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a b s t r a c t

Today, charging stations (CSs) for electric vehicles (EVs) are much less popular than gas
stations. Therefore, searching and selecting CSs is an important issue for the drivers of
EVs. This paper investigates the EV charging problem. We propose two types of CS-
selection algorithms. The first type only utilizes local information of an EV. The second
type utilizes the global information obtained through interactions between the EVs and
a Global CS-selection (GCS) server through the mobile telecommunications network. Our
study indicates that by using the global information (specifically the workload status of
each CS), the EVs can be effectively charged with short waiting times at the CSs.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Electric Vehicles (EVs) provide energy-efficient transport that reduces carbon emission [1–3]. Generally, the electricity
for EV driving can last from 85 to 160 km [4]. When an EV travels for a long trip, it must be recharged in the electric charging
stations (CSs). At every CS, there are a number of fast-charging poles that are pole-like charging equipments [5]. With the
present fast-charging technology, the charging time of an EV typically exceeds 30 min [6,7]. If an EV arrives at a CS whose
fast-charging poles are all occupied, itmustwait until the EVs in front of the queue have completed their charging. Therefore,
in EV recharging, it is important that an EV selects the least loaded CSs (that are not very ‘‘busy’’) to reduce the waiting time.

If an EV has an on-board unit (OBU, a GPS-based navigator), then through GPS and the map installed in the OBU, the EV
can be guided to the next CSs for charging. Such CS-selection decision ismade based on the location of the EV (obtained from
GPS) and the CSs (from a pre-installed map), and the remaining electricity (from the EV meter). However, the information
of the OBU is ‘‘local’’, which cannot provide guidance about the waiting time of the EV before it can be charged at a CS.

To minimize the waiting times at the CSs, ‘‘global’’ information (such as the current queue lengths of the CSs) must be
provided to the OBUs. Such global information can be maintained by a server in the network, and an OBU can access the
information through wireless communications [8].

This paper1 addresses the CS-selection problem for EV charging on a highway; that is, when an EV drives on a highway for
a long distance, how the CSs are selected for rechargingwith ‘‘short’’ waiting times.We consider the CS-selection algorithms
based on local information and global information, and compare their performances in terms of waiting times at the CSs.

2. The CS-selection algorithms

This section takes the Taiwan National Expressway 1 (TNE1) as an example to describe the EV charging problem. Then
we describe the CS-selection algorithms based on local or global information.
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Fig. 1. The route of the Taiwan National Expressway 1 and the intermediate CSs.

Fig. 1 illustrates the route of TNE1. The length of TNE1 is 372.7 km with six intermediate service areas [9]. We assume
that the CSs are located at the service areas (one CS per service area). The distance between two CSs ranges from 30 to 70 km.
When an EV travels for a long trip (e.g., more than 100 km) through TNE1, it must be recharged in the CSs.

When an EV travels in TNE1, its OBU can select the next CS for charging based on the local information (i.e., the current
position of the EV, the remaining electricity, and the distances to the CSs) [10]. From the local information, the OBU compiles
a list of reachable CSs, and then select the next CS for charging. Basically, there are three local CS-selection algorithms:

• Local Algorithm 1 (LA1): Shortest-first (that selects the nearest CS).
• Local Algorithm 2 (LA2): Random (that randomly selects a CS).
• Local Algorithm 3 (LA3): Longest-first (that selects the farthest CS).

The problemof CS-selection based on the local information is that,we cannot estimate theworkload at a CS (and therefore
the waiting time in that CS), and the EV may not select the CS with the shortest waiting time. To resolve this issue, we can
utilize the global information (queue lengths of the CSs) through wireless communications (such as WCDMA [11]) between
the OBUs and a Global CS-selection (GCS) server in the network, and then use this information to select the CS for charging.

Fig. 2 illustrates two snapshots of a GCS scenario. When an EV arrives at a CS, it reports to the GCS server ((1) in Fig. 2(a))
the charging time required (translated from electricity) by the OBU. Consider the EVs queued at CSs; e.g., CS1 ((2) in Fig. 2(a))
and CS2 ((3) in Fig. 2(a)). The GCS server maintains one queue table for every CS. Each row in the table includes the identifier
(ID) of the EV and the required charging time of the EV. In Fig. 2(a), EV1, EV2 and EV3 are queued in CS1, and therefore
there are three records in CS1’s queue. Similarly, EV4 and EV5 are queued in CS2, and there are two records in CS2’s queue.
Fig. 2(a) also illustrates that EV6 is driving from CS1 to CS2. A few minutes later, EV1 leaves CS1 and EV6 arrives at CS2 as
illustrated in Fig. 2(b). At this moment, EV1’s record at CS1 is deleted and a record is created for EV6 in CS2’s queue.

