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a b s t r a c t

A novel examination of the three-dimensional (3-D) vibrations of rectangular parallelepipeds of

functionally graded material (FGM) having side cracks is summarized. Employing 3-D theory of

elasticity and a variational Ritz methodology, new hybrid series of mathematically complete orthogonal

polynomials and crack functions as the assumed displacement fields are proposed to enhance the

convergence modeling of the stress singular behavior of the crack terminus edge front in a rectangular

FGM parallelepiped. The proposed admissible hybrid series properly describe the Wð1=
ffiffiffi
r
p
Þ3-D stress

singularities at the terminus edge front of the crack, allowing for displacement discontinuities across

the crack sufficient to explain the most general 3-D ‘‘mixed modes’’ of local crack-edge deformation and

stress fields typically seen in fracture mechanics. The correctness and validity of the vibration analysis

are confirmed through comprehensive convergence studies and comparisons with published results for

cracked rectangular FGM parallelepipeds modeled as homogeneous rectangular plates with side cracks

and FGM rectangular plates with no cracks based on various plate theories. Two types of FGM

parallelepipeds, Al/Al2O3 and Al/ZrO2, are included in the study. The locally effective material properties

are estimated by a simple power law and the effects of the volume fraction on the frequencies are

investigated. For the first time in the published literature, this work reports frequency data and nodal

patterns for FGM rectangular parallelepipeds modeled as moderately thick plates with several

combinations of hinged, clamped, and completely free kinematic and stress conditions along the four

side faces, and having side cracks with varying crack size effects implying flaw-size influence in FGM

parallelepiped vibration and fracture, including crack length ratios (d/a and d/b), crack positions (cx/a

and cy/b), and crack inclination angles (a).

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Laminated composite materials are prevalent in engineering
systems, particularly in aeronautical vehicles and aerospace
structures. However, the abrupt change in material properties
across the interface between material layers can cause large
inter-laminar stresses even some de-laminations. Functionally
graded materials (FGMs) [1] are found to overcome these adverse
interlamination stress and delamination effects associated with
conventional laminated composite builds. Material properties of
FGMs vary continuously by gradually changing the volume fraction
of constituent material properties. FGMs have been extensively
explored in the last two decades along a variety of interdisciplinary
ll rights reserved.

Huang),
fronts, including electronics, chemistry, optics, biomedicine,
aeronautical and mechanical engineering.

Rectangular parallelepipeds modeled as plates are employed
in a wide range of mechanical and structural system components
in civil, mechanical and aeronautical engineering. Such
rectangular parallelepipeds are oftentimes subjected to irregular
loads generated by waves or subjected to cyclic loads induced
by machinery. Consequently, fatigue cracks may be initiated
in the parallelepiped components. Vibrations of fractured FGM
parallelepipeds require dynamic stress analysis of their sensitivity
to flaws or crack-liked defects with high local stresses progressing
through crack propagation mechanisms lengthening even inclining
fatigue cracking.

Redistribution of stresses in cracked FGM parallelepipeds
causes dynamic characteristics markedly different from those
for an intact parallelepiped, requiring linear-elastic stress
analysis, including elevated stresses local to the crack terminus
edge. Here, the free surfaces of the crack dynamically moving
relative to each other significantly influence the distribution of
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stresses local to the crack terminus edge. Various combinations of
clamped, free, and hinged boundary conditions of a cracked
parallelepiped affect the intensity of the local dynamic stress
field at the crack terminus edge. The dynamic stress field near the
crack terminus edge within a FGM parallelepiped may be classi-
fied as three basic dynamic responses each associated with a local
mode of crack deformation. First, a crack opening mode in FGM
parallelepiped vibration is associated with local displacement in
which the crack surfaces move directly apart; second, a crack
shearing or edge-sliding mode in FGM parallelepiped vibration is
characterized by deformations in which the crack surfaces slide
over one another perpendicular to the leading terminus edge of
the crack; third, a crack tearing mode in FGM parallelepiped
vibration finds the crack surfaces sliding with respect to one
another parallel to the leading terminus edge of the crack. Crack
opening and crack shearing or edge-sliding in FGM parallelepiped
vibration can be modeled as two-dimensional plane-extension
theory of elasticity, classified as symmetric (crack opening) and
skew-symmetry (crack shearing/sliding) with respect to the
leading edge of the crack. Crack tearing in FGM parallelepiped
vibration may be modeled as two-dimensional pure shear (or
torsion). Well-known superposition of crack opening, shearing or
sliding, and tearing modes or ‘‘mixed mode’’ cracking in FGM
parallelepiped vibration is sufficient to describe the most general
three-dimensional dynamic aspects of local crack-edge deforma-
tion and stress fields in cracked parallelepipeds. Such local crack-
edge deformation and stress fields involve trigonometric distribu-
tions in a circumferential coordinate (y) (x¼cos y, y¼sin y, see
Fig. 1) local to the crack terminus edge. The crack-edge stress
fields are dominated by the order of an inverse square root of a
local polar coordinate ðr¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
, see Fig: 1Þ, Wð1=

ffiffiffi
r
p
Þ, emanat-

ing from the crack terminus edge, whereas the crack-edge
deformations are dominated by the order of a square root of the
local polar coordinate, r, Wð1=

ffiffiffi
r
p
Þ.

Hence, a need arises to establish these linear-elastic crack-
edge stress (and displacement) fields in the dynamic character-
istics of cracked parallelepipeds, specifically modeled herein as
cracked thick plates to provide reference three-dimensional (3-D)
a
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Fig. 1. A rectangular Functionally Graded Material (FGM) parallelepiped modeled as a th

(d), and crack orientation (a); (a) top view of a plate with a crack intersecting x¼a; (b
solutions that delineate validity and accuracy of a growing
database of cracked plates in the literature recently offered by
Huang and co-workers using classical Kirchhoff thin-plate theory
[2,3], proposed by Li [4] using first-order shear deformable
Mindlin plate theory, and reported by Huang and Chang using
[5] higher third-order shear deformable plate theory.

Lynn and Kumbasar [6], Stahl and Keer [7], Aggarwala and
Ariel [8], Neku [9], Solecki [10], Hirano and Okazaki [11], Qian
et al. [12], Krawczuk [13], Yuan and Dickinson [14], Liew et al.
[15], and Huang and Leissa [2,3] proposed various approximate
solution techniques using classical Kirchhoff thin-plate theory to
study the vibrations of cracked rectangular parallelepipeds, mod-
eled as homogeneous thin plates. Lee and Lim [16] employed a
simplified Reissner theory and the Ritz method along with a
subdomain technique to examine the vibrations of cracked
rectangular parallelepipeds modeled as thick plates including
transverse shear deformation and rotary inertia. Maruyama and
Ichinomiya [17], Ma and Hsieh [18], and Ma and Huang [19]
established an experimental bench test database of cracked thin
homogeneous plates.

Documented in the published literature are substantial find-
ings on vibrations of parallelepipeds modeled as thick homoge-
neous plates and FGM plates with no cracks. Yang and Shen [20]
and He et al. [21] used the classical plate theory, while Zhao et al.
[22] and Reddy [23] adopted the first-order and the third-order
shear deformation plate theories, to investigate vibrations of FGM
plates with no crack. Matsunaga [24] and Qian et al. [25]
proposed solutions for vibrations and stability of FGM rectangular
shear deformable plates incorporating higher-order transverse
shear effects. Vel and Batra [26] proposed a three-dimensional
exact vibration solution of simply-supported thick FGM plates
and Reddy and Cheng [27] presented a three-dimensional asymp-
totic solution for vibrations of simply-supported FGM plates.

However, there appears to be no published findings of accurate
vibration frequencies and nodal patterns for arbitrarily-oriented
and positioned cracked FGM parallelepipeds having various
combinations hinged, clamped or simply-supported face condi-
tions. In the above-mentioned literature, the solutions, except for
a
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�

ick plate having a side crack showing position coordinates (cx and cy), crack length

) top view of aplate with a crack intersecting y¼b and (c) side view of plate.



Table 1
Material properties of the FGM components.

Material Properties

E (GPa) Poisson’s ratio (n) r (kg/m3)

Aluminum (Al) 70 0.3 2702

Alumina (Al2O3) 380 0.3 3800

Zirconia (ZrO2) 200 0.3 5700
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the finite element solutions, by no means considered the char-
acteristic of the stress singularities at the crack terminus edge.
The present work proposes a novel 3-D elasticity-based Ritz
variational procedure to investigate the vibrations of side-cracked
rectangular parallelepipeds modeled as thin and thick plates. The
novelty of the analysis incorporates into the displacement fields
of the dynamical energies, a hybrid series of mathematically
complete admissible orthogonal polynomials [28] and newly-
developed crack functions accounting for stress singularities at
the front of the crack and allowing for displacement disconti-
nuities across the crack (sufficient to describe the most general
3-D mixed modes of local crack-edge deformation and stress
fields), altogether accurately predicting the vibrations of FGM
parallelepipeds with side cracks.

