1;l�2
� �

1799.006 1682.213 1693.087 1740.360 1797.412 1856.803 

Particle Swarm Optimization method 
Iterations 15 24 20 18 15 23
CPU time 83.075 189.732 168.342 206.8 233.689 455.797 
l�1 33.86676 27.42405 25.05725 24.24761 24.01718 23.95270 
l�2 17.95193 13.96756 12.60232 12.12005 12.01238 11.95651 
F R;l�1;l�2
� �

1799.007 1682.223 1693.087 1740.360 1797.414 1856.803 
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7. Concluding remarks 

In this paper, we modeled an infinite capacity M/M/ R queue
using some practical situations wherein arrivals may require an
additional optional service (second optional channel by the server).
The stationary probabilitie s were able to be efficiently computed 
by using the two algorithms, in matrix and using matrix approach 
with the aid of computer software. We also presented efficient
search approaches to determine the optimal number of channels 
and the optimal service rates simultaneou sly to incur minimum 
cost and we evaluated various system performance measures un- 
der the optimal operating conditions. The comparison between 
the Quasi-Newton method and the PSO method were also under- 
taken. The results rendered are useful in the contexts of modeling 
banking service systems, computer job processing, automatic ma- 
chine quality control services channels and many other related 
applications .
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