With GCS, two CS-selection alternatives are proposed. In Global Algorithm 1 (GA1), when the EV finishes the current
charging at station CS∗, the next station CS for charging is determined immediately after the EV leaves CS∗. The message
flow is described as follows (see Fig. 3):

Step 1. The EV sends the CS-selection request to the GCS server.
Step 2. The GCS server computes the predicted waiting time wp of the EV based on the queue length of each CS. Let Tr be

the summation of required charging times in the queue of a CS and NF be the number of fast-charging poles at a CS,
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Fig. 2. Two snapshots of a Global CS-selection scenario.

Fig. 3. The message flow of Global Algorithm 1 (GA1).

then wp of the EV at the CS is computed as:

wp =
Tr
NF

. (1)

In Fig. 2(b), we estimate Tr = T4 + T5 + T6 in the queue of CS2.
Step 3. Based on (1), the GCS server selects the CS with the smallest wp and sends the CS ID to the EV.
Step 4. The EV arrives at the selected CS.
Step 5. The EV sends the required charging time to the GCS server so that the server can compute (1) for the next EV who

will query the GCS server for selecting the charging station.

Note that in Step 2, the actual Tr value when the EV arrives at CS2may be different from the estimated value, and (1) may
incur inaccuracy.

In Global Algorithm 2 (GA2), the EV and the GCS server exchange messages when the EV is about to arrive at the next
charging station CS. The message flow is described as follows (see Fig. 4):

Steps 1–3. Same as GA1.
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Fig. 4. The message flow of Global Algorithm 2 (GA2).

Step 4. If the selected charging station is CS, then the EV enters CS for charging (Step 5 is executed). Otherwise, the EV
goes to the next charging station and repeats GA2. For the description purpose, we assume that the EV decides to charge
at CS.

Step 5. The EV sends the required charging time to the GCS server as GA1. Then the EV is charged at CS.

3. The simulation model

This section describes the simulation model. For the description purpose, we consider the distance between EVs and
CSs instead of the relative locations of a two-dimensional plane. Therefore we use the linear expressway in our simulation
model.We assume that each EVmoves from the Northern Terminus to the Southern Terminus. In the simulation, the system
parameters include the length of highway L, the total number N of EVs, the distance M that a fully-charged EV can drive,
the number Nc of CSs on the highway, the number NF of fast-charging poles at a CS, and the time Tc that an EV spends for
charging from 0% to 100% of power.

Several objects are defined. An EV object represents an EVwith the attributes including the current location l (the distance
from the Northern Terminus), the velocity v, the percentage of power left p, the time τ when the EV arrives at the next CS,
the total waiting time w (at the CSs), the next CS s for charging, and the number ns of the CSs visited by the EV.

A CS object represents a charging station with the attributes including the location l and the number nf of the occupied
fast-charging poles. It also includes an array of NF FCP objects (i.e., NF fast-charging poles) and the queue qw of waiting EVs.

A FCP object represents a fast-charging pole of a CS with two attributes. The first attribute is an EV object representing
the EV being charged by the fast-charging pole. The to attribute represents the charging-over time for the EV.

In this simulation, an event e includes the timestamp ts, the event type type, and the associated EV object. Three event
types are defined: Arriving-HW (an EV enters the highway), Arriving-CS (an EV arrives at a CS), and Charge-Complete (an EV
finishes charging).

The inter-arrival time ta between two consecutive Arriving-HW events e1 and e2 is a random number drawn from a
random number generator GA, where e2.ts = e1.ts + ta. All events are inserted into the event list e_list , and are deleted and
then processed from e_list in the non-decreasing timestamp order. In the simulation, a clock t is maintained to indicate the
simulation progress, which is the timestamp of the event being processed.

In the simulation, wt is the total waiting time of all EVs, and the total waiting time of an EV is W = wt/N . The variable
st is the total number of visited CSs of all EVs, and the total number of visited CSs of an EV is Sc = st/N . The average waiting
time at a visited CS for an EV is computed asWavg = W/Sc .

