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Yield-Related Process Capability Indices for
Processes of Multiple Quality Characteristics
Jyh-Jen Horng Shiau,a*† Chia-Ling Yen,a W. L. Pearnb and Wan-Tsz Leea
Process capability indices (PCIs) have been widely used in industries for assessing the capability of manufacturing processes.
Castagliola and Castellanos (Quality Technology and Quantitative Management 2005, 2(2):201–220), viewing that there were
no clear links between the definition of the existing multivariate PCIs and theoretical proportion of nonconforming product
items, defined a bivariate Cpk and Cp (denoted by BCpk and BCp, respectively) based on the proportions of nonconforming
product items over four convex polygons for bivariate normal processes with a rectangular specification region. In this paper,
we extend their definitions to MCpk and MCp for multivariate normal processes with flexible specification regions. To link the
index to the yield, we establish a ‘reachable’ lower bound for the process yield as a function of MCpk. An algorithm suitable
for such processes is developed to compute the natural estimate of MCpk from process data. Furthermore, we construct via
the bootstrap approach the lower confidence bound of MCpk, a measure often used by producers for quality assurance to
consumers. As for BCp, we first modify the original definition with a simple preprocessing step to make BCp scale-invariant.
A very efficient algorithm is developed for computing a natural estimator B̂Cp of BCp. This new approach of BCp can be easily
extended to MCp for multivariate processes. For BCp, we further derive an approximate normal distribution for B̂Cp, which
enables us to construct procedures for making statistical inferences about process capability based on data, including the
hypothesis testing, confidence interval, and lower confidence bound. Finally, the proposed procedures are demonstrated
with three real data sets. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

P
rocess capability indices (PCIs) are some measures developed for engineering convenience to quantify process performances.
Facing stronger-than-ever competitions nowadays, manufacturing companies must assure product quality to their customers
to stay competitive. By revealing how well the actual process is in conformance with the manufacturing specifications, PCIs have

been widely used in industries as a metric of quality assurance in recent years, and the role is becoming more and more important.
Univariate PCIs have been extensively studied in the literature. Some indices such as Cp, Cpu, Cpl, Cpk, Cpm, and Cpmk have

shown good values in evaluating univariate processes. See, for example, Kane,1 Chan et al.,2 Pearn et al.,3 Kotz and Johnson,4 Kotz
and Lovelace,5 and Pearn and Kotz.6

In many applications, especially in high-technology industries, processes are so complex that the product quality often is affected
by multiple characteristics simultaneously. As a result, appropriate multivariate PCIs for assessing processes/products of more than
one quality characteristic are desirable. Nonetheless, multivariate PCIs have received comparatively a lot less attention than univariate
PCIs in the literature.

In recent years, more and more studies have been devoted to multivariate PCIs. Chan et al.7 extended their univariate index Cpm in
Chan et al.2 to a multivariate version by measuring how far away from the target vector the process mean is in the Mahalanobis
distance. Pearn et al.3 proposed a multivariate version of Cp and Cpm with an approach they claimed to be more natural than that
of Chan et al.7 Hubele et al.8 proposed a process capability vector for bivariate normal processes, and later, Shahriari et al.9 extended
it to the multivariate case. Taam et al.10 proposed a multivariate Cp as the ratio of two areas, the area of a modified specification (also
called the modified engineering tolerance region by some researchers), defined as the largest ellipsoid centering at the target value
and completely within the original specification over the area of the elliptical process region that covers 99.73% of the multivariate
normal process. Considering the possible shift of the process mean from the target vector, Taam et al.10 further modified this index by
taking into account an adjustment factor that measures the closeness between the process mean and the target vector to define a
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multivariate Cpm index exactly the same way as Pearn et al.3 Recently, Pan and Lee11 revised Taam et al.’s modified engineering
tolerance region by taking into account the correlation between multiple quality characteristics and proposed two new multivariate
PCIs for Cp and Cpm, respectively, which could reflect more correctly the process precision and accuracy. Chen12 proposed a multivari-
ate PCI using the concept of a tolerance zone, which allows flexible specifications and no assumptions on the process distribution.
Pal13 proposed a bivariate PCI as the ratio of the area of the specification rectangle and the 99.73% area of the process region,
similar to the index proposed by Taam et al.10 Bothe14 proposed a multivariate Cpk index defined as ZP/3, where P is the conforming
proportion and ZP is the Pth quantile of the standard normal distribution. Wang et al.15 compared three multiple PCIs proposed by
Taam et al.,10 Chen,12 and Shahriari et al.,9 respectively, via graphical and computational examples. Wang and Chen16 and Wang
and Du17 proposed multivariate PCIs using principal component analysis (PCA). Recently, Shinde and Khadse18 pointed out
that the specification region corresponding to the principal components used in Wang and Chen’s PCI definition was not correct
and suggested an alternative method for assessing multivariate process capability based on the empirical probability distribution
of principal components. In an earlier work, Shinde and Khadse19 reviewed and compared some multivariate PCIs based on fraction
conforming interpretation. Gonzalez and Sanchez,20 by relating the actual variability of the process with the prespecified
nonconforming proportion, proposed a unitary PCI that can be applied to non-centered univariate processes as well as to general
multivariate processes.

Among univariate PCIs, Cpk could be the most popular one, not only because it accounts for both process mean and variance
when assessing the process capability but probably also because it links directly to the process yield by the following inequality given
in Boyles:21

2Φ 3Cpk
� �� 1⩽%yield⩽Φ 3Cpk

� �
; (1)

where %yield stands for the process yield, and Φ(�) is the cumulative distribution function (c.d.f.) of the standard normal distribution.
Therefore, Cpk is sometimes referred to as a yield assurance index. It is well known that the lower bound, 2Φ(3Cpk)� 1, is not a trivial
bound; instead, it is a ‘reachable’ lower bound in the sense that it can be reached by some processes.

However, in the literature, the link between multivariate PCIs and the product yield was seldom emphasized. One exception
was the work of Castagliola and Castellanos.22 Castagliola and Castellanos,22 viewing that there were no clear links between
the definition of the existing multivariate PCIs and theoretical proportion of nonconforming product items, defined two
indices, BCpk and BCp, based on the proportions of nonconforming product items over four convex polygons for bivariate
normal processes with a rectangular specification region. This definition of BCpk is rather interesting because it accounts for
the relative position and the orientation of the process distribution with respect to the specification region. Specifically, as
an extension of Cpk, BCpk quantifies the process capability based on the smallest conforming proportion of the four convex
polygons formed by dividing the rectangular specification region with the two main axes (i.e., the principal components) of
the process distribution.

As defined by Castagliola and Castellanos,22 the relationship between BCpk and BCp is analogous to that between the univariate Cpk
and Cp. Specifically, because the notion of Cp only concerns with the process variability, BCp was defined as the maximum BCpk value
of all bivariate normal distributions with the same covariance matrix as the process covariance matrix Σ, which is analogous to the
univariate case. Although this definition works for the univariate case, unfortunately it fails the scale-invariance property for multivariate
processes. As a result, the value of BCp is not consistent when quality characteristics are measured in different units or scales.

The main purpose of this paper is to extend the notion of BCpk and BCp to multivariate PCIs (denoted by MCpk and MCp,
respectively) for multivariate processes that may have more than two quality characteristics. We first define MCpk and then
establish the same ‘reachable’ lower bound for the process yield in terms of MCpk as in (1). Because the computation method of
Castagliola and Castellanos22 is only for bivariate processes with rectangular specification regions, we further develop a
computation method that can be implemented for multivariate processes with flexible specification regions. As for BCp, we modify
the definition of Castagliola and Castellanos22 with a simple preprocessing step; then BCp becomes scale-invariant. Also, because

the computation method provided in Castagliola and Castellanos22 for B̂Cp, a natural estimate of BCp, is very time-consuming, a very

efficient algorithm is developed. Moreover, we derive an approximate distribution for B̂Cp , which enables us to provide statistical
procedures for making inferences about process capability based on data, including hypothesis testing, confidence interval (CI),
and lower confidence bound. The results of statistical inferences are very useful in decision making. In particular, the lower confidence
bound is a measure of high practical value because it directly links to the quality assurance. Finally, we also extend BCp to MCp for
multivariate processes.

