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Phase Conjugation by Four-Wave 
Mixing in Single-Mode Fibers 

Weishu Wu, Pochi Yeh, Fellow, IEEE, and Sien Chi 

Abstruct- We present an exact solution to the coupled-mode 
equations, governing four-wave mixing in single-mode fibers, un- 
der the perfect phase-matching condition. The solution accounts 
for pump depletion and fiber absorption. Optimum length of 
fiber is derived and phase conjugation efficiency is calculated and 
discussed. The calculated results are in good agreement with the 
reported experimental results. 

I. INTRODUCTION 

OUR-WAVE mixing (FWM) in optical fibers [1]-[5] is F an important nonlinear process which is useful for phase 
conjugation and wavelength conversion [6], [7]. Recently, 
an experiment using four-wave mixing to achieve temporal 
pulse restoration in optical fibers was reported [8]. In the 
experiment, an optical pulse was phase conjugated by four- 
wave mixing in a single mode fiber. Generally speaking, 
the pulse shape undergoes a chirp reversal as a result of 
phase conjugation. This leads to a restoration of the pulse 
shape as the pulse propagates through another fiber and 
undoes all the chromatic dispersion experienced by the original 
pulse. Wavelength conversion near the zero-dispersion point 
of fibers was also reported [7].  As a result of these unique 
properties, four-wave mixing has potential applications in 
long-haul fiber optical communication systems and all-optical 
multiwavelength networks. From a practical point of view, 
high phase conjugation efficiencies (or wavelength conversion 
efficiencies in the context of wavelength conversion) with a 
significant depletion of the pump are desirable. Due to the 
moderate nonlinearity of fibers, such a depletion occurs only in 
a fairly long fiber. Under these conditions, fiber absorption can 
not be neglected. Although a number of special cases of optical 
four-wave mixing in fibers have been studied, a general theory 
including pump depletion and fiber absorption is not available. 
Most analytical solutions were based on the assumption of no 
pump depletion [l], [ 2 ] ,  while others taking into account pump 
depletion were based on the assumptions of no absorption [5], 
[ 101 and no group velocity dispersion (GVD) [9], which are not 
realistic for long fibers. In this letter, we present an analytical 
solution for four-wave mixing in single-mode fibers, taking 
into account both pump depletion and fiber absorption. We 
show that efficient phase conjugation is possible at reasonable 
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input powers. Optimum fiber length will be derived from the 
solution so that the maximum efficiency can be obtained. 

Consider the propagation of light in a single-mode fiber. 
Using notations similar to those of [3], the electric fields of the 
four waves can be written as, E3 = A3(z)F3(x, y)exp[i(w,t- 
k 3 z ) ] ,  j = 1 ,2 ,3 ,4 ,  where w;s are the frequencies and 
k,’s are the propagation constants in the fiber. A1 through 
A4 denote the amplitudes of the two pump waves, probe 
wave (to be phase conjugated) and the phase conjugate wave, 
respectively, and F3 (z, y)’s are wave functions describing the 
transverse distribution of the four waves in the fiber. We 
assume that all four frequencies are near the zero-dispersion 
point of the single-mode fiber. However, the spacing between 
the four waves is large enough so that only the phase- 
matched, four-wave mixing process can be efficiently built 
up, while all other high-order wave mixing processes between 
the newly generated waves and the input waves can be 
neglected. We further assume that the self- and/or cross- 
phase modulation (SPM-XPM), the phaseshift induced by the 
intenisty-dependent refractive index, can be neglected. This 
assumption will be justified later for cases of moderate input 
powers, which is true for diode lasers operating near 1.3 or 
1.5 pm. First we consider the nondegenerate case where all 
four frequencies are different. Partially degenerate four-wave 
mixing (PDFWM), which implies w1 = w2, will be considered 
later. The nondegenerate FWM process is governed by the 
following coupled-mode equations, [3] 

n2w2 a 
- -i-2f2134A;A3A4e~p(iAkz) - -A2 
dA2 - 
dz c 2 

- 

n2w3 a! 
- -i-2f3412A1A2A4exp(-iAkz) - -A3 dA3 - 
dz C 2 

- 

. n2w4 a 
d z  C 2 
-- dA4 - - ~ - - 2 f ~ ~ ~ ~ A ~ A ~ A ~ e x p ( - z A k z )  - -A4 (1) 

where n2 is the nonlinear index coefficient, f ’ s  are constants 
describing mode overlapping in the single-mode fiber [3], a 
is the fiber absorption coefficient, and Ak = k l  + k2 - k3 - 
k4 is the difference of the propagation constants describing 
the phase mismatch of the FWM process. In (1) the terms 
responsible for SPM-XPM are neglected as we assumed. 

