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The band structures and field patterns of dielectric rods in square lattices are calculated using the plane-wave method. The rods with various

cross-sectional shapes from square to octagonal at a fixed filling-factor are constructed to assess the geometry effect of photonic crystals to their

band gap properties. Analytical results indicate that the corner profiles of rods significantly affect the E - and H-polarization bands in resonance

frequency and field distribution. The absolute photonic band gap is closed in the square lattice when square dielectric rods are replaced with

octagonal dielectric rods. # 2011 The Japan Society of Applied Physics

1. Introduction

Periodic dielectric structures (photonic crystals) have
garnered considerable interest in the recent decade owing
to their ability to prohibit certain frequency-ranged electro-
magnetic (EM) waves from propagating in such structured
dielectric media.1–3) These frequency regions are called
photonic band gaps (PBGs), and are analogous to electronic
band gaps resulting from periodic electrostatic potentials
in crystals. The polarization-independent PBGs, called
absolute PBGs, occur when the band gaps of both H- and
E-polarization modes overlap. Absolute PBGs can control
spontaneous light emissions for non-threshold semiconduc-
tor lasers.4,5)

The fabrication and simulation of photonic crystals in
the infrared (IR), ultraviolet (UV), and visible regions
have received considerable interest.6–11) However, the
greatest constraint to large PBG width is the degeneration
of photonic bands at the highly symmetrical points in the
Brillouin zone. Several approaches have been developed to
reduce band degradation to obtain large absolute PBGs,
which requires varying the contrast of the dielectric contrast
ratio, designing the lattice element, tuning the filling ratio
and reducing structural symmetries.12–17) As a rule of thumb,
the formation of band gaps in a photonic crystal is attributed
to the arrangement of connected veins and the isolated
dielectric material.18–20) This observation suggests that
isolated high-dielectric regions are favorable for large
E-polarized band gaps, while connected veins are favorable
for large H-polarized band gaps. Thus, an absolute PBG
should be favored in photonic crystals with highly dielectric
regions that are both isolated and connected.

As is well known, although appearing in a square lattice
when square dielectric rods are used, the absolute PBG
vanishes when these square rods are replaced with circular
or hexagonal dielectric rods.21,22) However, how this
variation occurs has not been examined. This study first
demonstrates that using octagonal rods in a square lattice
cannot open absolute PBGs. Why such distinct outcomes
exist from square and octagonal rods in a square lattice is an
interesting question. The shape and boundary of rods may

markedly influence band structure. To elucidate how rod
shape and boundary affect PBG formation in a square lattice,
this study reshapes the corners of initial square rods
gradually, forming all the way to octagonal rods with a
fixed filling factor. Band structures and field patterns are
estimated using the plane-wave method. The effects of rod
shape on E- and H-polarization modes are then determined.
Additionally, the center and width of bands associated with
the absolute PBG of square dielectric rods in a square lattice
are calculated.

2. Theory

The photonic band gap can be obtained by solving
Maxwell’s equations. Assume a source free, time-invariant,
and nonpermeable (� ¼ �0) space; thus, Maxwell’s equa-
tions can be written in terms of magnetic field H as a master
equation,

r � 1

"ðrÞ r �HðrÞ
� �

¼ !2

c2
HðrÞ; ð1Þ

where HðrÞ is the magnetic field, "ðrÞ is a position-dependent
dielectric constant, ! is angular frequency, and c is the speed
of light in a vacuum. For a periodic system, the magnetic
field, HðrÞ, and dielectric function, "ðrÞ, can be expressed as
sums of plane waves:

HðrÞ ¼
X
G

X
�¼1;2

hG;� ê�e
iðkþGÞ�r; ð2Þ

"ðrÞ ¼
X
G

"ðGÞeiG�r; ð3Þ

where hG;� is a coefficient of the H component, k is the wave
vector in the Brillouin zone, and G is the reciprocal-lattice
vector. Two independent polarizations characterized by unit
vectors ê� ð� ¼ 1; 2Þ are perpendicular to the propagation
vector (kþG). Under the Fourier transform, the coefficient
of "ðGÞ is defined as

"ðGÞ ¼ 1

Acell

Z
cell

"ðrÞe�iG�r dr; ð4Þ

where Acell is the area of a primitive lattice cell. Thus,
eq. (1) can be expressed in a matrix form as
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X
G0

jkþGjjkþG0j
ê2 � "�1

G;G0 � ê20 �ê2 � "�1
G;G0 � ê10

�ê1 � "�1
G;G0 � ê20 ê1 � "�1

G;G0 � ê10
" #

h1;G0

h2;G0

� �
¼ !2

c2
h1;G

h2;G

� �
; ð5Þ

where "�1
G;G0 ¼ "�1ðG�G0Þ is the inverse of matrix

"ðG�G0Þ. The eigenvalue equation, eq. (5), can then be
solved using the matrix diagonalization method.