The rest of the paper is organized as follows. In Section 2, we first review the index BCpk proposed by Castagliola and Castellanos22

for bivariate processes. Then, we establish the link between this index and the product yield. We further extend this index to
multivariate processes of more than two characteristics. After that, we give an algorithm for the estimation of MCpk and propose
obtaining lower confidence bounds by bootstrap methods. For demonstration, we apply the methods to simulated examples in
the bivariate case. We also study the distribution of a natural estimator of BCpk by simulation. In Section 3, for BCp, we show how

to obtain a scale-invariant BCp and how and why B̂Cp can be efficiently calculated. We further derive an approximate normal

distribution for B̂Cp and then use it to construct statistical procedures for inferences about process capability. In Section 4, as
illustrative examples, we apply the proposed indices and inference procedures to the two sets of real (bivariate) data presented in
Castagliola and Castellanos22 and a trivariate dataset obtained from a stencil printing process described in Pan and Lee.11 Finally,
we conclude the paper with a brief summary and remark in Section 5.
Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013, 29 487–507
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2. Multivariate Cpk index–a yield measuring process capability index

2.1. Alternative definition for Cpk

Assume that the quality characteristic X of a product item follows a normal distribution with mean m and variance s2, denoted by
N(m, s2). Let [LSL,USL] be the corresponding lower and upper specification limits. The usual definition of Cpk as defined by Kane1 is

Cpk ¼ min
USL� m

3s
;
m� LSL

3s

� �
; (2)

which accounts for not only the spread of the process but also the location of the process mean relative to the specification
limits. Equivalent to (2), an alternative definition for Cpk was proposed by Castagliola and Castellanos.22 This definition is based on
the lower and upper proportions of nonconforming product items, pL = P(X⩽ LSL) and pU = P(X⩾USL), as follows. Because X follows
N(m, s2), pL ¼ Φ � m�LSL

s

� �
and pU ¼ Φ � USL�m

s

� �
. Thus, Cpk is equivalent to

1

3
min �Φ�1 pLð Þ;�Φ�1 pUð Þ� �

; (3)

because of the fact that the c.d.f. Φ(�) is a strictly increasing function. Similarly, the usual definition of Cp = (USL� LSL)/6s proposed by
Kane1 is equivalent to

1

6
�Φ�1 pUð Þ �Φ�1 pLð Þ� �

:

2.2. Castagliola and Castellanos’ definition of BCpk

Let X1 and X2 be the quality characteristics of interest with the specification limits [LSL1,USL1] for X1 and [LSL2,USL2] for X2. These limits
define a rectangular specification area. Assume that X= (X1, X2)

T follows a bivariate normal distribution with mean m= (m1, m2)
T and

variance-covariance matrix Σ. Applying eigenvalue–eigenvector decomposition to Σ, one can obtain two eigenvalues, l21⩾l
2
2 > 0,

and the associated eigenvectors, v1 and v2. Let R= [v1, v2]. Then RTR= I and Σ can be expressed as Σ= RV RT, where V is the diagonal

matrix with diagonal elements l21 and l22 . In fact, the matrix R represents the rotation matrix that rotates the original axes to the
main axes of the bivariate normal distribution (see Figure 1); the directions of the eigenvectors v1 and v2 correspond to the main axes;

and l21 and l22 are the variances of X projected onto the two main axes, respectively. More specifically, if we let Si ¼ vTi X , then

Si � N vTi m; l
2
i

� �
for i= 1, 2; moreover, S1 and S2 are independent. In the PCA context, v1 and v2 are called principal components,

and S1 and S2 are called principal component scores.
Suppose we move the origin to the process mean m and rotate the two original axes to the directions of v1 and v2. Then, the

two new axes divide the plane into four regions, A1, A2, A3, and A4. Obviously, P(X2Ai) = 1/4 for i=1, 2, 3, 4. Denote the specification
region by A. Let Qi= Ai ∩ A and qi= P(X2Qi) for i=1, 2, 3, 4. Then, the probability that X is in Ai but not in the specification region A is
pi=1/4� qi. See Figure 1. In other words, pis are the proportions of nonconforming product items in the four quadrants of the new
coordinate system.

By analogy to the alternative definition of Cpk given in (3), Castagliola and Castellanos22 defined a bivariate Cpk as

BCpk ¼ 1

3
min �Φ�1 2p1ð Þ;�Φ�1 2p2ð Þ;�Φ�1 2p3ð Þ;�Φ�1 2p4ð Þ� �

: (4)

This definition is similar to the univariate case as in (3), except that 0⩽ pi⩽ 1/4 for i= 1, 2, 3, 4 in the bivariate case, whereas 0⩽ pU,
pL⩽ 1/2 in the univariate case. We will extend this definition to higher dimensions later.
1LSL 1USL

2LSL

2USL

2X
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1Q

3Q
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Figure 1. Explaining diagram of BCpk
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2.3. Nonconforming rate based on BCpk

According to the definition of BCpk in the last subsection, we can establish a link between the nonconforming rate (denoted by %NC)
and BCpk as follows. First note that, by (4),

BCpk ¼ � 1

3
max Φ�1 2p1ð Þ;Φ�1 2p2ð Þ;Φ�1 2p3ð Þ;Φ�1 2p4ð Þ� �

:

Because Φ� 1(�) is a strictly increasing function, we have

BCpk ¼ � 1

3
Φ�1 2pmaxð Þ; (5)

where pmax =max{p1, p2, p3, p4}. Then, by (5),

pmax ¼ 1

2
Φ �3BCpk
� �

: (6)

Note that pmax⩽%NC⩽ 4pmax. Plugging (6) into this inequality, we obtain

1

2
Φ �3BCpk
� �

⩽%NC⩽2Φ �3BCpk
� �

: (7)

The upper bound in (7) is very useful and is not a loose bound, meaning that it is reachable for some processes. Usually, producers
can take this upper bound as a metric of quality assurance to customers. For example, if the process is with BCpk = 1.00, one can
guarantee that there will be at most 2700 non-conformities in 1,000,000 product items. On the other hand, the lower bound in (7)
is quite conservative; nevertheless, it is a convenient bound, meaning when a practitioner obtains a BCpk value, a lower bound of
the nonconforming rate as such is immediately available to him/her.

Table I gives the upper and lower bounds of the nonconforming rate %NC for various values of BCpk. Figure 2 plots the bounds. We
can see the bounds drop sharply as BCpk increases and soon carried out to near zero level when BCpk ≥ 1.5.

The second inequality of (7) is equivalent to

2Φ 3BCpk
� �� 1⩽% yield; (8)

which provides a ‘reachable’ lower bound for the yield. Note that this lower bound is the same as that in (1) for the univariate case.
When the BCpk value of the process is available, producers can assure the yield level with this lower bound to their customers.

2.4. Extending BCpk to higher dimensions

We now generalize the alternative definition of BCpk to multivariate processes of k characteristics where k> 2. By the same notion
for the bivariate case, dividing the Euclidean space Rk into 2k hyperquadrants by the k main axes (i.e., principal components) of the
k-variate distribution, we can define a multivariate Cpk index as

MCpk ¼ 1

3
min �Φ�1 2k�1p1

� �
;�Φ�1 2k�1p2

� �
; . . . ;�Φ�1 2k�1p2k

� �� �
¼ � 1

3
max Φ�1 2k�1p1

� �
;Φ�1 2k�1p2

� �
; . . . ;Φ�1 2k�1p2k

� �� �
¼ � 1

3
Φ�1 2k�1pmax

� �
;

(9)

where pi is the probability of a randomly selected sample that is in the ith hyperquadrant but not in the specification region for i=1, 2,
, 2k and pmax ¼ max p1; p2; . . . ; p2k

� �
. Equivalently,
Table I. Bounds of non-conformities based on BCpk

BCpk

Non-conformities (in ppm)

Lower bound Upper bound

0.60 17965.15956 71860.63823
0.80 4098.76796 16395.07185
1.00 674.94902 2699.79606
1.33 16.51832 66.07330
1.50 1.69884 6.79535
1.60 0.39666 1.58666
1.67 0.13608 0.54430
2.00 0.00049 0.00197

Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013, 29 487–507
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pmax ¼ 1

2k�1
Φ �3MCpk
� �

:

Because pmax⩽%NC⩽ 2kpmax, we can also obtain bounds for the nonconforming rate in the general multivariate case as

1

2k�1
Φ �3MCpk
� �

⩽%NC⩽2Φ �3MCpk
� �

; (10)

which is equivalent to

2Φ 3MCpk
� �� 1⩽%yield⩽1� 1

2k�1
Φ �3MCpk
� �

: (11)

2.5. Estimation of MCpk

With the definition of MCpk given in (9), a natural estimator of MCpk is

M̂Cpk ¼ � 1

3
Φ�1 2k�1p̂max

� �
;

where p̂max ¼ max p̂1; p̂2; . . . ; p̂2k
� �

with p̂i being the sample nonconforming proportion in the ith hyperquadrant for i=1, 2, . . ., 2k.
The method to calculate p̂i and q̂i proposed by Castagliola and Castellanos22 is a fairly complicated integration method that

turns two-dimensional integrations over convex polygons into line integrals based on Green’s formula, which cannot be directly

extended to higher dimensions. Next, we propose an algorithm to calculate M̂Cpk from a sample of n k-dimensional quality
characteristic vectors, x1, x2, . . ., xn.

Algorithm for Calculating M̂Cpk:

1. Estimate m and Σ by the usual sample mean and sample covariance matrix as

m̂ ¼ 1

n

Xn
j¼1

xj and Σ̂ ¼ 1

n� 1

Xn
j¼1

xj � m̂
� �

xj � m̂
� �T

:

2. Compute eigenvalues l̂
2

1; l̂
2

2; . . . ; l̂
2

k and eigenvectors v̂1; v̂2; . . . ; v̂ k of Σ̂. (Denote by A1; A2; . . . ;A2k the 2
k hyperquadrants of the

Euclidean space Rk using the center m̂ as the origin and the k orthogonal directions v̂1; v̂2; . . . ; v̂ k as the coordinate axes.)
3. Compute an estimate p̂i of pi for i= 1, 2, . . ., 2k by Monte Carlo integration as follows. Generate {X1, X2, . . ., XN}, a very

large number of data from Nkðm̂; Σ̂Þ. For each Xj, j= 1, 2, . . .,N, determine which hyperquadrant it belongs to by the signs of

Xj � m̂
� �T

v̂ l; l ¼ 1; 2; . . . ; k
n o

. Compute the proportion of Xjs that are in the intersection of the specification region A and

the ith hyperquadrant Ai by
Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013, 29 487–507
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q̂i ¼
♯ Xj 2 Ai∩A
� �

N
(12)

and compute

p̂i ¼
1

2k
� q̂i for i ¼ 1; 2; . . . ; 2k :

4. Compute p̂max ¼ max p̂1; p̂2; . . . ; p̂2k
� �

and then the estimate for MCpk by

M̂Cpk ¼ � 1

3
Φ�1 2k�1p̂max

� �
:

We remark that despite requiring intensive computation for higher dimensions because of the curse of dimensionality, this Monte
Carlo method works for all dimensions and any shapes of the specification region.

However, when studying the distribution of M̂Cpk empirically, we need to repeat the estimation procedure for each realization of

M̂Cpk. Then the algorithm described earlier becomes computationally infeasible because each replication would need the generation

of a huge amount of data from its own Nkðm̂; Σ̂Þ , say, N= 1,000,000 or even 10,000,000 in the bivariate case, for Monte Carlo
integration; and a large number of replications are needed to obtain a good approximation. To overcome this computation difficulty,
we develop a procedure that requires generating N data from the standard multivariate normal distribution Nk(0, I) only once—which
in turn can be carried out by simply generating N� k data from the (univariate) standard normal distribution—as described in the
following.

Because Σ is assumed symmetric positive definite, there exists a unique symmetric positive definite matrix Σ1/2 such that Σ= (Σ1/2)
(Σ1/2) (Golub and Van Loan,23 p. 395). To simplify the notation, (Σ1/2)� 1 is denoted by Σ� 1/2. It is well known that the affine
transformation of Z=Σ� 1/2(X� m) transforms a random vector X following Nk(m,Σ) to a vector variate Z following the standard
multivariate normal distribution Nk(0, I). With this, we can just generate N vector variates, {Zj, j= 1, 2, . . .,N} only once from Nk(0, I)

and reuse them for all replications. Specifically, for a replication with sample mean m̂ and sample covariance matrix Σ̂, we transform

the specification region by the transformation T �ð Þ ¼ Σ�1=2 � � m̂ð Þ . When the specification region is a rectangle (or cube), we
only need to transform the vertices and then reconstruct the specification region in the transformed space. Then we can compute
q̂is in (12) by

q̂i ¼
♯ Zj 2 A′i∩A′
� �

N
for i ¼ 1; 2; . . . ; 2k ;

where A′i is the ith hyperquadrant of Rk in the standard coordinate system, and A′ is the transformed specification region T(A).
For simplicity, we illustrate our method by examples in the bivariate case with rectangular specifications. The rectangular

specification is the most widely used shape in real-life applications. Table II lists the distribution parameters and the specifications
of four examples. For illustration, Figure 3 plots, for each case, a set of sample data with size n= 100, the rectangular specification

region, and the two orthogonal lines crossed at the sample mean with the eigenvectors of Σ̂ as their directions.

To evaluate how well B̂Cpk estimates BCpk, we generate 1000 sets of data with size n= 100 for each case and compute B̂Cpk for each
set of data with the aforementioned algorithm using N=1, 000, 000. Tables III–VI present, respectively, for Cases 1–4, the true values

of q1, q2, q3, q4, and BCpk as well as the sample mean and sample standard deviation of 1000 values of q̂1, q̂2, q̂3, q̂4, and B̂Cpk. The bias

defined as the difference between the sample mean and the true value is also included. The results indicate that B̂Cpk is a reasonable
estimator.
Table II. Parameters and specifications of four bivariate normal examples

Distribution parameters X1 spec X2 spec

m1 s21 m2 s22 r LSL1 USL1 LSL2 USL2

Case1 6.0 0.8 7.0 1.0 0.0 2.0 10.0 3.0 10.0
Case2 5.0 0.5 6.0 0.45 0.5 2.0 8.0 3.0 8.0
Case3 3.0 1.0 6.0 1.0 0.2 0.5 6.5 1.0 7.0
Case4 1.0 1.0 1.0 1.0 0.2 1.0 5.0 1.0 3.0

Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013, 29 487–507
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Figure 3. Illustration of the four cases in Table II, displaying 100 data points, the corresponding principal components, and the specification region

Table III. Estimation results of Case 1

True value Sample mean Sample SD Bias

q1 0.2493360 0.2491962 0.0006310 0.0001398
q2 0.2493280 0.2491763 0.0006431 0.0001517
q3 0.2499820 0.2499745 0.0000264 0.0000075
q4 0.2499860 0.2499727 0.0000302 0.0000133
BCpk 1.0004445 0.9969328 0.07807013 0.0035117

Table IV. Estimation results of Case 2

True value Sample mean Sample SD Bias

q1 0.2499920 0.2492297 0.0136783 0.0007623
q2 0.2499970 0.2492439 0.0136790 0.0007531
q3 0.2499870 0.2492214 0.0136778 0.0007656
q4 0.2499990 0.2492467 0.0136792 0.0007523
BCpk 1.3488170 1.3100525 0.1081182 0.0387645

Table V. Estimation results of Case 3

True value Sample mean Sample SD Bias

q1 0.1613160 0.1606882 0.0177669 0.0006278
q2 0.1784460 0.1778262 0.0143900 0.0006198
q3 0.2462340 0.2459017 0.0023246 0.0003323
q4 0.2499080 0.2498783 0.0001174 0.0000297
BCpk 0.3084807 0.3094362 0.0459877 �0.0009555

J.-J. H. SHIAU ET AL.
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Table VI. Estimation results of Case 4

True value Sample mean Sample SD Bias

q1 0.2364030 0.2290143 0.0098276 0.0073887
q2 0.0139380 0.0179137 0.0150866 �0.0039757
q3 0.0000060 0.0198540 0.0008475 �0.0003036
q4 0.0159930 0.0157176 0.0165061 �0.0038610
BCpk 0.0000100 0.0005120 0.0014184 �0.0005020
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2.6. Statistical inference about MCpk via bootstrap approach

For statistical inference about any PCI, practitioners often emphasize the lower confidence bound of the PCI rather than the usual CI,
viewing from the quality assurance aspect. Among PCIs, lower confidence bounds of indices in the Cpk-family are of particular
interests for practitioners because the yield corresponding to the lower confidence bound represents the worst yield at a certain
confidence level. So far as we know, no lower confidence bound has been developed for the Cpk index for processes of multiple
characteristics in the literature.