In order to solve (l), we further assume that w1 M w2 M 

w3 M w4 and all f ’ s  are equal to l/Aeff, where Aeff is the 
effective area of the fiber [3]. We first solve the equations for 
cases where phase matching is satisfied, i.e., A k  = 0. This 
can be achieved by setting w1 - wo = wo - w2 , where WO is 
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the zero-dispersion frequency of the fiber [8]. When the unit 
for nz is expressed in terms of cm2/W, Ais can be substituted 
by, Aj = f lexp(i$j)  = &exp(-az/2)exp(i$j), where 
Pj's are the corresponding powers of the four waves [3]. (1) 
can be rewritten as the following 

dQi 
dz - = - 4 y d W e x p ( - a z ) s i n A $  

* = + 4 y d W e x p ( - a z ) s i n A $  
dz 

dQ4 = + 4 y d m e x p ( - a z ) s i n A $  
dz 

and 
1 1 1  

x J W e x p  (-0.) cos A 4  (3) 

where y = nzw/cAeE is a constant describing the four-wave 
mixing gain and A4 = $1 + $2 - 43 - qb4. It can be easily 
verified from (2) and (3) that there exist four independent 
invariants: & I +  Q2 + Q3 + Q4, Q3 - Q4 - Q1 - Q2, and 
JQIQzQ~Q~cosA$.  

Equations ( 2 )  and (3) are similar to those of phase locking 
in coupled oscillators and the solutions of (3) can be readily 
obtained as A$ = f7r/2. This solution can also obtained by 
the use of the invariants [5] .  Using the boundary condition of 
P4(0) = 0, we know that d-4 cos A$ = 0 for all z .  
Because all four waves are finite when z # 0, we conclude 
that cosA$ = 0, which leads to A$ = f 7 ~ / 2 .  According to 
the boundary conditions and (2),  we find that A$ = ~ / 2  is 
a proper solution. Note that we have assumed that the initial 
input of the fourth (phase conjugate) wave is absent, which 
is valid for lightwave systems designed for phase conjugation 
or wavelength conversion. Substituting the solution back into 
(2) ,  the coupled equations can be integrated for cases of equal 
pump powers, i.e., Pl(0) = Pz(0) = Pp(0). With the help of 
the invariants and the boundary conditions, the solution of the 
coupled equations takes the form of 

Q1 = P p ( 0 ) ~  
QZ = P p ( 0 ) ~  
Q3 = Pp(O)(1- Y) + P3(0) 
Q4 = Pp(O)(1- Y), 

(4) 

which leads to the following differential equation for y (0 5 
Y 5 11, 

dY 
Y J [ P  - Y) + P3(01/PP(O>I(1 - 51) 

= -4yPp(0) exp (-az)dz. (5 )  

(5 )  can be exactly integrated and y is given by 

r + l  
r c o s h 2 ( m f )  + 1 Y =  

where T E P,(0)/Pp(O) and f = 2yPp(0)[1 - exp(-az)]/a. 

~ 
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Fig. 1 .  Power coupling due to nondegenerate FWM in single-mode fibers 
as functions of fiber length with a = 0.23 d B b .  Input powers are (a) 12 
dBm and (b) 15 dBm. 

In the case of partially degenerate four-wave mixing 
(PDFWM) where w1 = w2, only three distinct waves are 
present. Then (1) should be modified as 

. ~ Z W l  a 
-- dA1 - - ~ - 2 f ~ ~ ~ ~ A ; A ~ A 4 e x p  (ZAlcz) - ~ A I  
dz 

-- dA3 - -iE f3411A1A1A~exp (-ZAkz) - 
dz 

(Y 
-A3 (7) 2 

nzw4 CY 

c 2 
dA4 - -i- f4311A1A1A~exp(-ZAlcz) - -A4 
dz 
-- 

where Alc = 2kl - kg - k4. With boundary conditions 
PlI,=o = Pp(0), P3Iz=o = P3(0), and P4Iz=o = 0, the 
solution of (7), assuming Ak = 0 again, can be similarly 
obtained as 

PI = Pp(0)y exp(-az) 

L' J 
1 

P4 = zPp(0)(l - y)exp ( -az )  

where y is given again by (6) with the parameters r and 
f replaced by 2P3(0)/Pp(O) and yPp(0)[l - exp(-az)]/a, 
respectively. 