For a two-dimensional (2D) photonic crystal, an electro-
magnetic (EM) wave can be decomposed into E-polarized
(the electrical field is parallel to the z-axis) and H-polarized
(the magnetic field is parallel to the z-axis) modes.
Calculations are restricted to the case in which wave vectors
of eigenmodes are on the 2D x–y plane and are uniform in
the z-direction. The dielectric constant is given by

"ðGÞ ¼ "a � f þ "b � ð1� f Þ for G ¼ 0

ð"a � "bÞ � SðGÞ for G 6¼ 0

�
; ð6Þ

where "a and "b are the dielectric constants of rods and the
background medium, respectively. Filling factor f is the
cross-sectional area fraction of rods in a primitive unit cell.
The structure factor is denoted by

SðGÞ ¼ 1

Acell

Z
Rod

e�iG�r dr: ð7Þ

Here, the integral is over the cross section of rods in a unit
cell of the lattice. In this study, the structural factor for each
corner-cutting structure can be derived from polygonal
rod concepts. For a polygonal rod, this study considers a
polygonal rod with N sides; the coordinate of the jth vertex
is denoted by Pj ¼ ðxj; yjÞ. According to the Stokes theorem,
the structural factor for a polygonal rod can be written as

SðGÞ ¼

XN
j¼1

i�yje
�iG�Cj

Gx

sinðG � SjÞ
G � Sj for Gy ¼ 0

XN
j¼1

�i�xje
�iG�Cj

Gy

sinðG � SjÞ
G � Sj for Gx ¼ 0

XN
j¼1

2iêzðG � SjÞe�iG�Cj

G2

sinðG � SjÞ
G � Sj
for Gx 6¼ 0; Gy 6¼ 0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

;

ð8Þ
with

Cj � Pjþ1 þ Pj

2

� �
;

Sj � Pjþ1 � Pj

2

� �
;

�x � xjþ1 � xj;

�y � yjþ1 � yj:

The band structures for a photonic crystal are calculated
using the standard plane-wave method. In this study, 841
plane waves were adopted, and computational errors in the
E- and H-polarized modes for each structure were estimated
at <1%.

3. Results and Discussion

Figure 1 shows the cross-sectional geometry of the octago-
nal rod formed by cutting the corners of a square rod. The
lengths of the cut-corner edge and rod central side are

designated as b and l, respectively. Each photonic crystal
with exact, inexact octagonal, or square rods has the same
optimal filling factor of f ¼ 0:45. The difference in the
size of the cut corner edge between the exact octagonal rod
and square rod is l8=

ffiffiffi
2

p
, where l8 is the side length of

the exact octagonal rod. The dielectric constant of the rod
is "a ¼ 12:96, corresponding to that of gallium arsenide
(GaAs) or silicon at 1.55 �m, and the dielectric constant for
the background material is taken as "b ¼ 1 for air or the
vacuum. In this study, the corners are cut from the square
rod to generate an octagon by 15 steps with an increment of
� ¼ l8=ð15 �

ffiffiffi
2

p Þ. For convenience, the size of cut corner
edge is denoted as b ¼ N � �, for N ¼ 0; 1; . . . ; 14; 15.

Figures 2(a) and 2(b) show the photonic band structures
associated with the square rods (b ¼ 0 � �) and octagonal
rods (b ¼ 15 � �) in square lattices, respectively, with a
filling factor f ¼ 0:45. In Fig. 2, the solid curves represent
E-polarized modes and dotted curves represent H-polarized
modes. The dispersion curves are traced along the
T–X–M–T path in the first Brillouin zone of square lattices.
The square dielectric rods in square lattices generate an
absolute PBG occurring where the E8 and H6 gaps overlap,
where Ei or Hi is the gap between the ith and (iþ 1)th bands
for the corresponding polarizations [Fig. 2(a)]. The absolute
gap center is at 0:628ð!a=2�cÞ and the absolute PBG
width is 0:036ð!a=2�cÞ. Conversely, the absolute PBG
closes when the square dielectric rods are replaced with
octagonal dielectric rods [Fig. 2(b)], suggesting that the
four corners of square rods may markedly influence band
structure.

To determine why such a difference exists in appearance
of the absolute PBG between square rods and octagonal rods
in the square lattice, the corners of square rods were cut to
form an octagonal rod gradually while the filling factor
remained constant. Figure 3 shows the dependence of the
gap map on the cutting step N. Here this study only
considers the frequency range of interest of 0:55 �
0:7ð!a=2�cÞ. Analytical results indicate that the widths of
E8 and H6 gaps decline simultaneously as N increases. The
variation in frequencies of air bands (E9 and H7 bands) is
larger than that of dielectric bands (E8 and H6 bands), and
thus dramatically reduces absolute band gap width.