Note that, with a set of process data, we can only obtain an M̂Cpk. To infer anything about MCpk, for example, its lower confidence

bound, usually, we would need the distribution of M̂Cpk or have many M̂Cpks. Unfortunately, the distribution of M̂Cpk is analytically
intractable, and repeating experiments to obtain a number of estimates is not possible or economical for most of the applications.
Under such circumstances, the bootstrap approach introduced by Efron24 is commonly used for statistical inferences. With the
bootstrap method, one can repeat the resampling procedure many times to obtain ‘bootstrap’ estimates of the parameter of interest
without specific model assumptions to infer about the population parameter.

We emphasize here that the purpose of the bootstrap is not to obtain a better parameter estimate because the bootstrap

distribution is always centered around the statistic calculated from the data (here the value of M̂Cpk), not the unknown population

value (MCpk). Rather, the bootstrap is useful and convenient for quantifying the behavior of a parameter estimate (M̂Cpk), for example,
obtaining its standard error/bias, or calculating CIs.

In this study, for making inferences on MCpk, we also choose the bootstrap rather than other approaches to deal with this problem
because it is simple, convenient to perform, and having sound statistical justifications for statistical inferences.

The bootstrap procedure can be briefly described as follows. Suppose that we have a random sample {X1, X2, . . ., Xn} of size n from a

population with the c.d.f. Fθ, in which θ is the parameter of interest. Let θ̂ be an estimator of θ. Denote by X�
1 ; X

�
2 ; . . . ; X

�
n

� �
a

resampled data set of size n obtained by resampling with replacement from {X1, X2, . . ., Xn}. Then, X�
j s are independent and identically

distributed following the empirical distribution with the c.d.f. Fn xð Þ ¼ 1
n

Pn
i¼11 Xi⩽xð Þ. Calculate θ̂ with this resampled data set and

denote it by θ̂
�
. Repeat this for B times, and obtain θ̂

�
j ; j ¼ 1; 2; . . . ; B

n o
. Then, we can have inferences about θ based on the bootstrap

estimates θ̂1
�; θ̂2

�; . . . ; θ̂B
�.

In this section, taking BCpk as an illustrative example, we describe how to obtain lower confidence bounds for MCpk via various
bootstrap methods, including the basic bootstrap method, percentile bootstrap method, standard bootstrap method, and bias-
corrected percentile bootstrap method. For more details about bootstrap methods, see, for example, Davison and Hinkly,25 Efron,24

Efron and Tibshirani,26 and Carpenter and Bithell.27

1. Basic bootstrap method

Following Davison and Hinkly,24 one can obtain an approximate 100(1� a)% CI of θ by the basic bootstrap method as

2θ̂ � θ̂�
B 1�a

2ð Þ½ �ð Þ; 2θ̂ � θ̂�
B a

2ð Þ½ �ð Þ
� 	

;

where [x] stands for the nearest integer of x, θ̂
�
ið Þ is the ith ordered estimate from the bootstrap procedure, and θ̂ is the

estimate from the original sample. Analogously, an approximate 100(1� a)% lower confidence bound of the basic bootstrap method
is 2θ̂ � θ̂� B 1�að Þ½ �ð Þ.

2. Standard bootstrap method

The average and standard deviation of B bootstrap estimates θ̂
�
1; θ̂

�
2; . . . ; θ̂

�
B are

�θ
� ¼ 1

B

XB
i¼1

θ̂�i and S� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B� 1

Xn
i¼1

θ̂
�
i � �θ

�� �2s
;

respectively. One can use normal approximation to obtain an approximate 100(1�a)% CI of θ based on the standard bootstrap
method as

�θ
� � Za

2
S�; �θ� þ Za

2
S�

� �
and the corresponding approximate 100(1�a)% lower confidence bound as �θ� � ZaS�.
Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013, 29 487–507
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3. Percentile bootstrap method

The percentile bootstrap method simply takes the sample 100(a/2) and the 100(1� a/2) percentage points as the confidence bounds
to construct an approximate 100(1� a)% CI as

θ̂
�
B a

2ð Þ½ �ð Þ; θ̂� B 1�a
2ð Þ½ �ð Þ

� 	

and the corresponding approximate 100(1� a)% lower confidence bound as θ̂
�
B að Þ½ �ð Þ.

4. Bias-corrected percentile bootstrap method

It is possible that the bootstrap distribution obtained using only a sample of the complete bootstrap distribution may be shifted
higher or lower than would be expected; thus, the bias-corrected percentile (BCP) bootstrap method was suggested by Efron and
Tibshirani25 to correct this bias. First, using the distribution of θ̂

�
, calculate the probability

p0 ¼ P θ̂
�⩽θ̂

� �
by the proportion of θ̂i

�s satisfying θ̂�i ⩽θ̂. Second, calculate

z0 ¼ Φ�1 p0ð Þ;
PL;a=2 ¼ Φ 2z0 � za=2

� �
;

PU;a=2 ¼ Φ 2z0 þ za=2
� �

:

Finally, an approximate 100(1� a)% CI obtained by the BCP bootstrap method is

θ̂
�
BPL;a=2½ �ð Þ; θ̂� BPU;a=2½ �ð Þ

� 	

and the corresponding approximate 100(1� a)% lower confidence bound is θ̂�
BPL;a½ �ð Þ.

These four bootstrap methods have their own advantages and disadvantages, see Carpenter and Bithell.26 Briefly speaking, the
percentile method is simple to calculate and often works well, especially when the sampling distribution is symmetrical; however,
it may not have the correct coverage when the sampling distribution is skewed. Both basic bootstrap and standard bootstrap CIs
require statistics with small bias and sampling distributions close to normal. When bias or skewness is present in the bootstrap
distribution, one can use BCP bootstrap method; the basic, standard, and percentile intervals are inaccurate under these
circumstances unless the sample sizes are very large. Carpenter and Bithell26 provided a practical guide on the use of bootstrap
CIs, including guides on when they should be used, which method should be chosen, and how they should be implemented. Which
bootstrap methods are proper for a particular application depends on the sampling distribution, sample size, bootstrap number, or
even the original data.

For demonstration, we apply these four bootstrap methods to Case 1 example given in Table II, which has a BCpk very close to 1.00.
Consider various sample sizes n= 30(10)100, 125(25)200, 250, 300. For each generated sample, we use the algorithm described earlier

to obtain a B̂Cpk. Here, for the Monte Carlo integration, we generate N= 1, 000, 000 data from N2(0, I). We then perform the bootstrap
resampling B=3000 times to obtain 3000 bootstrap estimates of BCpk. With these 3000 estimates, we obtain a lower confidence
bound (LCB) for each of the four bootstrap methods. To see the performance of the proposed LCB, we repeat these steps for 300
times to obtain 300 LCBs.

To compare the four bootstrap methods, we consider three criteria: (i) the mean of LCB (the closer to the nominal value the better);
(ii) the standard deviation of LCB (the smaller the better); and (iii) the coverage probability (the closer to the confidence level the
better). Each of these three criteria has its own merit. As their sample version, Table VII lists the sample mean, sample standard
deviation, and coverage rate of the simulated 300 LCBs obtained at 90% confidence level under various sample sizes n for each of
the four bootstrap methods. To help us read the simulation results, for each sample size n, we highlight the mean LCB closest to
1.00, the smallest standard deviation, and the coverage rate closest to 90% among the four methods; we also ‘teletype’ the worst
ones. From Table VII, we observe the following:

• It is clearly seen that the mean LCB becomes closer to the nominal value 1.00 and the standard deviation becomes smaller as
data size n becomes larger for all bootstrap methods.