Based on 3-D elasticity theory, Hartranft and Sih [29], Chaud-
huri and Xie [30], Williams [31], and Erdogan and Sih [32]
established eigenfunction expansions showing stress singularities
in statically-loaded cracked homogenous parallelepipeds. The
most direct approach in determining the stress and displacement
fields associated with each crack-edge mode draws upon funda-
mentals of fracture put forth early-on by Irwin [33] using
methodologies originally proposed by Westergaard [34]. Recently,
the free vibrations of cracked FGM parallelepipeds modeled as
Kirchhoff thin plates [35] and higher-order Reddy shear deform-
able thick plates [36] have been addressed.

The present 3-D Ritz methodology is validated by comprehen-
sive convergence studies and by comparisons of published solu-
tions obtained using alternative theories and methods for cracked
homogeneous and FGM parallelepipeds modeled as thin [35] and
shear deformable thick plates [36]. An extensive amount of non-
dimensional frequencies and nodal patterns are reported herein
for the first time for FGM rectangular parallelepipeds modeled as
moderately thick plates having various combinations hinged,
clamped or simply-supported face conditions, and having side
cracks with different crack length ratios (d/a and d/b), crack
positions (cx/a and cy/b), and crack inclination angles (a). The
effects of the volume fraction in a power law for describing
material properties of FGM on the frequencies are also examined.
These results can serve as the benchmark values for future
numerical techniques in plate vibrations and for establishing
simplified FGM plate theories and asymptotic perturbation
solutions.
2. Theoretical formulation

Consider in Fig. 1 the rectangular coordinates (x,y,z) assumed
originating at the mid-plane of a rectangular FGM parallelepiped
modeled as a thick plate with a side crack. Seen also therein are
the polar coordinates (r,y) assumed emanating at the tip of crack
on the mid-plane, which are used to describe in the limit as r

approaches zero the infinite stress at the crack front.
The material properties (i.e., elastic modulus, E¼E(z), Poisson’s

ratio, u¼ uðzÞ and mass density, r¼r(z)) vary as a simple power
law in the parallelepiped thickness (i.e., the z direction in Fig. 1),
as follows:

PðzÞ ¼ PbþVðzÞDP ð1Þ

where VðzÞ ¼ z
h þ

1
2

� �m̂
, Pb denotes the properties at the bottom

parallelepiped face z¼�h/2 DP, is the difference between Pb and
the corresponding property at the top parallelepiped face (z¼h/
2); h is the parallelepiped thickness, and m̂ is the parameter of
volume fraction that governs the material variation profile in the
thickness direction. In the present study, the FGM parallelepipeds
under consideration are made of aluminum (Al) and ceramic
(zirconia (ZrO2) or alumina (Al2O3)), whose material properties
are given in Table 1.

In using the Ritz method, the dynamic characteristics of the
parallelepiped are predicted by minimizing the energy functional

P¼ Vmax�Tmax, ð2Þ

where Vmax is the maximum strain energy and Tmax is the

maximum kinetic energy in simple harmonic motion, e
ffiffiffiffiffi
�1
p

ot-1:
Based on 3-D elasticity theory, a parallelepiped vibrating harmo-
nically with circular frequency o and amplitudes Ui (x, y, z)
(i¼1,2,3) along the x, y and z coordinate directions, respectively,
is described by the following maximum strain and kinetic energy
expressions at the peak displacements and velocities of the
vibratory cycle:

Vmax ¼
1

2

Z
V

n
lðzÞðU1,xþU2,yþU3,zÞ

2
þGðzÞ 2ðU1,xÞ

2
þ2ðU2,yÞ

2
h

þðU2,zþU3,yÞ
2
þðU3,xþU1,zÞ

2
io

dV , ð3aÞ

Tmax ¼
o2

2

Z
V
rðzÞðU2

1þU2
2þU2

3ÞdV , ð3bÞ

where lðzÞ ¼ uðzÞEðzÞ
ð1þ uðzÞÞð1�2uðzÞÞ and GðzÞ ¼ EðzÞ

½2ð1þ uðzÞ�, with the subscript

comma in Eq. (3) denoting partial differentiation with respect to
the coordinate defined by the variable after the comma.

Displacement amplitude functions, Ui (x,y,z), are expressed in
terms of admissible functions, ~Uijðx,y,zÞ, as

Uiðx,y,zÞ ¼
XNi

j ¼ 1

aij
~Uijðx,y,zÞ ði¼ 1,2,3Þ, ð4Þ

wherein the ~U ijðx,y,zÞ, which is formulated shortly, are con-
structed in mathematical completeness to satisfy minimally the
geometric (kinematical) conditions corresponding to the various
combinations of hinged, clamped, and completely free face con-
ditions of the cracked parallelepiped and additionally, the stress
singularities at the front of the crack and displacement disconti-
nuities across the crack. Substituting Eq. (4) into Eqs. (2) and (3)
and minimizing the energy functional (Eq. (2)) with respect to the
generalized coefficients, aij, (Eq. (4)), yields the following matrix
set of linear homogeneous algebraic equations:

K11 K12 K13

K22 K23

sym K33

2
64

3
75

a1j

a2j

a3j

8><
>:

9>=
>;¼o2

M11 M12 M13

M22 M23

sym M33

2
64

3
75

a1j

a2j

a3j

8><
>:

9>=
>;, ð5Þ

which is expressed in the form of a standard eigenvalue
problem—the eigenvalues being the circular frequencies of free
vibration o of a cracked FGM parallelepiped. The associated
eigenvectors of generalized coefficients, aij, may be substituted
back into Eq. (4) to obtain the physical vibration mode shapes of
the cracked FGM parallelepiped corresponding to each circular
frequencies of vibration o.

An appropriately enhanced Ritz procedure proposed herein
yields accurate solutions of cracked FGM parallelepiped vibrations
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with the accuracy and efficiency of the approximate solutions
largely depending on the appropriate choice of ~Uijðx,y,zÞ in Eq. (4).
A hybrid series of mathematically complete admissible orthogonal
polynomials and newly-developed crack functions accounting for
stress singularities at the front of the crack, while permitting
displacement discontinuities across the crack, are used to approx-
imate each of displacement amplitudes, Ui (x, y, z). In Eq. (4), the
displacement amplitude functions are expressed as

Ui ¼ ÛipþÛic ð6Þ

where Ûip is an assumed finite series of mathematically complete
polynomials; and Ûic is an assumed finite series of crack functions,
supplementing the assumed polynomial series, Ûip, to appropri-
ately describe the essential singular stresses and displacement
discontinuities across the crack.

Orthogonal polynomials are adopted to expand Ûipin Eq. (6) as

Ûipðx,y,zÞ ¼ f iðzÞ
XNiz

l ¼ 1

XNix

j ¼ 1

XNiy

k ¼ 1

AðiÞjklP
ðiÞ
j ðxÞQ

ðiÞ
k ðyÞz

l�1 ði¼ 1,2,3Þ, ð7Þ

where PðiÞj ðxÞand Q ðiÞk ðyÞ are orthogonal polynomials in the x and y

directions, respectively, and are generated by using a standard
Gram–Schmidt orthogonalization process [28]. Imbedded inside
the adopted Gram–Schmidt orthogonalization procedure are
associated boundary functions in which PðiÞj ðxÞ satisfy the geo-
metric boundary conditions for Ui on the parallelepiped faces,
x¼0 and x¼a, while Q ðiÞk ðyÞ satisfy the geometric boundary
conditions for Ui on the parallelepiped faces, y¼0 and y¼b. In
Eq. (7), the assumed series of algebraic polynomials, zi�1, resem-
bles the kinematical assumption of displacements in the thick-
ness (z) coordinate incorporated in various well-established
Mindlin and higher-order shear deformable plate theories.
Boundary functions, f iðzÞ, are used to satisfy the geometric
boundary conditions for Ui on the top and bottom parallelepiped
faces. In this work, completely stress free top and bottom
parallelepiped faces are assumed so that f iðzÞ ¼ 1.