In this paper, we use two simulation flowcharts to illustrate how the local and global algorithms work. Specifically, we
consider LA2 and GA2. For other algorithms, the flowcharts are similar and the details are omitted.

Fig. 5 illustrates the simulation flowchart for algorithm LA2. Initially, Step 1 sets the highway length L to 372.7 km, the
numberN of EVs to be simulated is set to 1,000,000, and the distanceM is set to 160 km. The numberNc , the time Tc , and the
charging pole number NF are set to 6, 30, and 10 respectively. All temporary variables are initialized to 0. In the simulation,
six CS objects cs( j), 1 ≤ j ≤ 6, represent the charging stations. The locations cs( j).l are set according to the locations in
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Fig. 5. The simulation flowchart for algorithm LA2.

Fig. 1. The first Arriving-HW event eN is generated and eN .ts is set to 0. The event eN is inserted into the event list e_list . Step
2 retrieves an event e from e_list and the current time t is set to e.ts. Step 3 checks e.type. If it is Arriving-HW, then Step 4
is executed. If e.type is Arriving-CS, then Step 6 is processed. Otherwise, e.type is Charge-Complete, and the simulation flow
proceeds to Step 10.

Step 4 processes the Arriving-HW event e. It sets the velocity e.ev.v to a random value between 60 and 100 km/h, and the
EV power e.ev.p is set to another random value between 34% and 100%. The value 34% is theminimal required power to drive
to CS1 (i.e., 55.1/160 ; 34%). An Arriving-CS event eN is generated and the next CS s is randomly selected (according to LA2).
The timestamp eN .ts is set to t + cs(s).l/e.ev.v, where cs(s).l/e.ev.v is the required time that e.ev drives to cs(s).l. Variable
eN .ev is set to e.ev. The location eN .ev.l is updated to cs(s).l. The next CS eN .ev.s for charging is set to s. The time eN .ev.τ
is set to eN .ts. The power eN .ev.p is set to eN .ev.p − cs(s).l/M , where the linear equation cs(s).l/M represents the power
consumption for eN .ev to drive to cs(s).l [12]. The time eN .ev.w is set to 0. Then eN is inserted into e_list . Step 5 generates
the next Arriving-HW event eN and eN .ts is set to t + ta. The event is inserted into e_list .

Step 6 simulates the Arriving-CS event e; that is, the EV arrives at CS j, where j = e.ev.s. Step 7 checks if cs( j).nf is less
than NF . If so, there are free fast-charging poles that can serve the EV. Step 8 generates a Charge-Complete event eN and eN .ts
is set to t + (1 − e.ev.p)Tc , where (1 − e.ev.p)Tc is the required time to charge e.ev. Variable eN .ev is set to e.ev, and eN .ev.p
is set to 1. Event eN is inserted into e_list and the number cs( j).nf is incremented by one. On the other hand, if all charging
poles are occupied at Step 7, then Step 9 inserts e.ev in the waiting queue cs( j).qw . The simulation proceeds to Step 2.

For a Charge-Complete Event, Step 10 identifies CS j that completes the EV charging; that is, j = e.ev.s. The number cs( j).nf
is decremented by one and the number e.ev.ns is incremented by one. Step 11 checks if e.ev.l+M is≥ L. If so, the EV has left
highway and Step 15 is executed to collect the output statistics for e.ev. Otherwise, Step 12 generates an Arriving-CS event
eN and randomly selects the next CS s for charging. Variable eN .ts is set to t +[cs(s).l− e.ev.l]/e.ev.v, eN .ev is set to e.ev, and
eN .ev.p is set to eN .ev.p− [cs(s).l− eN .ev.l]/M . Step 13 checks if cs( j).qw is empty. If so, then Step 2 is executed. Otherwise,
the charging station serves the next waiting EV eN .ev in queue cs( j).qw . Step 14 generates a Charge-Complete event eN for
that EV. The time eN .ev.w is updated to eN .ev.w+(t−eN .ev.τ ), where (t−eN .ev.τ ) is the time eN .ev spent in queue cs( j).qw .



2878 S.-N. Yang et al. / Mathematical and Computer Modelling 57 (2013) 2873–2882

Fig. 6. The simulation flowchart for algorithm GA2.