• The percentile method performs the best, and the basic method performs the worst under the criteria (i) and (ii); more
specifically, the performance orderings of the four methods are percentile> standard> BCP>basic under both criteria.

• The coverage rates of the four methods are reasonable in general, but the ordering is mixed, no apparent patterns. The basic
bootstrap method seems performing the worst (especially when n is large), whereas the other three methods seem not too
much different.

We remark that the ordering based on empirical LCB values is not necessarily the actual ordering because of the estimation error.
In summary, all four methods are reasonable methods with the percentile method being the best and the basic method being the
worst. Therefore, we recommend the percentile bootstrap method for computing the LCB of MCpk.
Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013, 29 487–507



Table VII. The sample mean, sample standard deviation, and coverage rate of 300 lower confidence bounds at 90% confidence
level for an example with BCpk� 1

Data size Sample mean Sample SD Coverage rate (%) Sample mean Sample SD Coverage rate (%)

Basic Standard
30 0.812937 0.16718 86.33 0.856004 0.13526 86.33
40 0.828009 0.13559 89.33 0.863823 0.11560 89.00
50 0.846850 0.12064 87.00 0.879382 0.10116 86.00
60 0.855107 0.10840 88.67 0.880893 0.09870 89.33
70 0.862006 0.09320 91.67 0.886200 0.08901 87.67
80 0.869648 0.08790 90.33 0.890566 0.08171 88.00
90 0.884494 0.08394 91.67 0.903152 0.07898 90.33
100 0.886191 0.07873 93.00 0.904637 0.07520 90.67
125 0.899050 0.06851 94.33 0.914252 0.06745 89.67
150 0.906501 0.06354 92.33 0.918361 0.06206 89.33
175 0.916951 0.05776 92.00 0.925228 0.05672 90.33
200 0.926768 0.05584 92.00 0.935849 0.05548 90.33
250 0.928409 0.04986 91.33 0.937738 0.04836 90.00
300 0.934398 0.04385 93.00 0.938921 0.04360 93.33

Percentile Bias-corrected percentile
30 0.862382 0.13089 86.33 0.853172 0.14994 85.00
40 0.869565 0.11272 89.33 0.860984 0.12254 88.33
50 0.883955 0.09887 85.33 0.874425 0.10969 86.00
60 0.885301 0.09680 89.33 0.878285 0.10110 88.67
70 0.890589 0.08901 87.33 0.882519 0.09169 89.00
80 0.894095 0.08039 87.67 0.888119 0.08327 89.33
90 0.906300 0.07792 90.33 0.901452 0.08044 90.67
100 0.907816 0.07405 90.33 0.902246 0.07539 91.67
125 0.916704 0.06675 89.67 0.912058 0.06693 92.33
150 0.920422 0.06145 89.00 0.917068 0.06243 89.67
175 0.926494 0.05673 90.67 0.923867 0.05735 91.33
200 0.937575 0.05518 88.67 0.935379 0.05571 89.00
250 0.938241 0.04828 89.67 0.937381 0.04846 89.67
300 0.940157 0.04361 92.00 0.940005 0.04439 92.33

Bold emphasis indicates the (best) method with the lower confidence bound closest to 1.00, the least standard deviation, and the
coverage rate closest to 90% under the three criteria, respectively; on the other hand, the teletyped numbers indicates the worst
method among the four methods.
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2.7. Empirical distribution function of B̂Cpk

To acquire some idea about the sampling distribution of B̂Cpk , we simulate 100, 000 B̂Cpk s for Case 1 (BCpk� 1.00) and Case 2
(BCpk� 1.33) examples in Table II by the algorithm described in Section 2.5 with sample data of size n= 500 and using
N=10, 000, 000 simulated N2(0, I) data for Monte Carlo integration.

Figure 4 displays the distributions of 100, 000 B̂Cpks in the form of histograms for these two cases, which look fairly normal-like.

To see if B̂Cpk behaves similarly to a normal distribution, we further calculate the empirical cumulative distribution function of the

simulated B̂Cpks and compare it with a normal distribution for each case. See Figure 5. In addition, Figure 6 presents the Q-Q plots of the

100,000 simulated B̂Cpks for both cases. These plots suggest that the sampling distribution of B̂Cpk is fairly close to a normal distribution.

3. Multivariate Cp index—a variation measuring process capability index

3.1. Bivariate Cp index: BCp

In the univariate case, the index Cp is defined as

Cp ¼ USL� LSL

6s
;

which only accounts for the process variation and totally ignores the location of the process mean m. So Cp is sometimes referred to as
a variation measuring index. By their definitions, Cpk⩽ Cp and the equality holds only when m= (LSL+USL)/2, that is, when the process
is well centered in the specification region, the most desirable location.
Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013, 29 487–507
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Figure 4. Histograms of 100,000 B̂Cpks with a normal curve for (a) BCpk� 1.00 (b) BCpk� 1.33
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Figure 5. Comparing the empirical cumulative distribution function (c.d.f.) of 100,000 B̂Cpks with a normal distribution for (a) BCpk� 1.00 and (b) BCpk� 1.33

J.-J. H. SHIAU ET AL.

4
9
7

Because of this, Castagliola and Castellanos22 defined a new bivariate Cp index, BCp, as the maximum value of BCpk over the process
mean m and the angle θ of the rotation matrix R that rotates the original axes to the two principal components (i.e., eigenvectors of Σ)
as described earlier in Section 2.2. Specifically,

BCp 	 max
m;θ

BCpk: (13)

Because BCpk itself is defined as the minimum of the four values,�Φ� 1(2p1),�Φ� 1(2p2),�Φ� 1(2p3), and�Φ� 1(2p4), the maximum
value of BCpk is necessarily reached when �Φ� 1(2p1) =�Φ� 1(2p2) =�Φ� 1(2p3) =�Φ� 1(2p4), that is, when p1 = p2 =p3 = p4
and p	 p1 + p2 + p3 + p4 is minimum; or equivalently when q1 = q2 =q3 = q4 and q	 q1 + q2 +q3 + q4 is maximum. As a result,
Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013, 29 487–507
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BCp ¼ � 1

3
Φ�1 2� p

4

� �
¼ � 1

3
Φ�1 p

2

� �
¼ � 1

3
Φ�1 1� q

2

� 	
: (14)

Then, it remains to find the m and θ such that the corresponding process has the previously mentioned property. Castagliola and
Castellanos22 proposed a solution (in fact, a procedure) by letting m1 = (LSL1 +USL1)/2, m2 = (LSL2 +USL2)/2 and varying the rotation
angle θ of the rotation matrix R to search for the optimal p. The definition and the procedure seem reasonable intuitively.

Unfortunately, the BCp defined as in (13) is not scale-invariant, in the sense that the value of BCp varies if we rescale the process
variables X1 and X2, or simply use another unit for the variables. Let us take the four examples in Table II to demonstrate this scaling
problem. We rescale each case by X ′

1 ¼ 2X1 and X ′
2 ¼ 3X2. Table VIII lists the parameters and specifications of each case after scaling.