To enhance the convergence accuracy of the proposed Ritz
procedure due to the presence of a crack, stress singularities at
the front of the crack and displacement discontinuities across the
crack are considered in constructing admissible crack functions,
Ûic , augmenting the assumed series of orthogonal polynomials,
Ûip. Based on 3-D elasticity theory, Hartranft and Sih [29] and
Chaudhuri and Xie [30] established eigenfunction expansions
showing a well-known stress singularity order of �1/2 for a
cracked homogenous parallelepiped having completely free side
cracks. Huang and Chang [35] and Huang et al. [36] further
established that the vibrations of cracked FGM parallelepipeds
modeled as Kirchhoff thin and Reddy shear deformable thick
plates have analogous stress singularity order as a homogenous
plate. Hence, the following set of crack functions is proposed for a
cracked FGM parallelepiped:

rð2n�1Þ=2cos
2mþ1

2
y and rð2n�1Þ=2sin

2mþ1

2
y

�
9m¼ 0,1,2,. . .,n and n¼ 1,2,3,. . . ð8Þ

and Ûic in Eq. (6) is expressed as

Ûicðr,y,zÞ ¼ giðx,y,zÞ
XNiz

l ¼ 1

XNi

n ¼ 1

Xn

m ¼ 0

BðiÞnmlr
ð2n�1Þ=2cos

2mþ1

2
y

�

þCðiÞnmlr
ð2n�1Þ=2sin

2mþ1

2
y
�

zl�1 ð9Þ

where giðx,y,zÞ (i ¼1, 2, 3) are boundary functions to satisfy the
geometric boundary conditions for Ui on the parallelepiped faces.
The admissible functions in Eq. (9) yield the well-known fracture
mechanics fact that (for n¼1) the order of the 3-D stress tensor
components are sij � Wð1=
ffiffiffi
r
p
Þ as r approaches zero. Yet, the

gradients of Eq. (9) are not continuous across a FGM crack
ðy¼ 7pÞ. Such displacement discontinuities across the crack are
fully accounted for in establishing the admissibility of the crack
functions through the boundary functions giðx,y,zÞ (i¼1, 2, 3).
Note that the associated eigenvectors of generalized coefficients,
aij, (Eqs. (4)–(5)) comprise the AðiÞjkl (from Eq. (7)), and BðiÞnml and CðiÞnml

(from Eq. (9)).
Near the crack tip, where the terms corresponding to n¼1

dominate, the assumed crack functions (Eq. (9)) possess a neces-
sary positive square root in the polar coordinate r, (dominated by
the order of square root of r, Wð

ffiffiffi
r
p
Þ), and the associated 3-D stress

fields possess the well-established square root singularity as r

goes to zero (dominated by the order of inverse square root of r,
Wð1=

ffiffiffi
r
p
Þ, emanating from the crack-edge), thus, yielding the

appropriate admissibility required regardless of the FGM paralle-
lepiped geometry and normal mode response and stress distribu-
tion. By incorporating appropriate gradients of the displacement
fields (Eqs. (7) and (9)), the associated 3-D stress fields of the
cracked FGM parallelepiped are

sx ¼ lðzÞðU1,xÞ ¼ lðzÞ½Û1p,xþÛ1c,x�

sy ¼ lðzÞðU2,yÞ ¼ lðzÞ½Û2p,yþÛ2c,y�

sz ¼ lðzÞðU3,zÞ ¼ lðzÞ½Û3p,zþÛ3c,z�

txy ¼ ðGðzÞ=2ÞðU1,yþU2,xÞ ¼ ðGðzÞ=2Þ½ðÛ1p,yþÛ1c,yÞþðÛ2p,xþÛ2c,xÞ�

tyz ¼ ðGðzÞ=2ÞðU2,zþU3,yÞ ¼ ðGðzÞ=2Þ½ðÛ2p,zþÛ2c,zÞþðÛ3p,yþÛ3c,yÞ�

txz ¼ ðGðzÞ=2ÞðU3,xþU1,zÞ ¼ ðGðzÞ=2Þ½ðÛ3p,xþÛ3c,xÞþðÛ1p,zþÛ1c,zÞ�

ð10Þ

wherein the above usual transformations between the global
Cartesian (x,y,z) coordinates of the FGM parallelepiped and the
local polar (r,y,z) coordinates at the crack terminus edge are
assumed in the present 3-D calculations.

Values of the generalized constants, BðiÞnml and CðiÞnml, in Eqs. (9)–(10),

depend on the cracked FGM parallelepiped geometry, boundary
conditions, and the associated normal mode response; however, the
polar coordinate dependence of the corner functions sequence (Eq.
(8)) do not change with the cracked FGM parallelepiped geometry,
boundary conditions, and normal mode response. Nonetheless, for

n¼1,2,3,y, the generalized constants, BðiÞnml and CðiÞnml, in Eqs. (9)–(10),

may be generalized as directly proportional to crack-edge stress
(field) intensity factors [33,34] (n¼1 being associated with the most
dominant 3-D stresses in Eq. (10), see Appendix) through a propor-

tionality constant
ffiffiffiffiffiffi
2p
p

for crack opening responses ð
ffiffiffiffiffiffi
2p
p

BðiÞnmlÞ and

crack shearing or sliding responses ð
ffiffiffiffiffiffi
2p
p

CðiÞnmlÞ, including more gen-

eralized 3-D ‘‘mixed-mode’’ crack opening-shearing/sliding-tearing
responses (see Appendix), depending on the complexity of cracked

FGM parallelepiped vibratory behavior. Given
ffiffiffiffiffiffi
2p
p

BðiÞnml and
ffiffiffiffiffiffi
2p
p

CðiÞnml

are independent of r and y, they embody the strength of the stress

fields surrounding the crack edge. Alternatively,
ffiffiffiffiffiffi
2p
p

BðiÞnml andffiffiffiffiffiffi
2p
p

CðiÞnml may be mathematically viewed as the strengths of the

Wð1=
ffiffiffi
r
p
Þ stress singularities at the crack edge most dominate for n¼1.

The BðiÞnml and CðiÞnml are evaluated in the present Ritz procedure by the

clamped, hinged, and stress free boundaries of the cracked FGM
parallelepiped, consequently, formulae for their evaluation may be
understood from a complete stress analysis (see Appendix) of a given
cracked FGM parallelepiped configuration. In the present analysis,
such stress fields near the crack tip are assumed to be linearly

dependent on such stress intensities,
ffiffiffiffiffiffi
2p
p

BðiÞnml and
ffiffiffiffiffiffi
2p
p

CðiÞnml. That is,

scaling
ffiffiffiffiffiffi
2p
p

BðiÞnml and
ffiffiffiffiffiffi
2p
p

CðiÞnml also directly scales the stress and

displacement fields near the crack edge of the FGM parallelepiped,
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whereas the stresses at the crack edge of the FGM parallelepiped
remain unbounded.

Physically,
ffiffiffiffiffiffi
2p
p

BðiÞnml and
ffiffiffiffiffiffi
2p
p

CðiÞnml may be regarded as inten-
sities of vibratory stresses through the crack edge region caused
by the introduction of a crack into the FGM parallelepiped. Corre-
spondingly, formulae for

ffiffiffiffiffiffi
2p
p

BðiÞnml and
ffiffiffiffiffiffi
2p
p

CðiÞnml(see Appendix) may
be regarded as reflecting strain redistributions for transmission of
linear-elastic stress past the crack edge, even though small degrees of
nonlinearity at the crack edge is embedded within the stress field and
do not significantly impact the overall correctness of the present
analysis. Hence, ‘‘mixed mode’’ cracking in FGM parallelepiped
vibration is sufficient to describe the most general three-dimensional
dynamic ‘‘small-scale’’ yielding of local crack-tip deformation and
stress fields in cracked parallelepipeds. Because fracture processes of
a functionally graded material may be regarded as ‘‘caused’’ by this
surrounding crack-edge stress field nature, the intensities

ffiffiffiffiffiffi
2p
p

BðiÞnml

and
ffiffiffiffiffiffi
2p
p

CðiÞnml may be interpreted in a generalized sense as fracture
correlation coefficients in current practice. It should be noted that the
intensities have units of (force)� (length)�3/2 [33,34], and since the
intensities are linear factors in elastic stress, they must be propor-
tional to the vibratory force, and other characteristic lengths, such as
crack size, i.e., determined in the present analysis by different crack
length ratios (d/a and d/b), crack positions (cx/a and cy/b), and crack
inclination angles (a) (see Fig. 1). These crack size effects addressed in
the present analysis imply flaw-size influence in FGM parallelepiped
vibration and fracture, suggesting that these crack size effects can be
fully analyzed only if crack-edge stress singularity effects and allow-
ing for displacement discontinuities across the crack (sufficient to
describe the most general 3-D mixed modes of local crack-edge
deformation and stress fields) are included.

Since the 3-D stress values near a crack edge are unbounded, a
strength-of-materials approach of FGM failure prediction that the
FGM fails, when the 3-D stresses exceed some critical Von-Mises
measure or ultimate/yield value is inadequate. As a cracked FGM
parallelepiped responds in a normal mode of vibration, in spite of
the fact that the stress field near the crack tip is unbounded, the
FGM parallelepiped may not necessarily fail. Beyond such critical
stress limit, however, such fatigue and failure mechanisms are
possible. Instead of a conventional approach of referencing a
maximum FGM stress value with a critical FGM stress values, in
a fracture mechanics approach FGM parallelepiped failure may be
predicted by theoretically comparing the stress intensity con-

stants,
ffiffiffiffiffiffi
2p
p

BðiÞnml and
ffiffiffiffiffiffi
2p
p

CðiÞnml, with some critical value, thus,

establishing a generalized spectral accuracy of the present Ritz
methodology, especially within the crack region of a normal mode
response of a cracked FGM parallelepiped. Such a critical value of
generalized stress intensity may be considered a critical stress
intensity or fracture toughness of the FGM. Theoretically speak-
ing, a cracked FGM parallelepiped may fail under high-cycle

fatigue and fracture as
ffiffiffiffiffiffi
2p
p

BðiÞnml and
ffiffiffiffiffiffi
2p
p

CðiÞnml values increase

proportionately (depending on the cracked FGM parallelepiped
geometry and normal mode response) beyond some critical stress
intensity or fracture toughness of the FGM. Such fracture tough-
ness is a material property, analogous to elastic homogeneous
materials ultimate stress or yield stress.