At Step 11, if the EV leaves the highway, Step 15 increments n by one. The total time wt is increased to wt + e.ev.w, the
sum-of-square of time ws is increased to ws + (e.ev.w)2, and the total number st is increased to st + e.ev.ns. Step 16 checks
the number n of EVs that leave the highway. If n equals to N , then Step 17 is executed. Otherwise, the simulation flow goes
to Step 13. Step 17 computes the outputsW ,Wsd (standard deviation of W ), Sc , andWavg.

The simulation flowcharts of other proposed local algorithms are similar to that in Fig. 5. Themain difference of LA1, LA2,
and LA3 is the selection algorithm of the next CS. In LA1, we select the nearest CS instead of randomly selecting one in Step
4 and 12 in Fig. 5. In LA3, we select the farthest CS instead of randomly selecting one in Step 4 and 12 in Fig. 5.

Fig. 6 illustrates the simulation flowchart for algorithm GA2. Many steps in Fig. 6 are similar to those in Fig. 5. We only
describe the different parts as follows:

Step 4 always selects the nearest CS s instead of randomly selecting one. The EV will determine if it wants to be charged
at Step 6. That is, Step 6 executes GA2 algorithm (see Fig. 4). Step 7 checks if s is equal to e.ev.s. If so, goes to Step 8 to
simulate that the EV is charged at s. Otherwise, the simulation flow proceeds to Step 12, where the EVwill repeat GA2when
it arrives at the next nearest CS. Step 10 generates the Charge-Complete event which is similar to Step 8 in Fig. 5. In addition,
an empty charging pole m from the array cs( j).pf is selected to charge the EV. The variable cs( j).pf (m).to is set to eN .ts and
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a b c d e

Fig. 7. The queueing model of LA1 with two CSs.

Table 1
The discrepancies ofW at CS1 between the analytic and the simulation results (NF = 1).

λ/(NFµ) 0.1 (%) 0.2 (%) 0.3 (%) 0.4 (%) 0.5 (%) 0.6 (%) 0.7 (%) 0.8 (%) 0.9 (%)

Discrepancy of λ = 0.42 0.02 0.09 0.03 0.17 0.29 0.24 0.26 0.47 0.45
Discrepancy of λ = 0.6 0.05 0.09 0.1 0.05 0.15 0.22 0.42 0.27 0.26
Discrepancy of λ = 0.78 0.07 0.07 0.16 0.04 0.1 0.13 0.35 0.35 0.40

cs( j).pf (m).ev is set to eN .ev. Step 12 generates an Arriving-CS event eN as Step 12 in Fig. 5, except that eN .ev.s is set to the
next nearest CS s.

Step 13 is similar to Step 10 in Fig. 5, which identifies CS j = e.ev.s. The number e.ev.ns is incremented by one and
the number cs( j).nf is decremented by one. In addition, Step 13 finds the charging pole m that is charging the EV; that
is, cs( j).pf (m).ev = e.ev. After the EV has left the CSs, the charging pole m is free. Therefore, variables cs( j).pf (m).to and
cs( j).pf (m).ev are set to 0 and NULL respectively. Step 17 is similar to Step 14 in Fig. 5, which generates a Charge-Complete
event eN for the next waiting EV eN .ev in queue cs( j).qw . This EV will occupy charging polem.

The simulation flowchart of GA1 is similar to that in Fig. 6 except that it skips Steps 6, 7, and 12 (i.e., in GA1 algorithm,
Step 3 directly proceeds to Step 8 when e.type is Arriving-CS).

4. Validation of the simulation model

This section describes an analytic model of highway charging stations to validate the simulation model described in
Section 3. For the description purpose, we consider LA1 algorithm and use it to simply explain the validation process. Fig. 7
illustrates how the simulation of LA1 algorithm can be mapped to a queueing network.

For simplicity, we only consider two charging stations, where the highway starts from the Northern Terminus. After an
85 km road segment (Road Segment 1), the EVwill arrive at the charging station CS1. Then after another 85 km road segment
(Road Segment 2), the EV will arrive at CS2. Then after the last 85 km road segment (Road Segment 3), the EV will leave the
highway from the Southern Terminus. According to LA1, the EV is always charged when it arrives at a charging station.
The above system can be modeled by a tandem queueing network where a road segment is modeled by an M/G/∞ queue
(Fig. 7(a), (c), and (e)), and a charging station is modeled by an M/M/NF queue (Fig. 7(b) and (d)), where NF is the number
of fast-charging poles.