Table IX presents the values of BCpk and BCp along with the corresponding values of θ and p obtained by Castagliola and Castellanos’s
Table VIII. Parameters and specifications of four examples after scaling

Distribution parameters X ′
1 spec X ′

2 spec

m1 s21 m2 s22 r LSL1 USL1 LSL2 USL2

Case1′ 12.0 3.2 21.0 9.0 0.0 4.0 20.0 9.0 30.0
Case2′ 10.0 2.0 18.0 4.05 0.5 4.0 16.0 9.0 27.0
Case3′ 6.0 4.0 18.0 9.0 0.2 1.0 13.0 3.0 21.0
Case4′ 2.0 4.0 3.0 9.0 0.2 2.0 10.0 3.0 9.0

Table IX. BCp and BCpk values of four examples before and after scaling

BCpk BCp

Case 1 1.0004445 1.2528016 θ=90∘, p=0.0000428
Case 1′ 1.0004445 1.2098245 θ=25∘, p=0.0000710
Case 2 1.3488170 1.3862485 θ=0∘ (or 90∘,180∘, 270∘), p=0.0000080
Case 2′ 1.3488170 1.393727 θ=170∘, p=0.000007
Case 3 0.3084807 0.9257124 θ=0∘ (or 90∘,180∘, 270∘), p=0.0013710
Case 3′ 0.3084807 0.9334442 θ=170∘, p=0.0012763
Case 4 0.0000100 0.3353143 θ=45∘, p=0.0786108

∘
Case 4′ 0.0000100 0.3550567 θ=75 , p=0.0716998

Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013, 29 487–507
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procedure for all four cases. From Table IX, it is clearly seen that θ, p, and BCp change their values after rescaling whereas BCpk stays
the same. The scale-invariance property of BCpk is apparent because rescaling will not change the probability of the quality
characteristic vector X being in each specification polygon Qi.

In real practice, it is very common for people to use different units for quality characteristics. Any process assessment scheme
definitely should not be affected by the unit used, which means, mathematically, a well-defined capability index should be invariant
of scaling. Here, we propose a simple solution to fix this problem: rescale the data and the specifications such that the specification
rectangle becomes a square centered at the origin (0,0), which in some sense is to ‘equalize’ the importance of the variables. Let the
specification region be the rectangle [LSL1,USL1]� [LSL2,USL2]. As an example, we can transform the quality characteristic vector

X= (X1, X2)
T into X ′ ¼ X ′

1; X
′
2

� �T
by X ′

1 ¼ 1
USL1�LSL1

X1 � USL1þLSL1
2

� �
and X ′

2 ¼ 1
USL2�LSL2

X2 � USL2þLSL2
2

� �
. Then, the specification rectangle is

transformed into the unit square � 1
2 ;

1
2

 �� � 1
2 ;

1
2

 �
. In fact, the requirement of the unit length is not necessary, a square centered

at the origin is sufficient. Then BCp becomes scale-invariant because the distribution of X′ and the specification region will be the same
no matter which scale was used originally.

Suppose X is a bivariate normal random vector following N m1;m2;s
2
1; s

2
2;r

� �
. Then, X′ follows N 1

USL1�LSL1
m1 � USL1þLSL1

2

� �
;

�
1

USL2�LSL2
m2 � USL2þLSL2

2

� �
;

s21
USL1�LSL1ð Þ2 ;

s22
USL2�LSL2ð Þ2 ; rÞ.

3.2. Estimation of BCp

In this subsection, we first develop an algorithm to calculate B̂Cp , and then derive an approximate normal distribution for B̂Cp by
Taylor expansion. Based on this normal approximation, we will develop procedures for statistical inference about BCp, including
the following: (i) testing whether the process is capable or not by hypothesis testing; (ii) constructing a CI of BCp to obtain the
precision of the estimate; and (iii) providing a lower confidence bound for practical usage in quality assurance.

As mentioned earlier, in the univariate case, if we move the process mean m to the middle of the two specification limits,
then Cp = Cpk, that is, Cp ¼ maxm Cpk . For the bivariate case, it is slightly more complicated because we need to center and

scale the variables first and then find maxθ BCpk . By setting the transformed specification region to be � 1
2 ;

1
2

 �� � 1
2 ;

1
2

 �
, it is

obvious that we should move the process mean to the origin. For computing efficiency, instead of rotating the process distribution
for each θ to find/calculate BCp by the Monte Carlo integration (i.e., varying the transformed process distribution against the
fixed transformed specification region), we keep the distribution fixed and rotate the specification region so that only one set of
N-simulated transformed process data is needed for all θ to perform Monte Carlo integration. Figure 7(a) shows the relative
position of the square and the process distribution for θ= 0∘ (or 90∘, 180∘, 270∘) whereas Figure 7(b) shows that for θ= 45∘

(or 135∘, 225∘, 315∘).

Because BCp is the maximum value of BCpk, it is natural to repeatedly use the algorithm for calculating BCpk to calculate B̂Cp as
follows.

Algorithm for calculating B̂Cp:

1. Transform process data by
2X

specification

process 

(a)

1X

2X
process 

(b)

1X

specification

Figure 7. The two relative positions of the specification square w.r.t. the bivariate distribution when (a) θ= 0∘ and (b) θ= 45∘ (corresponding to BCp)
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5
0
0

X ′
1 ¼

1

USL1 � LSL1
X1 � USL1 þ LSL1

2

� 	

and

X ′
2 ¼

1

USL2 � LSL2
X2 � USL2 þ LSL2

2

� 	

so that the specification region becomes the unit square � 1
2 ;

1
2

 �� � 1
2 ;

1
2

 �
.

2. Compute the sample covariance matrix Σ̂ from the transformed data.
3. Calculate the eigenvalues l̂21 and l̂22 of Σ̂ .
4. Loop θ over 0⩽ θ< 360∘ to find the optimal angle: for each candidate value of θ,
• rotate the square � 1
2 ;

1
2

 �� � 1
2 ;

1
2

 �
by an angle θ;

• use the same approach for Monte Carlo integration as that in calculating B̂Cp to compute q̂1 θð Þ, q̂2 θð Þ, q̂3 θð Þ, and q̂4 θð Þ, the
probabilities that a bivariate random vector followingN 0; 0; l̂21; l̂

2
2; 0

� �
falls in the rotated specification region intersecting the

four quadrants, respectively;
• then, compute q̂ θð Þ ¼ q̂1 θð Þ þ q̂2 θð Þ þ q̂3 θð Þ þ q̂4 θð Þ , the probability that the bivariate random vector falls in the rotated
square (see Figure 7 for (a) θ= 0∘ and (b) θ= 45∘ ).

Find an angle θ such that q̂ θð Þ is maximized over 0⩽ θ< 360∘. Denote the optimal θ by θ* and q̂ θ�ð Þ by q̂�.

5. Compute B̂Cp ¼ � 1
3Φ

�1 1�q̂�

2

� �
.

In an earlier study, we applied this algorithm to various bivariate normal processes and found that we always got θ* = 45∘ for the
optimal q̂� . Then, we started wondering: is it true that BCp equals BCpk when and only when the process mean is at the center of
the specification square and the two axes of the process distribution are exactly the two crossed lines connecting the vertices of
the square as depicted in Figure 7(b)? The answer is yes. To show this, first, it is fairly obvious to see that only two particular positions
of the square can have q1 = q2 = q3 = q4 as depicted in Figure 7; that is, when θ is (i) 0∘ (also, 90∘, 180∘, 270∘) as in Figure 7(a), or (ii) 45∘

(also, 135∘, 225∘, 315∘) as in Figure 7(b). This observation was further confirmed by computer computation. Next, we show that q
(45∘)> q(0∘).

Because BCpk is a function of the yield q, we first derive the formula for q. As before, by considering the relative position of the

transformed process and specification region, we can assume, without loss of generality, that the process follows N 0; 0; l21; l
2
2; 0

� �
,

and the specification square for θ=0∘ has vertices
ffiffiffi
2

p
=2; 0

� �
, 0;

ffiffiffi
2

p
=2

� �
, � ffiffiffi

2
p

=2; 0
� �

, and 0;� ffiffiffi
2

p
=2

� �
; see Figure 7(a). Denote the

yields for the cases of θ=0∘ and θ= 45∘ as a function l1 and l2 by q0(l1, l2) and q*(l1, l2), respectively. Then, given l1 and l2, for
the case of θ=0∘, we have

q0 l1; l2ð Þ ¼ 2Φ
1

2l1

� 	
� 1

� 	
2Φ

1

2l2

� 	
� 1

� 	
;

because X1 and X2 are independent. For the case of θ= 45∘, we have

q� l1; l2ð Þ ¼ 4
R ffiffi

2
p

=2
0

R�x1þ
ffiffi
2

p
=2

0

1

2pl1l2
e
�
x21
2l21

� x22
2l22dx2dx1

¼ 4
R ffiffi

2
p

=2
0

1ffiffiffiffiffiffi
2p

p
l1

e
�
x21
2l21 Φ

�x1 þ
ffiffiffi
2

p
=2

l2

� 	
� 1=2

� 	
dx1
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Because it is difficult to show that q0(l1, l2)< q*(l1, l2) for all l1 and l2 analytically, we verify the claim by computation as follows.
We calculate these two values by numerical integration for various values of l1 and l2. Figure 8 presents the ratio q*/q0 as a function
of l1/l2 for l1 =.25,.375,.5, 1, 2, 4, 8 and l1/l2 = 1, 2, . . ., 100. The solid line presents q*/q0 for l1 = 1, the three dashed lines are
for l1 =.25,.375,.5, and the three dotted lines are for l1 = 2, 4, 8, respectively. It is clearly seen that the values of q*/q0 are all greater
than 1.