In the present Ritz analysis, the material properties (i.e., elastic

modulus, E, Poisson’s ratio, u, and mass density, r) vary as a

simple power law in the parallelepiped thickness (see Fig. 1),

as described in Eq. (1), which exponentially depends a parameter

m̂ being the volume fraction that governs the material varia-

tion profile in the FGM parallelepiped thickness including

the thickness at the crack tip. The FGM parallelepipeds under

consideration are made of aluminum (Al) and ceramic (zirconia

(ZrO2) or almina (Al2O3)), whose material properties are given in

Table 1.
The values of Nix, Niy, Niz in Eq. (7) and Ni are assumed to vary
for various i. For simplicity, Nix ¼ N̂x, Niy ¼ N̂y, Niz ¼ N̂z, and Ni ¼ N̂c

for i¼1, 2, and 3 in the present study. Substituting Eqs. (7) and (9)
into Eqs. (2) and (3) and minimizing the energy functional Pyield
3� ðN̂x � N̂y � N̂z � N̂c � ðN̂cþ3Þ � N̂zÞ simultaneous algebraic
solution matrix equations in Eq. (5).
3. Convergence and comparison studies

Leissa [37] described about 500 publications which appeared
before 1966, and more than 1500 papers have been published
since then. Relatively few published results are available for
cracked rectangular plates, and most of them considered plates
with simply-supported (SSSS) boundary conditions at all sides or
at two opposite sides. Because exact analytical solutions exist for
such plates with no crack, semi-analytical solutions [38] can be
constructed for such plates with cracks along a straight line
perpendicular to the simply-supported edges.

In examining the vibrations of homogeneous SSSS cracked
rectangular parallelepipeds modeled as cracked plates, Lynn and
Kumbasar [6] used Green’s functions to represent the transverse
displacements of plates, resulting in homogeneous Fredholm
integral equations of the first kind, while Stahl and Keer [7]
formulated such problems as dual series equations which reduced
to homogeneous Fredholm integral equations of the second kind.
Aggarwala and Ariel [8] applied Stahl and Keer’s approach to
analyze the vibration of parallelepipeds having various crack
length ratios (d/a or d/b) and positions (cy/b) along its symmetry
axes. Neku [9] modified Lynn and Kumbasar’s approach [6] by
establishing the needed Green’s functions via Levy’s form of
solution. Solecki [10] constructed a solution for vibrations of a
cracked plate by using a Navier’s solution, along with finite
Fourier transformation of discontinuous functions for the displa-
cement and slope across the crack. Recently, Khadem and Rezaee
[39] used so-called modified comparison functions constructed
from Levy’s solution as the admissible functions of the Ritz
method to analyze a SSSS rectangular cracked parallelepiped with
arbitrary crack length ratio (d/a or d/b) and position (cy/b) parallel
to one side of the parallelepiped. Due to the specialized construc-
tion of their assumed Levy’s solutions as admissible transverse
displacement field, the Khadem and Rezaee [39] procedure can
only be applied to rectangular parallelepipeds with two opposite
edges simply-supported. Hirano and Okazaki [11] also developed
solutions for vibrations of cracked rectangular parallelepipeds
with two opposite edges simply-supported by utilizing a Levy’s
solution transverse displacement field and further matching the
boundary conditions by means of a weighted residual method.

The convergence and comparison studies for natural frequen-
cies of SSSS homogeneous and FGM rectangular parallelepipeds,
having a side crack of various length ratios (d/a or d/b), crack
positions (c/b), and crack orientation (a), are summarized now,
not only to addresses the importance of using crack functions to
accelerate the convergence of crack FGM parallelepiped vibra-
tions, but also to appropriately describes the behaviors of stress
singularities at the crack tip and show the discontinuities of
displacement and slope crossing the crack, which are character-
istics of the true solutions and the 3-D mode shapes described in
Section 5. The present numerical results are compared with the
published results and show better accuracy than those obtained
by the Ritz method combining with different domain decomposi-
tion techniques (i.e., Yuan and Dickinson [14] and Liew et al. [15]).

The present Ritz procedure yields upper bounds to the
exact values as the number of terms retained increases in the
assumed hybrid series, Eq. (4), yielding in Eq. (5) a solution matrix

size, 3� ðN̂x � N̂y � N̂zþN̂c � ðN̂cþ3Þ � N̂zÞ. A convergence study



Table 2

Convergence of oðb2=hÞ
ffiffiffiffiffiffiffiffiffi
r=E

p
for a homogeneous, cracked SSSS rectangular parallelepiped modeled as a thin plate with a horizontal side crack@ (a/b¼2.0, h/b¼0.01,

cy/b¼0.5, d/a¼0.5, a¼01).

Mode no. Crack

functions (N̂c)

Polynomial solution size (I� J) @[ ]N̂z ¼ 2; ( )N̂z ¼ 3; { } N̂z ¼ 4 Stahl & Keern [7]

Huang et al. þ[2,3]

4�4 5�5 6�6 7�7 8�8 9�9

1 0 [4.132] [4.132] [4.131] [4.131] [4.131] [4.131] 3.05n 3.053þ

(3.733) (3.733) (3.733) (3.733) (3.733) (3.733)

{3.733} {3.733} {3.733} {3.733} {3.733} {3.733}

2 [3.877] [3.648] [3.618] [3.464] [3.452] [3.368]

(3.551) (3.384) (3.363) (3.247) (3.238) (3.173)

{3.551} {3.383} {3.363} {3.247} {3.238} {3.173}

4 [3.234] [3.234] [3.220] [3.217] [3.217] [3.216]

(3.065) (3.057) (3.054) (3.052) (3.051) (3.051)

{3.064} {3.057} {3.053} {3.051} {3.051} {3.050}

5 [3.225] [3.217] [3.217] [3.216] [3.216] [3.215]

(3.058) (3.052) (3.051) (3.051) (3.050) (3.050)

{3.057} {3.052} {3.051} {3.050} {3.050} {3.049}

6 [3.220] [3.216] [3.216] [3.215] [3.215] [3.214]

(3.054) (3.051) (3.050) (3.050) (3.050) (3.049)

{3.054} {3.050} {3.050} {3.049} {3.049} {3.048}

2 0 [7.198] [6.618] [6.618] [6.609] [6.609] [6.609] 5.507n 5.506þ

(6.539) (5.981) (5.980) (5.972) (5.972) (5.971)

{6.539} {5.980} {5.980} {5.971} {5.971} {5.971}

2 [6.919] [6.209] [6.189] [6.102] [6.096] [6.060]

(6.347) (5.699) (5.685) (5.614) (5.609) (5.578)

{6.346} {5.699} {5.685} {5.613} {5.609} {5.578}

4 [5.840] [5.799] [5.780] [5.773] [5.769] [5.767]

(5.554) (5.517) (5.512) (5.507) (5.506) (5.505)

{5.554} {5.516} {5.512} {5.506} {5.506} {5.505}

5 [5.779] [5.765] [5.761] [5.759] [5.758] [5.757]

(5.539) (5.508) (5.505) (5.504) (5.504) (5.504)

{5.539} {5.507} {5.504} {5.504} {5.504} {5.503}

6 [5.765] [5.761] [5.758] [5.758] [5.756] [5.756]

(5.532) (5.506) (5.504) (5.504) (5.504) (5.503)

{5.532} {5.505} {5.504} {5.503} {5.503} {5.503}

3 0 [13.75] [13.74] [10.84] [10.84] [10.74] [10.74] 5.570n 5.570þ

(12.78) (12.61) (9.801) (9.799) (9.703) (9.703)

{12.77} {12.61} {9.801} {9.798} {9.703} {9.703}

2 [13.51] [12.93] [10.75] [10.74] [10.64] [10.63]

(12.51) (11.90) (9.747) (9.733) (9.642) (9.637)

{12.50} {11.90} {9.747} {9.732} {9.642} {9.636}

4 [6.027] [5.973] [5.967] [5.960] [5.960] [5.958]

(5.631) (5.598) (5.584) (5.578) (5.574) (5.573)

{5.630} {5.597} {5.583} {5.577} {5.573} {5.572}

5 [6.006] [5.961] [5.957] [5.956] [5.956] [5.956]

(5.583) (5.571) (5.568) (5.566) (5.564) (5.564)

{5.582} {5.570} {5.566} {5.565} {5.563} {5.562}

6 [5.996] [5.958] [5.956] [5.956] [5.956] [5.955]

(5.570) (5.567) (5.564) (5.564) (5.562) (5.562)

{5.569} {5.566} {5.563} {5.562} {5.561} {5.560}

4 0 [17.49] [14.09] [14.09] [14.04] [14.04] [14.04] 9.336n 9.336þ

(16.04) (12.74) (12.74) (12.69) (12.69) (12.68)

{16.04} {12.74} {12.73} {12.68} {12.68} {12.68}

2 [14.32] [13.34] [12.51] [12.45] [12.10] [12.07]

(13.40) (12.26) (11.59) (11.54) (11.27) (11.24)

{13.40} {12.26} {11.59} {11.54} {11.27} {11.24}

4 [11.44] [10.32] [10.16] [10.15] [10.12] [10.12]

(10.52) (9.545) (9.382) (9.370) (9.343) (9.341)

