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Summary & Conclusions - A most vital edge of a graph (w.r.t. 
the spanning trees) is an edge whose deletion most drastically 
decreases the number of spanning trees. We present an algorithm 
for determining the most vital edges based on Kirchoff’s matrix- 
tree theorem whose asymptotic time-complexity can be reduced to 
that of the fastest matrix multiplication routine, currently 
O(n2.”$. The foundation for this approach is a more general 
algorithm for directed graphs for counting the rooted spanning ar- 
borescences containing each of the arcs of a digraph. A network 
can be modeled as a probabilistic graph. Under one such model 
proposed by Kel’mans, the all-terminal network reliability, max- 
imizing the number of spanning trees is critical to maximizing 
reliability when edges are very unreliable. For this model, the most 
vital edges characterize the locations where an improvement of the 
reliability of the link most improves the reliability of the network. 

1. INTRODUCTION 

Any elementary linear algebra text can be used as a 
reference for the linear algebra in this paper, eg, [19]. See [3] 
for any graph theoretic questions. 

1.1 Definitions 

An undirected graph G = ( V , E )  consists of a set V of n 
vertices and a set E of m edges, where each edge is an unordered 
pair of vertices from V .  Graph H = ( V ’ , E ’ )  is a subgraph of 
G if V ’  C V and E‘ G E .  A spanning subgraph is any subgraph 
of G satisfying V‘ = V .  A spanning tree of G is a connected 
spanning subgraph of G that contains no cycles. 

A most vital edge in G is an edge whose deletion results 
in a maximum decrease in the number of spanning trees. This 
paper presents an algorithm for determining the most vital edges 
of a graph (w.r.t. spanning trees). The same approach can be 
used to pinpoint locations where an added edge most increases 
the number of spanning trees. Refs [7,10-121 present algorithms 
for determining the most vital edges for some other graph 
parameters. 

1.2 Algorithm Background 

The cornerstone of the algorithm is the famous Matrix- 
tree theorem of Kirchoff’ which expresses the number of span- 
ning trees of a graph in terms of the determinant of a matrix 
of order n. A naive approach for pinpointing the most vital edges 
is to count the spanning trees of each of the m graphs created 
by removing each of the m edges of G in turn; this approach 
involves m determinant computations. We develop a more 
sophisticated approach by first considering the more general 
question of counting the rooted spanning arborescences con- 
taining each arc of a directed graph. The time complexity of 
our algorithm reduces to that of matrix multiplication’; or 
equivalently, the amount of work done by the entire algorithm 
is asymptotically equivalent to the time it takes to do just one 
determinant computation as required by the naive approach. 

This algorithm has applications in network reliability. The 
all-terminal network reliability model is defined as: 

Vertices represent sites, and edges represent links between 
the sites. The vertices are perfectly reliable, but edges operate 
s-independently with the same probability, p .  The network 
is operational if the underlying probabilistic graph is con- 
nected. 4 

Kel’mans [14] first proposed this model of reliability. Col- 
bourn’s monograph [5] is an excellent survey of the work on 
this problem. 

1.3 Purpose 

Since computing the all-terminal reliability of a network 
appears to be intractable (the problem is #P-complete), approx- 
imation schemes have been proposed [5: chapter 51. When the 
edges are very unreliable, maximizing the number of spanning 
trees is critical to maximizing reliability. Maximizing the 
number of spanning trees over all graphs with the same numbers 
of edges 8c vertices does not guarantee a network that is most 
reliable for all values of p [17]. 

’See theorem 2 - which can also be induced as a corollary of Tutte 

’The fastest algorithm for this so far is O(n2.376)  [6] .  
1211. 
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Other authors have concentrated on the problem of deter- 
mining the graphs on n vertices and m edges with the maximum 
number of spanning trees [2,4,13,15,18,20,22]. However in 
many applications, the graph topology is already given. For this 
situation, determining the most vital edges of a network 
highlights the locations where an improvement to link reliability 
most improves reliability. 

Standard notation is given in “Information for Readers & 
Authors” at the rear of each issue. 

2. COUNTING ARBORESCENCES 

To get an improved algorithm, it helps to consider the more 
general problem for directed graphs. In a directed graph 
(digraph), a rooted spanning arborescence or rooted spanning 
out-tree (or simply arborescence) is a spanning subdigraph 
which has no directed cycles, and in which one vertex r 
distinguished as the root can reach each other vertex by directed 
paths. The digraph D associated with an undirected graph G 
is constructed by replacing each edge (u,v) of G with the arcs 
(u,v) & (v,u). Lemma 1 is well-known; eg, it follows from the 
intuitive proof of Kirchoffs theorem [8: theorem 2.5, p 531. 