Therefore, instead of looping over various values of θ to calculate the optimal q̂ , we can simply set θ* = 45∘ and calculate B̂Cp

directly. This would save tremendous amount of computing time. Thus, we can simplify the computing algorithm by replacing the
original Step 4 with the following Step 4*:

4*. Generate N bivariate normal variates fromN 0; 0; l̂
2

1; l̂
2

2; 0
� �

. Compute the proportion of the N bivariate data that fall in the unit

square as depicted in Figure 7(b) to obtain q̂� .
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3.3. Statistical inference about BCp via normal approximation

The exact distribution of B̂Cp is mathematically intractable. Fortunately, we can obtain a normal approximation to the distribution of

B̂Cp by taking its first-order Taylor expansion as follows.
The partial derivatives of q*(l1, l2) with respective to l1 and l2 are, respectively,

@q� l1; l2ð Þ
@l1

¼ 4

Z ffiffi
2

p
=2

0
f

x1
l1

� 	
x21
l21

� 1
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 !
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dx1 þ f
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2
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2l1
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f
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2
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2

p
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l22

 !
dx1;

which can be evaluated numerically when given l1 and l2.

Denote Q1 l1; l2ð Þ 	 @q� l1;l2ð Þ
@l1

and Q2 l1; l2ð Þ 	 @q� l1 ;l2ð Þ
@l2

. Then, an approximate distribution of B̂Cp can be obtained as

N BCp;
Q2
1 l1; l2ð Þl21 þ Q2

2 l1; l2ð Þl22
2� 36n f 3BCp

� � �2
 !

(15)

by Taylor expansion. The derivation of (15) is given in the Appendix.

Plugging l̂ i for li, i= 1, 2, we can construct from the approximate normal distribution of B̂Cp an approximate 100(1-a)% CI as

B̂Cp 
 Za=2
Q2
1 l̂1; l̂2
� �

l̂
2

1 þ Q2
2 l̂1; l̂2
� �

l̂
2

2

� �1=2
ffiffiffiffiffiffiffiffi
72n

p
f 3B̂Cp

� � (16)

and an approximate 100(1�a)% lower confidence bound as

B̂Cp � Za
Q2
1 l̂1; l̂2
� �

l̂
2

1 þ Q2
2 l̂1; l̂2
� �

l̂
2

2

� �1=2
ffiffiffiffiffiffiffiffi
72n

p
f 3B̂Cp

� � ; (17)

where Za is the ath upper quantile of the standard normal distribution.
To investigate whether the process capability meets customers’ demands or not, practitioners can perform hypothesis testing on

BCp. Consider the hypotheses

H0 : BCp⩽C process is not capableð Þ
H1 : BCp > C process is capableð Þ

where C> 0 is the preset acceptable capability level. A naive test can be conducted with the following test statistic:
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Z� ¼
ffiffiffiffiffiffiffiffi
72n

p
f 3B̂Cp

� �
B̂Cp � C
� �

Q2
1 l̂1; l̂2
� �

l̂
2

1 þ Q2
2 l̂1; l̂2
� �

l̂
2

2

� �1=2
and the decision making rule at the significance level a is

reject H0; if Z� > Za;
do not reject H0; if Z�⩽ Za:

3.4. The simulated examples

We apply the proposed methods for BCp to the four examples in Table II. To evaluate how well the estimation method performs, we

generate 1000 sets of 100 bivariate normal data to obtain 1000 B̂Cps for each case. Table X presents the sample mean and sample

standard deviation of 1000 B̂Cps as well as the true value of BCp for each of Cases 1–4. With the sample size only 100, the estimation
result is quite satisfactory. Table XI gives the 90% approximate LCB and 90% approximate CI of one simulated data set of size n= 100
for each case. The results indicate that the estimation method is satisfactory.

3.5. Multivariate Cp index: MCp

The BCp can be easily extended to the general case of k quality characteristics. After rescaling the data and the specifications as
described earlier, the definition (13) becomes

MCp 	 max
m;R

MCpk;

where R is any rotation matrix in the Euclidean space Rk. Analogous to (14), MCp satisfies

MCp ¼ � 1

3
Φ�1 2k�1 � p

2k

� 	
¼ � 1

3
Φ�1 p

2

� �
¼ � 1

3
Φ�1 1� q

2

� 	
;

where q is the probability of a random normal vector with mean 0 and covariance matrix Σ=diag(l1, l2, . . ., lk) falling in the origin-
centered unit cube with the 2k vertices all at axes, analogous to Figure 7(b).
4. Three real-life application examples

For demonstration, we employ our estimating methods given in the last two sections to three real-life industrial examples. The first
two examples were described in Chen12 involving bivariate processes, and the third one involves a trivariate process described in Pan
et al.28

The first example was originally presented by Sultan29 regarding an industrial process in which the Brinell hardness (X1) and
the tensile strength (X2) are the quality characteristics. The Chen–Sultan’s data consist of 25 samples taken from a process with the
specifications for hardness and tensile strength being [112.7, 241.3] and [32.7, 73.3], respectively. Figure 9 depicts the data and the
Table X. Summary of 1000 B̂Cps

Case True value Sample mean Sample SD Bias

1 1.245320 1.2453743 0.0692768 �0.000054
2 1.404933 1.404937 0.0882426 �0.000004
3 0.927604 0.9277373 0.0532411 �0.000133
4 0.326505 0.3280435 0.0230090 �0.001539

Table XI. 90% approximate lower confidence bound and confidence interval of BCp from one data set

Case LCB CI

1 1.183757 [1.166305, 1.324336]
2 1.350439 [1.334990, 1.474876]
3 0.870863 [0.854778, 1.000430]

4 0.298699 [0.290817, 0.362191]
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specification region. Table XII presents the estimate B̂Cpk along with the corresponding 90% CIs and 90% lower confidence bounds

obtained by employing the four bootstrap methods with B= 3000 for the first example. Based on the B̂Cpk value of 1.050281, we can
obtain by inequality (7) the estimated upper bound of the nonconforming rate to be 1628 ppm. Also, taking the LCB of the percentile
bootstrap method as an example, with LCB = 0.7977719, by inequality (8), we can say that, with 90% confidence, the product yield is
at least 98.3303%.

The second example was originally presented by Pal13 regarding a manufacturing process of a bobbin with the height (X1) and the
weight (X2) as quality characteristics. In this example, one hundred samples were taken from a process with the specification [40, 42]
for height and [44, 46.5] for weight. The data and the specification region are displayed in Figure 10. The results of this example are

presented in Table XIII. For this example, the B̂Cpk ¼ 0:9610820, which leads to an estimated upper bound of the nonconforming rate
of 3936 ppm. Also, with the LCB of the percentile bootstrap method being 0.8825650, one can conclude that the yield of the product
is at least 99.1896% with 90% confidence.

As to BCp, by our efficient algorithm given in Subsection 3.2 (with Step 4*), for Chen–Sultan’s example, we obtain B̂Cp ¼ 1:1228071
with the optimal p̂ ¼ 0:0001890. Based on the normal approximation, (16) gives a 90% CI (0.8577761, 1.3878381) and (17) gives a 90%

lower confidence bound (0.9163140). Similarly, for Pal’s data, we obtain B̂Cp ¼ 1:1890221with the optimal p̂ ¼ 0:0000903, an approx-
imate 90% CI (1.0748297, 1.3032146) and an approximate 90% lower confidence bound (1.1000516).