{10.52} {9.544} {9.381} {9.369} {9.342} {9.340}

5 [10.77] [10.13] [10.12] [10.11] [10.10] [10.10]

(9.884) (9.359) (9.349) (9.341) (9.333) (9.333)

{9.883} {9.359} {9.348} {9.340} {9.332} {9.332}

6 [10.62] [10.11] [10.11] [10.10] [10.10] [10.10]

(9.766) (9.341) (9.339) (9.332) (9.332) (9.331)

{9.765} {9.340} {9.338} {9.331} {9.331} {9.330}

5 0 [19.96] [16.57] [16.57] [16.51] [16.51] [16.51] 12.76n 12.87þ

(18.25) (14.97) (14.97) (14.92) (14.92) (14.92)

{18.25} {14.97} {14.97} {14.92} {14.92} {14.92}

2 [18.51] [15.46] [15.30] [15.24] [15.15] [15.15]

(17.01) (14.06) (13.90) (13.84) (13.76) (13.75)

{17.01} {14.06} {13.90} {13.84} {13.75} {13.75}

4 [14.73] [14.65] [14.57] [14.50] [14.48] [14.46]

(13.33) (13.27) (13.21) (13.15) (13.14) (13.13)

{13.33} {13.27} {13.21} {13.15} {13.14} {13.13}
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Table 2 (continued )

Mode no. Crack

functions (N̂c)

Polynomial solution size (I� J) @[ ]N̂z ¼ 2; ( )N̂z ¼ 3; { } N̂z ¼ 4 Stahl & Keern [7]

Huang et al. þ[2,3]

4�4 5�5 6�6 7�7 8�8 9�9

5 [14.11] [13.98] [13.95] [13.94] [13.93] [13.93]

(12.88) (12.81) (12.79) (12.78) (12.78) (12.77)

{12.88} {12.81} {12.79} {12.78} {12.77} {12.77}

6 [13.97] [13.93] [13.92] [13.92] [13.91] [13.91]

(12.79) (12.77) (12.77) (12.76) (12.76) (12.76)

{12.79} {12.77} {12.76} {12.76} {12.76} {12.76}
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was conducted for rectangular parallelepipeds modeled as thick
plates with different h/b to verify the correctness of the proposed
solutions. The rectangular parallelepipeds are assumed simply-
supported on the faces x¼0, x¼a, y¼0, and y¼b. The correspond-
ing geometric boundary conditions are U2 ¼ U3 ¼ 0 at x¼0 and
x¼a, and U1 ¼U3 ¼ 0 at y¼0 and y¼b. Thus, in Eq. (9),

g1ðx, y, zÞ ¼ yðb�yÞ, g2ðx, y, zÞ ¼ xða�xÞ, and g3ðx, y, zÞ ¼

xða�xÞyðb�yÞ. Poisson’s ratio (n) is set equal to 0.3 for the
homogeneous parallelepipeds analyzed. Table 2 summarizes the
convergence studies of the first five non-dimensional frequency
parameters for a rectangular (a/b¼2), homogeneous SSSS paral-
lelepiped modeled as a thin plate (h/b¼0.01) with a side crack,
having position ratio, cy/b¼0.5, and having crack length ratio, d/

a¼0.5, and crack orientation horizontally at a¼01. Posted values

of the first five oðb2=hÞ
ffiffiffiffiffiffiffiffiffi
r=E

p
were obtained using increasing

orthogonal polynomial solution size, N̂x � N̂y¼ (4�4), (5�5),y,

(9�9), crack functions, N̂c¼0, 2, 4, 5, 6, and algebraic polynomials

solution size, N̂z¼2, 3, 4, assuming correspondingly first-order,
second-order, or cubic-order transverse shear deformation through
the parallelepiped thickness. For an intact SSSS parallelepiped, using
only polynomials as assumed displacement fields in the present Ritz
procedure gives insufficiently converged solutions, as the polynomial

solution sizes, N̂x � N̂y and N̂z increases. Augmenting the assumed

displacement of admissible polynomials with crack functions, i.e., for

a solution matrix size, 3� ðN̂x � N̂y � N̂zþN̂c � ðN̂cþ3Þ � N̂zÞ, yields

upper bounds to converge to the values in excellent agreement with
the published results of Stahl and Keer [7] and Huang and Leissa [2,3]
using the classical thin plate theory (see Table 2). Stahl and Keer [7]
used an accurate Fredholm integration approach, while Huang and
Leissa [2,3] used the Ritz method using classical thin-plate theory
assuming hybrid series of plate’s transverse displacement field of
algebraic polynomials and special corner functions that appropriately
described the stress singularities at the crack tip and discontinuities of
transverse displacement and slope crossing the crack.

It can be seen in Table 2 that using an orthogonal polynomial

solution size, N̂x � N̂y ¼ 9� 9, corner functions, N̂c ¼ 6, and alge-

braic polynomial solution size, N̂z ¼ 4, taking on cubic-order

transverse shear flexibility through the parallelepiped thickness

(for a 1620-term solution matrix size) yields converged frequen-

cies at least to three significant figures, slightly lower than those

solutions obtained using the classical thin plate theory (Stahl and

Keer [7] and Huang and Leissa [2,3]), mainly because of the effects

of shear deformation and rotary inertia inherent to the present

3-D solutions. As contrasted in Table 2, the 3-D solutions obtained

assuming constant transverse shear flexibility through the paral-

lelepiped thickness (N̂z ¼ 2) are markedly insufficient in regards

to overall solution accuracy compared to 3-D solutions obtained
assuming linear or parabolic transverse shear flexibility through
the parallelepiped thickness (N̂z ¼ 3 or 4).
Table 3 describes the convergence of the first five non-dimen-
sional frequencies for SSSS square FGM parallelepiped modeled as
a moderately thick (h/b¼0.1), square FGM plate having a horizon-
tal side crack (a¼01) positioned at cy/b¼0.5 with crack length
ratio, d/a¼0.5. The parallelepiped is made of aluminum (Al) and
alumina (Al2O3), and the material properties linearly vary (m̂¼ 1 in
Eq. (1)) along the thickness direction. The non-dimensional fre-
quency parameter, oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
, in which subscript ‘‘c’’ refers to

a reference ceramic material, is employed. Reported values of
ðoÞðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
were obtained using increasing orthogonal poly-

nomial solution size, N̂x � N̂y ¼ ð4� 4Þ, ð5� 5Þ, . . ., ð9� 9Þ, crack
functions, N̂c ¼ 0, 2, 4, 5, 6, and algebraic polynomial solution size,
N̂z ¼ 4, 5, 6, taking on correspondingly 3rd, 4th, or 5th higher-
order transverse shear deformation through the parallelepiped
thickness. In contrast to conventional laminated composite mate-
rials, which have abrupt change in material properties, causing
large interlaminar stresses and delaminations across the interface
between differing material layers with different materials, func-
tionally graded materials do not have these adverse interlamina-
tion stress and delamination effects, as material properties of
functionally graded materials vary continuously by gradually
changing the volume fraction of constituent properties.

Mac and Huang [19] employed element-free kp-Ritz method
based on Mindlin plate theory, reporting the first four non-
dimensional frequencies oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
of an intact SSSS FGM

plate, as follows: Mode 1: 4.3474, Mode 2: 10.416, Mode 3:
10.416, Mode 4: 15.936. These Mac and Huang [19] intact Mindlin
SSSS FGM plate solutions appear to be in proximity agreement
with the predicted 3-D solutions of a cracked SSSS FGM paralle-
lepiped modeled as a moderately thick, cracked FGM plate
(h/b¼0.1) using no crack functions (N̂c ¼ 0) reported in Table 3
(that is, Mode 1: 4.426, Mode 2: 10.63, Mode 3: 10.63, Mode 4:
16.20, Mode 5: 16.20), albeit the present 3-D solutions using no
crack functions (N̂c ¼ 0) appear to be converging to slightly higher
upper-bounds on the exact solutions above the upper-bound
Mindlin FGM SSSS plate solutions of Mac and Huang [19].
However, by incorporating crack functions into the present 3-D
calculations, one substantially enhances the convergence of solu-
tions. Indeed, using an orthogonal polynomial solution size,
N̂x � N̂y ¼ 9� 9, corner functions, N̂c ¼ 6, and algebraic polyno-
mial solution size, N̂z ¼ 6, assuming 5th-order transverse shear
flexibility through the parallelepiped thickness (for a 2430-term
solution matrix size) yields 3-D solutions posted in Table 3 that
can be described as exact to at least three significant figures. The
Mac and Huang [19] Mindlin SSSS FGM plate solutions are indeed
not in close agreement with the predicted 3-D solutions of a
cracked SSSS FGM parallelepiped modeled as a moderately thick
FGM plate using six crack functions (N̂c ¼ 6) reported in Table 3,
which are as follows: Mode 1: 4.270, Mode 2: 9.963, Mode 3:
10.34, Mode 4: 13.95, Mode 5: 14.45, predicted using four or six
terms in the parallelepiped thickness (z) direction. Moreover, due
to the presence of the horizontal crack, the converged cracked



Table 3

Convergence of oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for a Al/Al2O3 FGM cracked SSSS square parallelepiped modeled as a Al/Al2O3 FGM SSSS square, moderately thick plate with a horizontal

side crack@ (h/b¼0.1, cy/b¼0.5, d/a¼0.5, a¼01, m̂¼1).