The arrival process of EVs at the Northern Terminus is Poisson with the rate λ. Therefore, Road Segment 1 is anM/G/∞
queue with arrival rate λ and the service times have a uniform distribution with the mean 1/µ∗. From the queueing
theory [13], the departure process of the Road Segment 1 queue is also Poisson with the rate λ in steady state, which is the
arrival process of the CS1 queue. Our example considers NF = 1, 3 for CS1, and the service time is exponentially distributed
with the mean 1/µ. Thus the CS1 can be modeled as anM/M/NF queue. From Burke’s theorem [14], the departure process
of the CS1 queue is also Poisson with the rate λ. The queues that model Road Segments 2 and 3 are the same as that for Road
Segment 1, and the CS2 queue is the same as that for CS1.

In our experiments, λ = 0.42, 0.6, 0.78. The utilization λ/(NFµ) is set in the range 0.1 ≤ λ/(NFµ) ≤ 0.9, which
means that 0.16 ≤ 1/µ ≤ 7.8 (the minimum value of 1/µ = 0.42/(0.9 × 3) ; 0.16 and the maximum value of
1/µ = 0.78/(0.1 × 1) = 7.8). The expected time to travel a road segment is 1/µ∗

= 63.75 min, which is selected for the
following reason: the velocity of each EV is uniformly distributed between 60 and 100 km/h with the mean value 80 km/h
and thus the service time is also uniformly distributed with the mean value 85/80 × 60 = 63.75 min.

Fig. 8(a) and (b) plot the average waiting timesW at CS1 for analytic (the solid curves) and simulation (symbols ◦, △, and
× for λ = 0.42, 0.6, 0.78 respectively) results, where NF = 1 and 3, respectively. The discrepancies between the analytic
and the simulation results are within 0.5% for NF = 1 (see Table 1) and within 1.5% for NF = 3 (see Table 2).

Fig. 9(a) and (b) plot CS2’s W curves for analytic and simulation results (NF = 1 and 3). The discrepancies between the
analytic and simulation results are within 0.5% for NF = 1 (see Table 3) and within 1.1% for NF = 3 (see Table 4).

From Tables 1–4, it is clear that the simulation is consistent with the analytic model.
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(a) NF = 1. (b) NF = 3.

Fig. 8. TheW curves at CS1 for the analytic and the simulation results (NF = 1, 3).

Table 2
The discrepancies ofW at CS1 between the analytic and the simulation results (NF = 3).

λ/(NFµ) 0.1 (%) 0.2 (%) 0.3 (%) 0.4 (%) 0.5 (%) 0.6 (%) 0.7 (%) 0.8 (%) 0.9 (%)

Discrepancy of λ = 0.42 0.01 0.13 0.1 0.4 0.63 0.88 0.96 0.99 1.32
Discrepancy of λ = 0.6 0.31 0.04 0.12 0.22 0.44 0.81 0.7 0.95 1.42
Discrepancy of λ = 0.78 0.06 0.03 0.26 0.03 0.32 0.61 0.81 0.77 1.07

(a) NF = 1. (b) NF = 3.

Fig. 9. TheW curves at CS2 for the analytic and the simulation results (NF = 1, 3).

Table 3
The discrepancies ofW at CS2 between the analytic and the simulation results (NF = 1).

λ/(NFµ) 0.1 (%) 0.2 (%) 0.3 (%) 0.4 (%) 0.5 (%) 0.6 (%) 0.7 (%) 0.8 (%) 0.9 (%)

Discrepancy of λ = 0.42 0.02 0.07 0.03 0.02 0.11 0.17 0.15 0.33 0.3
Discrepancy of λ = 0.6 0.02 0.1 0.08 0.04 0.17 0.16 0.09 0.17 0.32
Discrepancy of λ = 0.78 0.01 0.13 0.02 0.04 0.03 0.08 0.21 0.41 0.22

Table 4
The discrepancies ofW at CS2 between the analytic and the simulation results (NF = 3).