The third example is related to the example presented in Pan and Lee11 regarding the solder paste stencil printing process, a cost-
effective process that has been widely used in traditional high-volume surface mount assembly. For more descriptions about the pro-
cess, see Pan et al.28 In this process, solder-deposited volume (X1), area (X2), and height (X3) are the three quality characteristics with
high correlation. There are two kinds of stencils (of the same pattern) with thickness, 0.1mm (4mil) and 0.15mm (6mil) (1mil = 0.0254
mm). And there are five different aperture sizes, 30, 25, 20, 16, and 12 (mil). Pan and Lee11 considered a QFP4mil, 30 process to demon-
strate the effectiveness of their new multivariate PCIs, where QFP4mil, 30 represents that the process is for quad flat package (QFP), one
of the advanced packages, with the stencil thickness as 4mil and aperture size as 30. The specifications and target values for this
QFP4mil, 30 process are given in Table XIV. The authors kindly provided us with 150 measurements (not the same set of data as in
Pan and Lee11) from the same process. Figure 11 displays the 150 data points and the specification region. We first check if the
process follows a multivariate normal distribution by applying the Shapiro–Wilk normality test to these measurements, which
Table XII. BCpk estimate, 90% confidence intervals, and 90% bootstrap lower confidence bounds of Chen–Sultan’s example

B̂Cpk ¼ 1:050281
p̂1 p̂2 p̂3 p̂4

0.000312 0.000043 0.000407 0.00005
90% confidence interval
Basic Standard Percentile Bias-corrected percentile
(0.7543558, 1.3818883) (0.7196855, 1.3147242) (0.7186737,1.3462062) (0.8036442,1.4171286)

90% bootstrap lower confidence bound
Basic Standard Percentile Bias-corrected percentile
0.8451777 0.7853992 0.7977719 0.8544017
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Table XIII. BCpk estimate, 90% confidence intervals, and 90% bootstrap lower confidence bounds of Pal’s example

B̂Cpk ¼ 0:9610820
p̂1 p̂2 p̂3 p̂4

0.000984 0.000083 0.000011 0.000081
90% confidence interval
Basic Standard Percentile Bias-corrected percentile
(0.8523437,1.0597296) (0.8581923,1.0663559) (0.8624344,1.0698203 ) (0.8641023,1.0719583)

90% bootstrap lower confidence bound
Basic Standard Percentile Bias-corrected percentile
0.8778255 0.8811811 0.8825650 0.8842324

Table XIV. The target values and specifications for QFP4mil, 30 process

Quality characteristic Target USL LSL

Deposited volume (X1) 0.0787 0.10250 0.0549
Deposited area (X2) 0.7870 0.96870 0.6052
Deposited height (X3) 0.1000 0.12765 0.07235
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gives a p-value of 0.8489; so that the normality holds. The sample mean vector and the sample covariance matrix are, respectively,
�X
T ¼ 0:075859; 0:817971; 0:097080ð Þ and

S ¼
0:0000250 0:0002601 0:0000012
0:0002601 0:0028808 �0:0000079
0:0000012 �0:0000079 0:0000151

0
@

1
A:

Applying the proposed procedures to this dataset, we obtain the estimation results (presented in Table XV) for MCpk, including

the estimate M̂Cpk and the 90% CI/LCB obtained via bootstrap with B= 3000. With M̂Cpk ¼ 0:9355062, the estimated upper bounds
of the nonconforming rates is 5008 ppm by inequality (10). Again, taking the LCB of the percentile bootstrap method as an example,
with LCB = 0.8620695, by the first inequality in (11), we can say that, with 90% confidence, the yield of the product is at least
99.4992%. As to MCp, by extending our efficient algorithm given in Subsection 3.2 to three dimensions (see Subsection 3.5 for the

extension of Step 4*), we obtain M̂Cp ¼ 1:1615466 with the optimal p̂ ¼ 0:0000616.
For practitioners’ convenience, MATLAB (MathWorks, Natick, MA, USA) programs for computing the CIs and lower confidence

bounds using the bootstrap approach are provided in http://www.stat.nctu.edu.tw/~jjhs/MPCI.zip or upon request.
Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013, 29 487–507
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Figure 11. Data and specification region of stencil printing example

Table XV. MCpk estimate, 90% confidence intervals, and 90% bootstrap lower confidence bounds of stencil printing example

M̂Cpk ¼ 0:9355062
p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8

0.000005 0.000011 0.000015 0.000014 0.000597 0.000602 0.000611 0.000626
90% confidence interval
Basic Standard Percentile Bias-Corrected Percentile
(0.8241617,1.0277553) (0.8362759,1.0406581) (0.8432572,1.0468508) (0.8447718,1.0490951)

90% bootstrap lower confidence bound
Basic Standard Percentile Bias-corrected percentile
0.8513668 0.8588471 0.8620695 0.8636374
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5. Conclusion

In this paper, we studied the bivariate PCIs, BCpk and BCp, proposed by Castagliola and Castellanos22 and extended their notion to
processes of more than two quality characteristics.

We established a link between BCpk and the process yield by showing that the same inequality as in the univariate case holds, that
is, 2Φ(3BCpk)� 1⩽%yield. This lower bound provides a measure for quality assurance. With the same notion of BCpk, we defined an
index MCpk for processes of more than two characteristics and proved that the lower bound inequality 2Φ(3MCpk)� 1⩽%yield also

holds. We also provided a new algorithm for computing the natural estimate M̂Cpk of MCpk, which is more efficient than the algorithm
provided for the bivariate case by Castagliola and Castellanos.22 Moreover, the new algorithm can be used for processes with more
general specification regions. For statistical inference, we utilized the bootstrap approach to obtain a lower confidence bound of BCpk.
Among the four popular bootstrap methods under study, we recommend the percentile bootstrap method.

For BCp, we found that the original definition given in Castagliola and Castellanos22 is not scale-invariant. We proposed a simple
preprocessing step to fix the problem. By finding the exact situation when BCpk = BCp (also for MCpk =MCp), we developed an efficient
algorithm for computing the natural estimate of BCp, which is a lot faster than the method given in Castagliola and Castellanos.22 We

further derived an approximate normal distribution for B̂Cp by taking its first-order Taylor expansion. This enabled us to derive
statistical procedures for making inferences about process capability based on data, including hypothesis testing, confidence interval,
and lower confidence bound.

Our simulation studies indicated that the sampling distribution of B̂Cp is fairly close to a normal distribution. If one could find a
suitable normal approximation for it, then statistical inferences about BCpk based on the normal approximation would be more
computationally efficient and perhaps more statistically efficient than that obtained by the bootstrap approach.
5
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Appendix A

Derivation of the normal approximation given in (15)
Let f qð Þ ¼ BCp ¼ � 1

3Φ
�1 1�q

2

� �
. Denote q̂ 	 q l̂1; l̂2

� �
. Then, f q̂ð Þ ¼ B̂Cp. Expanding f q̂ð Þ at q by Taylor expansion, we have

B̂Cp � � 1

3
Φ�1 1� q

2

� 	
þ 1

6f Φ�1 1� q

2

� 	� 	 q̂ � qð Þ

¼ BCp þ 1

6f 3BCp
� � q̂ � qð Þ:

(A:1)

Because l̂ is are eigenvalues of the sample covariance matrix Σ̂, by Anderson30 (pages 473–474), we have

ffiffiffi
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� �� 	
!d N 0;
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0
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as n!1 Then, by Theorem 4.2.3 of Anderson,30

ffiffiffi
n

p
q l̂1; l̂2
� �

� q l1; l2ð Þ
� �

!d N 0;
1

2
Q2
1 l1; l2ð Þl21 þ Q2

2 l1; l2ð Þl22
� �� 	

as n!1. Now denoting Zq 	
ffiffiffi
n

p
q l̂1; l̂2
� �

� q l1; l2ð Þ
� �

, we have, by (A.1),
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B̂Cp � BCp þ 1

6
ffiffiffi
n

p
f 3BCp
� � Zq

and (15) is derived.
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