Mode no. Crack

functions (N̂c)

Polynomial solution size (I� J) @[ ]N̂z ¼ 4; ( )N̂z ¼ 5; { }N̂z ¼ 6

4�4 5�5 6�6 7�7 8�8 9�9

1 0 [4.427] [4.427] [4.426] [4.426] [4.426] [4.426]

(4.427) (4.427) (4.426) (4.426) (4.426) (4.426)

{4.427} {4.427} {4.426} {4.426} {4.426} {4.426}

2 [4.304] [4.292] [4.289] [4.284] [4.283] [4.281]

(4.303) (4.292) (4.289) (4.284) (4.823) (4.280)

{4.303} {4.292} {4.289} {4.284} {4.283} {4.280}

4 [4.275] [4.273] [4.273] [4.272] [4.272] [4.271]

(4.275) (4.273) (4.273) (4.272) (4.271) (4.271)

{4.275} {4.273} {4.273} {4.272} {4.271} {4.271}

5 [4.274] [4.271] [4.271] [4.271] [4.271] [4.270]

(4.273) (4.271) (4.271) (4.271) (4.270) (4.270)

{4.273} {4.271} {4.271} {4.271} {4.270} {4.270}

6 [4.272] [4.271] [4.271] [4.270] [4.270] [4.270]

(4.272) (4.271) (4.270) (4.270) (4.270) (4.270)

{4.272} {4.271} {4.270} {4.270} {4.270} {4.270}

2 0 [12.49] [10.66] [10.66] [10.63] [10.63] [10.63]

(12.49) (10.66) (10.66) (10.63) (10.63) (10.63)

{12.49} {10.66} {10.66} {10.63} {10.63} {10.63}

2 [10.36] [10.16] [10.12] [10.10] [10.08] [10.08]

(10.36) (10.15) (10.12) (10.10) (10.08) (10.08)

{10.36} {10.15} {10.12} {10.10} {10.08} {10.07}

4 [9.994] [9.987] [9.978] [9.974] [9.970] [9.969]

(9.994) (9.986) (9.977) (9.973) (9.969) (9.968)

{9.993} {9.986} {9.976} {9.973} {9.969} {9.968}

5 [9.981] [9.977] [9.971] [9.969] [9.967] [9.966]

(9.980) (9.976) (9.970) (9.968) (9.966) (9.965)

{9.980} {9.975} {9.970} {9.968} {9.965} {9.965}

6 [9.972] [9.970] [9.968] [9.966] [9.965] [9.964]

(9.972) (9.970) (9.967) (9.965) (9.964) (9.963)

{9.971} {9.969} {9.966} {9.965} {9.963} {9.963}

3 0 [12.49] [10.66] [10.66] [10.63] [10.63] [10.63]

(12.49) (10.66) (10.66) (10.63) (10.63) (10.63)

{12.49} {10.66} {10.66} {10.63} {10.63} {10.63}

2 [10.77] [10.39] [10.38] [10.36] [10.36] [10.35]

(10.77) (10.39) (10.38) (10.36) (10.36) (10.35)

{10.77} {10.39} {10.38} {10.36} {10.36} {10.35}

4 [10.36] [10.35] [10.34] [10.34] [10.34] [10.34]

(10.35) (10.35) (10.34) (10.34) (10.34) (10.34)

{10.35} {10.35} {10.34} {10.34} {10.34} {10.34}

5 [10.35] [10.34] [10.34] [10.34] [10.34] [10.34]

(10.35) (10.34) (10.34) (10.34) (10.34) (10.34)

{10.35} {10.34} {10.34} {10.34} {10.34} {10.34}

6 [10.34] [10.34] [10.34] [10.34] [10.34] [10.34]

(10.34) (10.34) (10.34) (10.34) (10.34) (10.34)

{10.34} {10.34} {10.34} {10.34} {10.34} {10.34}

4 0 [16.20] [16.20] [16.20] [16.20] [16.20] [16.20]

(16.20) (16.20) (16.20) (16.20) (16.20) (16.20)

{16.20} {16.20} {16.20} {16.20} {16.20} {16.20}

2 [14.02] [14.01] [14.00] [14.00] [13.99] [13.99]

(14.02) (14.01) (14.00) (14.00) (13.99) (13.99)

{14.02} {14.01} {14.00} {14.00} {13.99} {13.99}

4 [13.96] [13.95] [13.95] [13.95] [13.95] [13.95]

(13.96) (13.95) (13.95) (13.95) (13.95) (13.95)

{13.96} {13.95} {13.95} {13.95} {13.95} {13.95}

5 [13.95] [13.95] [13.95] [13.95] [13.95] [13.95]

(13.95) (13.95) (13.95) (13.95) (13.95) (13.95)

{13.95} {13.95} {13.95} {13.95} {13.95} {13.95}

6 [13.95] [13.95] [13.95] [13.95] [13.95] [13.95]

(13.95) (13.95) (13.95) (13.95) (13.95) (13.95)

{13.95} {13.95} {13.95} {13.95} {13.95} {13.95}

5 0 [16.20] [16.20] [16.20] [16.20] [16.20] [16.20]

(16.20) (16.20) (16.20) (16.20) (16.20) (16.20)

{16.20} {16.20} {16.20} {16.20} {16.20} {16.20}

2 [16.20] [14.95] [14.88] [14.83] [14.79] {14.78}

(16.20) (14.95) (14.88) (14.83) (14.79) (14.78)

{16.20} {14.95} {14.88} {14.83} {14.79} {14.78}

4 [14.51] [14.49] [14.48] [14.47] [14.46] [14.46]

(14.51) (14.49) (14.48) (14.46) (14.46) (14.46)

{14.50} {14.49} {14.47} {14.46} {14.46} {14.46}
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Table 3 (continued )

Mode no. Crack

functions (N̂c)

Polynomial solution size (I� J) @[ ]N̂z ¼ 4; ( )N̂z ¼ 5; { }N̂z ¼ 6

4�4 5�5 6�6 7�7 8�8 9�9

5 [14.48] [14.47] [14.46] [14.46] [14.45] [14.45]

(14.48) (14.47) (14.46) (14.46) (14.45) (14.45)

{14.48} {14.47} {14.46} {14.45} {14.45} {14.45}

6 [14.46] [14.46] [14.46] [14.45] [14.45] [14.45]

(14.46) (14.46) (14.45) (14.45) (14.45) (14.45)

{14.46} {14.46} {14.45} {14.45} {14.45} {14.45}
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SSSS FGM parallelepiped solutions possess no repeated frequency
Modes 2–3 and Modes 4–5.

Symmetric and anti-symmetric, oðb2=hÞ
ffiffiffiffiffiffiffiffiffi
r=E

p
, associated to

independent normal mode responses are obtained, when the
cracked FGM parallelepiped vibrates symmetrically and anti-
symmetrically (as seen in Figs. 2–6 to be discussed in more detail
subsequently in Section 5). When the vibratory stress is in a
direction perpendicular to the crack surface, then the normal
mode response sees an opening mode of the crack. When the
vibratory stress is parallel to the crack surface, then the normal
mode response sees a shearing or sliding mode of the crack. In
some coupled normal mode responses, the vibratory stress
creates both opening and shearing/sliding mode components of
the crack inducing a mixed modal vibration along the crack. Each
of these cracked normal response negate any kinds of repeated
mode oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
associated with an intact FGM parallelepiped

(Mac and Huang [19]).
To the authors’ knowledge, there are no published results on

the vibrations of cracked parallelepipeds modeled as plates. To
further verify the accuracy of the present 3-D vibration solutions,
Table 4 contrasts oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
predictions obtained by various

theories for SSSS homogeneous cracked square parallelepipeds
with horizontal side cracks (a¼01) having various length ratios
(d/a) and positioned at cy/b¼0.5. The present 3-D Ritz
oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
solutions are posted against oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
calcu-

lated for homogeneous cracked parallelepipeds modeled as classi-
cal thin plates and Mindlin plates. Square parallelepipeds modeled
as plates having three different thickness-length ratios (h/b¼0.002
(very thin), 0.05 (thin), 0.1 (moderately thick)) and two different
horizontal crack length ratios (d/a¼0.2 and 0.4) are considered.
Only oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
for the out-of-plane modes are listed in Table 4.

Huang and Leissa [2,3] applied the Ritz method with the admis-
sible functions, including a set of crack functions possessing
admissibility analogous to that of the present 3-D analysis, yet
suitable for incorporation with classical thin plate theory, while Li
[4] employed a similar methodology based on Mindlin plate theory
with the shear correction factor equal to p2=12. The present 3-D
results for very thin plates (h/b¼0.002) were obtained using
orthogonal polynomial solution size, N̂x � N̂y ¼ 9� 9 (Eq. (7)),
crack functions, N̂c ¼ 6 (Eq. (9)), and algebraic polynomial solution
size (Eq. (7)), N̂z ¼ 4 and 6, taking on correspondingly a cubic-order
and 5th-order transverse shear deformation through the paralle-
lepiped thickness. This yields a 1620-term solution matrix size for
N̂x � N̂y ¼ 9� 9, N̂c ¼ 6, N̂z ¼ 4, and a 2430-term solution matrix
size for N̂x � N̂y ¼ 9� 9, N̂c ¼ 6, N̂z ¼ 4.