Fig. 1. Representation and cross-sectional geometry of rods.
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To examine the effect of cutting the edges on E-polariza-
tion modes, Figs. 4(a)–4(d) plot the field patterns for
structures of N ¼ 0, 8, 11, and 15, respectively. At the
M-symmetrical point, field patterns of each figure are
displayed for the E8 (left) and E9 (right) bands. The field
distributions of the E8 band are generally independent of N;
however, the amounts of field energy inside rods increase as
N increases. For field patterns of the E9 band, the shape of
rods strongly affects the field distribution and the amount of
field energy. When N increases, the fields near the boundary
of a rod are expelled from dielectric regions and the amount
of field energy decreases. Because the amount of field
energy inside dielectric rods is closely related to band
frequency, the difference in the amount of field energy
between E8 and E9 bands may lead to the absence of the
E-polarized gap.

The perspective of the band structure is adopted to
understand why the absolute PBG appears in square rods,
but is disappear in octagonal rods. For a given band, the
band center (BC) reflects the resonant frequency of modes,
while band width (BW) reflects the strength of the
interaction of EM waves among rods. These band-structure
concepts are similar to those in the A linear combination of
atomic orbitals (LCAO) method.23–25) Here, the BC and BW
are defined as

FiðBCÞ ¼ Fi;max þ Fi;min

2
;

FiðBWÞ ¼ Fi;max � Fi;min

ð9Þ

where Fi;max and Fi;min denote the maximum and minimum
frequencies of the ith band in the first Brillouin zone,

respectively. Here, the E- and H-polarized bands associated
with the absolute PBG in the photonic crystal are utilized.
Figures 5(a) and 5(b) show the BC and BW of the E8 and E9

bands as a function of N, respectively. The BC of the E9

band varies faster than that of E8 band when N exceeds
4. These analytical results demonstrate that the effect of
the cutting edge on the resonance frequency of the E9 band
is stronger than that on the E8 band, and the resonance
frequencies for both bands gradually approach each other
and move closer as N increases. Furthermore, this study
examines BW to investigate how field energy concentrates
inside dielectric regions and influences band structures.
The BW of the E9 band when N increases is markedly
different than that of the E8 band. The BW for the E8 band is
almost independent of N, implying that field energies are
localized in the dielectric rods. However, the BW of the E9

band exhibits a large variation and increases to 137% at
N ¼ 11. These analytical results likely indicate that the
partial fields of the E9 band are expelled from the dielectric
rods when the cutting edge of the rod changes. Although
the BC and BW of the E8 band are insensitive to the shape
or boundary of rods, the BC decreases and BW increases for
the E9 band close the E-polarized gap when N exceeds 11.

Figures 6(a) and 6(b) show the BC and BW associated
with the H6 and H7 bands varying with N. The BC of the H6

band varies slightly with N; however, the BC of the H7 band
varies markedly, indicating that the resonance frequency of
H7 band depends strongly on rod shape. Moreover, the BWs
for both H6 and H7 bands have large variations with N and
both increase by roughly 0.017 when N ¼ 11. Thus, the
fields propagated in the x–y plane cannot be localized well
inside the dielectric region when the cut edge of the rod
changes. Notably, the fields of the H-polarization modes
concentrated in the rods are closely related to the air-space
size among the rods.13) This study fixes the filling factor
throughout calculations, and the air-space size among rods
consequently varies with N. Therefore, both bands have the
same BW increment is acceptable. Because of the decrease in
resonance frequency of the H7 band and increase in BWs for
both the H6 and H7 bands, the H-polarized gap may close.

4. Conclusions

Exactly why the absolute PBG appears in square rods but
closes in octagonal rods is investigated from the aspect of

Fig. 3. The gap map as a function of N. The corresponding size of cutting

edges for each structure is N � �.

(a)

(b)

Fig. 2. Photonic band structures for (a) square rods (b ¼ 0) and

(b) octagonal rods (15 � �) in the square lattice with a filling factor of 0.45.
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band structure and field patterns. The perspective of band
structure is helpful in understanding the formation of the
PBG in photonic crystals. This study employed the plane-
wave method to calculate band structures and field patterns.
The corners of square rods were changed step by step to
fabricate octagonal rods with a fixed filling factor throughout
calculations. Analytical results for the E-polarized gap (E8

gap) indicate that the cutting edges of rods strongly affect
the E9 band in the resonance frequency and field distribution

inside rods. The decrease in resonance frequency and
increase in band width caused the E-polarized gap to close.
Moreover, the H-polarized gap (H6 gap) was closely related
to the cutting edges of rods. The decrease in resonance
frequency of the H7 band and increase in bandwidths of
both H6 and H7 bands caused the H-polarized gap to close.
Accordingly, the absolute PBG is closed in the square lattice
when square dielectric rods are replaced with octagonal
dielectric rods.

(a)

(b)

Fig. 5. (a) Band center and (b) band width associated with the E8 and E9

bands as a function of N.

(a)

(b)

Fig. 6. (a) Band center and (b) band width associated with the H6 and H7

bands as a function of N.

(a) (b)

(c) (d)

Fig. 4. Field patterns of E-polarized modes inside dielectric rods when (a) N ¼ 0, (b) N ¼ 8, (c) N ¼ 10, and (d) N ¼ 15, for the E8 band and at the

M-symmetrical point.
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