The magnitude of y is a measure of power transfer between 
the pump waves and the new wave. Note that in the absence 
of absorption, the function f in y reduces to 2yPp(0)z. 
With the increase of the fiber length z,y approaches zero, 
which means a complete power transfer to the new wave. 
However, fiber absorption can not be neglected from the 
practical point of view. In that case, y is of the functional form 
of [1-exp(-az)]/a. We can conclude that the power coupling 
from the pump wave to the,phase conjugate wave will cease 
if z >> l/a. The power coupling described by (4) is plotted 
in Fig. 1 for a = 0.23 dB/km, nz = 3.2 x lo-" m2/W, X = 
1.55 pm and AeE = 70pm2(y = 1.853 x 10-5cm-1 W-'). It 
shows that when z is greater than a certain value (around 13 
km, or 0.7/a, for Pp(0) = P3(0) = 15 dBm), fiber absorption 
prevails. Consequently, the power of the phase conjugated 
wave begins to decrease. Therefore, a proper choice of the 
fiber length is important. 

The optimum length of the fiber can be derived from (4). 
By setting dP4(O)/dz = 0, we obtain the condition for the 
optimum length, 

(9) 
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Fig. 2. Efficiency of phase conjugation by PDFWM in single-mode fibers 
as functions of fiber length with CY = 0.23 dB/km for different pump powers, 
and (a) Ps(0) = -6 dBm, (b) Ps(0) = 12 dBm. 

If yPp(0) is not very large such that yPp(0)/a << 1, then 
y M 1 and t a n h m f  M mf. The optimum fiber 
length, according to (9), is given by az = In( 1 + a/-, 
For nondegenerate FWM, the optimum length is 0.88/a when 
Pp(0) = Ps(0). When P3(0) << Pp(0), the optimum length 
is given by (ln3)/a. 

The phase conjugation efficiency (or the wavelength conver- 
sion efficiency in the context of the wavelength conversion), 
defined as P4(z)/P3(0), can be written as 

exp( -a.). (10) 
s i n h 2 m f  

r c o s h 2 m f  + 1 7 l =  

The dependence of the efficiency on the fiber length is plotted 
in Fig. 2 for different values of pump powers for case of 
PDFWM. P3(0) is assumed to be -6 dBm and 12 dBm 
in Figs. 2(a) and 2(b) respectively. Note that the maximum 
efficiency occurs around 20.8 km (or l . l /a)  in Fig. 2(a), and 
a shorter distance in Fig. 2(b). These optimum fiber lengths 
are in good agreement with above prediction. Efficiency as 
high as 22%, or -6.6 dB, can be achieved for Pp(0) = 15 
dBm and P3(0) = -6 dBm. Using the parameters given in 
[7] and [8], we find that the calculated results are in excellent 
agreement with the experimental results. 

When A k  # 0, the terms in sinA+ and cosA+ in (2) and 
(3) become sin(A4 - Akz) and cos(A+ - Akz). However, 
the solution A+ = ~ / 2  can still be considered valid provided 
Ak is small enough such that AkL << 1. In this case, y is still 
given by (6) while f is modified to 

(a) (b) 

Fig. 3. The effect of SPM/XPM on power coupling by nondegenerate FWM. 
Solid lines represent the results obtained by numerical methods while the 
dashed lines represent the analytical resultsfor (a) Pp(0) = P3(0) = 14 
dBm and (b) Pp(0) = P3(0) =16 dBm. 

1.55 pm for input powers 14 dBm and 16 dBm, respectively. 
The results indicate that SPM and/or XPM have very little 
effect on four-wave mixing power coupling for input powers 
up to 16 dBm. For larger input powers, SPM and XPM may 
no longer be negligible if the fiber is fairly long. However, 
the analytical solution still gives a good approximation either 
by choosing a short fiber or by adjusting Ak to a finite value 
to compensate the phase modulation effects [3]. Therefore, for 
most currently available diode lasers operating at 1.5 pm, the 
effects of SPM-XPM can be reasonably neglected. 

In conclusion, we have derived an analytical solution for 
phase conjugation via four-wave mixing in single-mode fibers. 
Pump depletion and fiber absorption have been taken into 
account. Optimum fiber length as a function of input powers 
for efficient generation of phase conjugate waves has been 
derived. It has been shown that SPM-XPM effects can be ne- 
glected for input powers up to 16 dBm. The results calculated 
using the analytical solution are in good agreement with the 
reported experimental results. 
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