Considering stress singularities in cracked parallelepiped
vibration in flexure, a first-order (Mindlin) shear deformable
analysis [4] should yield lower oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
values than classical

thin-plate solutions [2,3]. Shear deformation reduces the
oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
solutions. Rotary inertia reduces the higher modes

of oðb2=hÞ
ffiffiffiffiffiffiffiffiffi
r=E

p
. As oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
is non-dimensionalized with

respect to r, E, and explicitly, h, comparisons in Table 4 between
first-order (Mindlin) and higher-order shear deformable [4] and
classical thin-plate oðb2=hÞ
ffiffiffiffiffiffiffiffiffi
r=E

p
solutions [2,3] are largely inde-

pendent of parallelepiped shape being square (a/b¼1) or rectan-
gular (a/ba1), showing primarily influences of crack length ratio
(d/a) at position (cy/b¼0.5) and horizontal orientation (a¼01). As
the plate becomes thicker or in Table 4 as the frequency mode
number increases, distinctions in Table 4 between shear deform-
able [4] and classical plate [2,3] oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
solutions are more

apparent.
As expected, the differences between the frequencies of very

thin plates (h/b¼0.002) obtained based on the classical thin plate
theory [2,3] and Mindlin plate theory [4] are negligible, and both
are consistent with the present 3-D elasticity-based predicted
solutions up to at least three significant figures. For the thin
(h/b¼0.05) and moderately thick (h/b¼0.1) plates, the predicted
oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
solutions based on the classical thin plate theory

are considerably stiffer than the predicted shear deformable
oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
solutions based on Mindlin plate theory [4] and

present 3-D elasticity theory, especially for homogeneous SSSS
parallelepipeds modeled as moderately thick plates (h/b¼0.1) and
for the higher oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
modes. The homogeneous SSSS

parallelepiped oðb2=hÞ
ffiffiffiffiffiffiffiffiffi
r=E

p
solutions modeled from shear

deformable Mindlin plate theory [4] are slightly over-correcting
in reducing the classical thin plate theory oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
solutions

[2,3] for transverse shear effects compared to the corrections in
reducing the classical thin plate theory oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
solutions for

transverse shear effects inherent to the present 3-D oðb2=hÞ
ffiffiffiffiffiffiffiffiffi
r=E

p
solutions. Percentage differences between the shear deformable
Mindlin oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
solutions and the present 3-D

oðb2=hÞ
ffiffiffiffiffiffiffiffiffi
r=E

p
solutions are less than 1%. Generally speaking, this

1% difference does not significantly increase with increasing crack
length ratio (d/a).
4. Numerical results and discussion

The vibrations of cracked rectangular parallelepipeds with
arbitrary boundary conditions are typically modeled as plates
using both the finite element method and the Ritz method. Qian
et al. [12] developed a finite element solution by deriving the
stiffness matrix for an element including the crack tip from the
integration of the stress intensity factor. Krawczuk [13] proposed
a solution similar to that of Qian et al. [12], except that the
stiffness matrix for an element including the crack tip was
expressed in a closed form. Yuan and Dickinson [14] decomposed
a rectangular plate into several domains and introduced artificial
springs at the interconnecting boundaries between the domains
so that the Ritz method with regular admissible functions
can be applied to find the solutions. Similar to the approach used
by Yuan and Dickinson [14], Liew et al. [15] required the
continuities of displacement and slope in a sense of integration
along the interconnecting boundaries. In the approach of Liew
et al., the continuities of displacement and slope are not satisfied
at every point along the interconnecting boundaries. Notably, the



Fig. 2. (a) Mode shapes, nodal patterns and oðb2=hÞ
ffiffiffiffiffiffiffiffiffi
r=E

p
for a SSSS homogeneous square parallelepiped modeled as a moderately thick plate (cx=a¼0, d/b¼0, h/b¼0.1);

(b) mode shapes, nodal patterns and oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for SSSS homogeneous cracked square parallelepipeds modeled as moderately thick cracked plates (cx=a¼0,

d/b¼0.2,0.5, h/b¼0.1, cy/b¼0.5, a¼01) and (c) nodal patterns and oðb2=hÞ
ffiffiffiffiffiffiffiffiffi
r=E

p
for SSSS homogeneous cracked square parallelepipeds modeled as classically-thin cracked

plates (Huang and Leissa [2]) (m̂¼0, d/b¼0.2,0.5, h/b¼0.01, cy/b¼0.5, a¼01).
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solutions of Yuan and Dickinson [14] and Liew et al. [15] destroy
the good characteristics of providing upper-bound solutions for
vibration frequencies, normally associated with the Ritz method.

These published solutions, except for the finite element solutions,
by no means address the stress singularities at the crack terminus
edge of FGM parallelepipeds. Addressed in this section is 3-D
elasticity-based Ritz predictions including such stress singularities
to investigate the vibrations of side-cracked rectangular FGM paralle-
lepipeds, particularly bringing forth the possible discontinuities of
displacement and slope across the crack. Since a crack is a special case
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* *

0.5

*

Mode Number

Mode Number

(12.64)(12.05)(8.885)(8.867)(3.759)

(3.513) (7.334) (8.635) (10.49) (11.18)

Fig. 3. (a) Mode shapes, nodal patterns and oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for a SSSS square Al/Al2O3 FGM parallelepiped modeled as a moderately thick Al/Al2O3 FGM plate (m̂¼5,

d/b¼0, h/b¼0.1); (b) mode shapes, nodal patterns and oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for SSSS cracked Al/Al2O3 FGM square parallelepipeds modeled as moderately thick cracked Al/Al2O3

FGM plates (m̂¼5, d/b¼0.2,0.5, h/b¼0.1, cy/b¼0.5, a¼01) and (c) nodal patterns and m̂for SSSS cracked Al/Al2O3 FGM square parallelepipeds modeled as a moderately

thick cracked Al/Al2O3 FGM plate using Reddy thick plate theory (Huang et al. [32]) (m̂¼5, d/b¼0,0.2,0.5, h/b¼0.1, cy/b¼0.5, a¼01).
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of a V-notch, the asymptotic solutions (or crack functions) derived by
Williams [31] were shown to be particularly effective for this,
according to Kim and Jung [40] who applied this methodology to
investigate the vibrations of rhombic plates with V-notches, and
according to the authors’ experiences in studying vibrations of a
circular plate with a V-notch (Leissa et al. [41]). However, Huang and
Leissa [2,3] have demonstrated that using Williams’ asymptotic
solutions and regular polynomials as admissible functions does not
yield as rapidly convergent solutions for parallelepipeds having a deep
(d/a or d/b¼0.5) compared to a shallow (d/a or d/b¼0.2) side crack.

The present 3-D Ritz technique is used to predict
oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for FGM rectangular parallelepipeds with various
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Fig. 4. (a) Mode shapes, nodal patterns and oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for a FFFF square Al/Al2O3 FGM parallelepiped modeled as a moderately thick Al/Al2O3 FGM plate (m̂¼5,

d/b¼0, h/b¼0.1, cx/a¼0.5, a¼01); (b) mode shapes, nodal patterns and oðb2=hÞ
ffiffiffiffiffiffiffiffiffi
r=E

p
for FFFF cracked square Al/Al2O3 FGM parallelepipeds modeled as moderately thick

cracked Al/Al2O3 FGM plates (m̂¼5, d/b¼0.2,0.5, h/b¼0.1, cx/a¼0.5, a¼01); (c) mode shapes, nodal patterns and oðb2=hÞ
ffiffiffiffiffiffiffiffiffi
r=E

p
for FFFF cracked square Al/Al2O3 FGM

parallelepipeds modeled as moderately thick cracked Al/Al2O3 FGM plates (m̂¼5, d/b¼0.2,0.5, h/b¼0.1, cx/a¼0.75, a¼01); (d) mode shapes, nodal patterns and

oðb2=hÞ
ffiffiffiffiffiffiffiffiffi
r=E

p
for FFFF cracked square Al/Al2O3 FGM parallelepipeds modeled as moderately thick cracked Al/Al2O3 FGM plates (m̂¼5, d/b¼0.2,0.5, h/b¼0.1, cx/a¼0.75,

a¼301) and (e) nodal patterns and oðb2=hÞ
ffiffiffiffiffiffiffiffiffi
r=E

p
for FFFF homogeneous cracked square parallelepipeds modeled as classically-thin cracked plates (Huang and Leissa [2])