λ/(NFµ) 0.1 (%) 0.2 (%) 0.3 (%) 0.4 (%) 0.5 (%) 0.6 (%) 0.7 (%) 0.8 (%) 0.9 (%)

Discrepancy of λ = 0.42 0.52 0.13 0.2 0.45 0.44 0.63 0.86 0.95 0.82
Discrepancy of λ = 0.6 0.67 0.01 0.05 0.16 0.36 0.72 0.69 0.98 1.04
Discrepancy of λ = 0.78 0.05 0.14 0.26 0.04 0.31 0.68 0.69 0.88 0.86

5. Performance evaluation

This section conducts performance evaluation for the proposed algorithms. In the simulation experiments, the arrivals
of EVs are a Poisson process with the mean λ. We note that the average vehicle traffic of Sijhih at TNE1 in the southward
direction is equivalent to 12 cars per minute [15]. If we assume that 3.5%–6.5% of the vehicles are EVs, then the range of
EVs’ arrival rate per minute can be reasonably set from 0.42 (=12 × 3.5%) to 0.78 (=12 × 6.5%) in the experiments. The
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Fig. 10. TheWavg performance.

Fig. 11. The Sc performance.

velocity of EV is uniformly distributed between 60 and 100 km/h, which are the lower and the upper speed limits of TNE1.
The initial power of EV is uniformly distributed between 34% and 100%.

Fig. 10 compares the average waiting time Wavg for the proposed algorithms. The figure indicates the trivial result that
Wavg increases as λ increases. The Wavg values for LA1 and LA3 are larger than those for other algorithms because these
two local algorithms select specific CSs (the nearest and the farthest CSs) for charging. These CSs have higher workloads,
which result in long queues. Wavg for LA1 is larger than that for LA3 because EVs in LA1 visit more CSs than those in LA3
do. LA2 randomly selects the CSs for next charging, which uniformly distributes workloads to the CSs and thus has the best
performance among the local algorithms. The performances of global algorithms are better than local algorithms (when λ
is higher than 0.66) due to the fact that they utilize the queue length information of the CSs to distribute the workload. GA2
algorithm is better than GA1 because the queue length information of the nearest CS in GA2 is more accurate than that in
GA1. For the range of λ we investigated, GA2 has the best Wavg performance among all algorithms. The advantage of the
global algorithms over the local ones becomes very significant when λ is large.

Fig. 11 illustrates the Sc (the number of CSs visited by an EV) performance. Since every EV in LA1 visits every CS, the Sc
value of LA1 is the largest. On the other hand, every EV in LA3 always selects the farthest CS. Thus LA3 has the smallest Sc
value. The Sc values of other algorithms (LA2, GA1, and GA2) are between those for LA1 and LA3. The figure also indicates
that Sc of GA2 is smaller than GA1 and LA2. Note that for the total waiting timeW (i.e.,W = Wavg × Sc), we have:

W (LA1) > W (LA3) > W (GA1) > W (LA2) > W (GA2) for λ ≤ 0.66 and
W (LA1) > W (LA3) > W (LA2) > W (GA1) > W (GA2) for λ > 0.66.

Fig. 12 compares the standard deviations Wsd among these algorithms. The figure indicates that Wsd (GA2) has the
smallest value among all algorithms, and therefore GA2 is better than other algorithms.

In GA2, an EV always interacts with the GCS server when it is about to arrive at a CS. If the EV decides to charge at a CS,
then three messages are exchanged (see Steps 1, 3, and 5 in Fig. 4). Otherwise, two messages are exchanged (see Steps 1 and
3 in Fig. 4). Our simulation indicates that in GA2, on the average, an EV will exchange 11.74 messages with the GCS server
when it travels through the TNE1. On the other hand, in GA1, only 9.04 messages are exchanged between an EV and the GCS
server in GA1. Therefore the communication cost of GA2 is 1.3 times of GA1. To conclude, GA2 achieves better waiting time
performance at the cost of slightly higher communication cost.
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Fig. 12. TheWsd performance.

6. Conclusions

This paper proposed two types of CS-selection algorithms for an EV to charge electricity when driving on a highway. The
first type only utilizes local information of an EV. The second type utilizes the global information obtained from a Global
CS-selection (GCS) server through the mobile telecommunications network. We have conducted simulation experiments
to investigate the waiting time performance for these algorithms. Our experiments indicate that the global algorithms
have better waiting time performance than the local algorithms. The advantage of the global algorithms over the local ones
becomes very significant when the arrivals of EVs are large.

In the future, we will consider intelligent GCS that can more accurately predict the waiting time when an EV actually
arrives at a CS, say, 30 min later. Such prediction is not trivial, because other EVs who may arrive at the CS earlier need to
be identified by the GCS server, and complicated computation is required.
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