Lemma 1. Let G be an undirected graph and D the digraph 
associated with G. There is a one-to-one correspondence be- 
tween the spanning trees of G and the spanning arborescences * 

Furthermore, from the one-to-one correspondence stated 
in lemma 1, it follows that the number of spanning trees of an 
undirected graph G containing a particular edge (u,v) equals 
‘the number of arborescences in the associated digraph contain- 
ing arc (u,v)’ plus ‘the number of them containing (v,~)’. For 
this reason, we restrict our attention to the problem of deter- 
mining the number of arborescences containing a fixed arc in 
a digraph. The digraphs can have multiple arcs (more than one 
arc between a pair of vertices). Loops (arcs whose endpoints 
are the same vertex) can be safely erased since they do not con- 
tribute to any arborescences. 

We now present theorem 1, a classical result for counting 
spanning rooted arborescences of a digraph. The Kirchoff matrix 
(in-degree matrix) K associated with a digraph D is defined as: 

the diagonal entry kii is the in-degree of vertex i ;  the off- 
diagonal entry k, is -nu where nu is the number of arcs 
entering vertex i from vertexj. 

Theorem 1 [ 161. The number of spanning arborescences rooted 
at r in a digraph D equals det(Krr), where Krr is the Kirchoff 
matrix of D with the row and the column corresponding to vertex 
r deleted. rl 

To avoid treating the arcs which are incident to the root vertex 
r of D as a special case, we augment the original digraph D with 
a new vertex U, along with a new arc (u,r). There is a one-to-one 
correspondence between the arborescences of D and those of the 
augmented digraph. Correspondingly, the augmented Kirchoff 
matrix A for a rooted digraph D is defined as: 

rooted at any one of the vertices of D. 

the Kirchoff matrix K with one added to the diagonal entry 
for the root vertex (or equivalently, the matrix of the 
augmented digraph with ‘the row and the column correspon- 
ding to the new root’ removed). 

Corollary 1. The number of spanning arborescences of D rooted 
at a vertex r equals the determinant of the corresponding 
augmented Kirchoff matrix. 4 

Because exactly one arc enters each non-root vertex in an 
arborescence, there is a one-to-one correspondence between the 
arborescences of D which contain arc a and those of D o a which 
is obtained from D by removing all arcs, except a ,  which enter 
the terminus of a .  Thus, the number of spanning trees contain- 
ing an arc can be computed by evaluating the determinant of 
the augmented Kirchoff matrix for D o a .  However, if we first 
compute the inverse of the augmented Kirchoff matrix, the same 
result can be found in constant time. 

Lemma 2 .  The number of arborescences rooted at vertex r in 
digraph D can be computed in 0(1) time for any arc a=( i j> ,  
given the augmented Kirchoff matrix A, det(A), and A-’. 4 

3. THE ALGORITHM 

The algorithm finds the most vital arcs (or edges). 

Algorithm 1 

RELIABILITYNVE 

1. Let A be the augmented Kirchoff matrix (as defined in 
section 2). Construct: 

adj(A) = [b,] = det(A) . A  -’. 
2. For each arc ( i j ) ,  the number of arborescences con- 

taining this arc is bjj - b,. (Alternatively, for the undirected 
case, the number of trees containing edge ( i j )  is: 

Select the arcs (edges) for which this is maximized. 4 

Step 1 can be completed in O (n  3, time by using Gaussian 
elimination. It can be accelerated to O(n2.376) by using matrix 
multiplication [6], or in general to the speed of a fastest matrix 
multiplication routine. All the edges can be processed, as in 
step 2, in O(n2)  time. n u s ,  the limiting factor is the complex- 
ity of matrix multiplication. 

Because of the structure of the augmented Kirchoff matrix, 
it is never necessary to permute rows or columns to avoid zero 
pivots when applying Gaussian elimination to compute the in- 
verse. This can be used in a practical implementation. The 
theoretical implication of this is that a very fast matrix multi- 
plication routine, eg, o(n2), implies that the inverse of the 
augmented Kirchoff matrix can be found in the same time; this 
is not true for the general inversion problem where row and/or 
column permutations might be required [ 1 : chapter 61. 
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We could alternatively define a most vital edge as an edge 
e* e E whose insertion into the graph results in the largest in- 
crease in the number of spanning trees. The algorithm is exact- 
ly as algorithm 1, except that step 2 is applied for each non-edge. 
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APPENDIX 

Proof of Lemma 2 

The classical adjoint matrix of a matrix A ,  adj(A) = [bU],  
is det(A) .A  -’. The value of bij is ( - 1) ‘+j-det(Ajj), where Aji 
is the matrix obtained from A by deleting row j and column 
i .  The determinant of A = [ cyuii ]  is Cy=, aU- ( - 1)’+j-det(AU) 
- this is expansion by cofactors across row i .  Thus, the deter- 
minant of A can be computed by cross-multiplying row i of A 
and column i of the matrix adj(A). The crucial observation is 
that column i of adj(A) contains the cofactors of A obtained by 
deleting row i of A (along with one of the columns). Hence any 
change to row i of A has no effect on the column i of adj(A). 

ei is a vector which is 1 in position i but is 0 otherwise. 
The augmented Kirchoff matrix of D o a is obtained from A by 
changing row j to (ej - ei). Thus, from the above observa- 
tions, the number of arborescences containing a is bj - bo. 
Given the information that we have, this can be computed in 
O(1) time. Q. E. D. 
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