(m̂¼0, d/b¼0.2,0.5, h/b¼0.01, cy/b¼0.5,0.75, a¼01, 301).
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face conditions modeled as plates with various thickness ratios
(h/a) and having side cracks at various locations (cx/a and cy/b),
inclination angles (a), and length ratios (d/a and d/b). Three types
of conditions on side faces 1,2,3,4 (see Fig. 1) are considered,
namely SSSS, FFFF and CFCF, where S, F and C denote simply-
supported, free, and clamped face conditions, respectively. The
SSSS rectangular parallelepipeds are assumed simply-supported
on the faces x¼0, x¼a, y¼0, and y¼b. The corresponding
geometric face conditions are Uc ¼U3 ¼ 0 at x¼0 and x¼a, and
U1¼U3¼0 at y¼0 and y¼b. Thus, in Eq. (9), g1(x, y, z)¼y(b�y),
g2(x, y, z)¼x(a�x), and g3(x, y, z)¼x(a�x)y(b�y). The FFFF
rectangular parallelepipeds are assumed stress free on the faces
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Fig. 4. (continued)
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x¼0, x¼a, y¼0, and y¼b. Thus, in Eq. (9), g1(x, y, z)¼g2(x, y,
z)¼g3(x, y, z)¼1. The CFCF rectangular parallelepipeds are
assumed clamped on the faces x¼0 and x¼a, and stress free on
the faces y¼0 and y¼b. The corresponding clamped face condi-
tions are U1¼U2¼U3¼0 at x¼0, and U1¼U2¼U3¼0 at x¼a. Thus,
in Eq. (9), g1(x, y, z)¼1, g2(x, y, z)¼g3(x, y, z)¼x(a�x). As stated
earlier, imbedded inside the adopted Gram–Schmidt orthogona-
lization procedure in Eq. (7) are associated face functions in which
PðiÞj ðxÞ satisfy the above SSSS, FFFF, and CFCF face conditions for Ui

on the parallelepiped faces, x¼0 and x¼a, while Q ðiÞk ðyÞ satisfy the
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Fig. 5. (a) Mode shapes, nodal patterns and oðb2=hÞ
ffiffiffiffiffiffiffiffiffi
r=E

p
for CFCF homogeneous cracked rectangular parallelepipeds modeled as moderately thick cracked plates (m̂¼0,

a/b¼2, d/b¼0.2,0.5, h/b¼0.1, cx/a¼0.25, a¼901); (b) mode shapes, nodal patterns and oðb2=hÞ
ffiffiffiffiffiffiffiffiffi
r=E

p
for CFCF homogeneous cracked rectangular parallelepipeds modeled

as moderately thick cracked plates (m̂¼0, a/b¼2, d/b¼0.2,0.5, h/b¼0.1, cx/a¼0.5, a¼901); (c) mode shapes, nodal patterns and oðb2=hÞ
ffiffiffiffiffiffiffiffiffi
r=E

p
for CFCF homogeneous

cracked rectangular parallelepipeds modeled as moderately thick cracked plates (m̂¼0, a/b¼2, d/b¼0.2,0.5, h/b¼0.1, cx/a¼0.25, a¼1351) and (d) mode shapes, nodal

patterns and oðb2=hÞ
ffiffiffiffiffiffiffiffiffi
r=E

p
for CFCF homogeneous cracked rectangular parallelepipeds modeled as moderately thick cracked plates (m̂¼0, a/b¼2, d/b¼0.2,0.5, h/b¼0.1,

cx/a¼0.5, a¼1351).
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SSSS, FFFF, and CFCF face conditions for Ui on the parallelepiped
faces, y¼0 and y¼b. Poisson’s ratio (n) is set equal to 0.3 for the
homogeneous parallelepipeds analyzed.

The results for cracked plates were obtained using orthogonal
polynomial solution size, N̂x � N̂y ¼ 9� 9 (Eq. (7)), crack
functions, N̂c ¼ 6 (Eq. (9)), and algebraic polynomial solution size
(Eq. (7)), N̂z ¼ 4 (for h/b less than 0.05) and 6, taking on
correspondingly cubic-order and 5th-order transverse shear
deformation through the parallelepiped thickness (yielding a
1620-term solution matrix size).
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Fig. 5. (continued)
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Tables 5 and 6 show the first five non-dimensional frequency
parameters for SSSS square Al/Al2O3 FGM parallelepipeds mod-
eled as moderately thick (h/b¼0.1) and thick (h/b¼0.2) plates
having horizontal side cracks (a¼01) with various length ratios
(d/b) positioned at cy/b¼0.5. Comparisons of oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
3-D

solutions exact to at least three significant figures using an
orthogonal polynomial solution size N̂x � N̂y ¼ 11� 11 (Eq. (7)),
and algebraic polynomial solutions size (Eq. (7)), N̂z ¼ 6, for intact
SSSS parallelepipeds having no cracks (i.e., d/a¼0) with pre-
viously published solutions by Mac and Huan [19] and He et al.
[21] are also shown in Table 5. Mac and Huang [19] employed a
first-order shear deformation plate theory and He et al. [21]
utilized a higher-order plate theory. The present 3-D elasticity-
based oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
upper bounds on the exact solutions

agree favorably with the oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
higher-order shear

deformable plate solutions of He et al. [21] up to three or four
significant figures. Yet, the present 3-D oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
upper

bounds on the exact solutions are slightly larger than the
oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
solutions of Mac and Huang [19], mainly due to

the full transverse shear flexibilities inherent to the present 3-D
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Fig. 6. (a) Mode shapes, nodal patterns and oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for CFCF cracked rectangular Al/ ZrO2 FGM parallelepipeds modeled as moderately thick cracked Al/ ZrO2 FGM

plates (m̂¼5, a/b¼2, d/b¼0.2,0.5, h/b¼0.1, cx/a¼0.5, a¼901); (b) mode shapes, nodal patterns and oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for CFCF cracked rectangular Al/ ZrO2 FGM

parallelepipeds modeled as moderately thick cracked Al/ ZrO2 FGM plates (m̂¼5, a/b¼2, d/b¼0.2,0.5, h/b¼0.1, cx/a¼0.5, a¼901); (c) mode shapes, nodal patterns and

oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for CFCF cracked rectangular Al/ ZrO2 FGM parallelepipeds modeled as moderately thick cracked Al/ ZrO2 FGM plates (m̂¼5, a/b¼2, d/b¼0.2,0.5, h/b¼0.1,

cx/a¼0.25, a¼1351) and (d) mode shapes, nodal patterns and oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for CFCF cracked rectangular Al/ ZrO2 FGM parallelepipeds modeled as moderately thick

cracked Al/ ZrO2 FGM plates (m̂¼5, a/b¼2, d/b¼0.2,0.5, h/b¼0.1, cx/a¼0.5, a¼1351).
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elasticity-based Ritz formulation (showing analogous trends
observed and previously discussed in Table 4).

Generally speaking, oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
decrease with increasing

m̂—the volume fraction parameter that governs the material
variation profile in the thickness direction (see Eq. (1)). Decreasing
oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
with increasing m̂ is not only because increasing

m̂ reduces the stiffness more than it does the mass of plate,
but also because oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
decreases with increasing
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Fig. 6. (continued)
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parallelepiped thickness (h). As the crack length ratio (d/a)
increases, oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
decrease, due to the reduction in the

parallelepiped stiffness. There is no clear trend between the
reduction of oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for SSSS parallelepipeds due to

a crack and the value of m̂. However, two extremes in
oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
trends can be seen across the wide spectrum of

SSSS cracked FGM parallelepiped data reported in Tables 5 and 6.
A shallow crack of length ratio, d/a¼0.1, only reduce the first five
oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
less than 2% relative to those for an intact SSSS

parallelepiped (d/a¼0). In contrast, a deep crack of length ratio,
d/a¼0.5, decreases up to 18% the second mode oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
of

the SSSS FGM (m̂¼10) parallelepiped modeled as moderately thick
plate (h/b¼0.1).
Tables 7 and 8 list the first five nonzero oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for

completely free (FFFF) square FGM parallelepipeds modeled as thin
(h/b¼0.02) and moderately thick (h/b¼0.1) plates. The FGM
parallelepipeds are assumed aluminum (Al) and alumina (Al2O3),
and the material properties vary as Eq. (1) with m̂¼ 5 along the
thickness direction. The effects of crack length ratios (d/a), crack
positions (cx/a and cy/b), and crack inclination angles (a) on
oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
are studied. Not listed are the rigid body vibration

modes (zero oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
) for the FFFF parallelepipeds exam-

ined. Similar to the findings of Tables 5 and 6, the oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
in Tables 7 and 8 decrease with increasing FFFF FGM parallelepiped
thickness and crack length (d/a). When the location of crack
changes from cy/b¼0.5 to 0.75, oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
generally increases



Table 6

Frequency parameters oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rC=EC

p
for Al/Al2O3 FGM (ðm̂¼ 0,1,5,10Þ) SSSS

square parallelepipeds modeled as Al/Al2O3 FGM SSSS square, thick plates (h/

b¼0.2) with horizontal side cracks (a¼01) having various length ratios (d/a) and

positioned at cY=b¼ 0:5

m̂ d=a Mode

1 2 3 4 5

0 0 5.304 9.742 9.742 11.65 11.65

0.1 5.302 9.627 9.742 11.62 11.64

0.2 5.285 9.289 9.742 11.54 11.59

0.3 5.225 8.827 9.742 11.30 11.47

0.4 5.104 8.397 9.742 10.58 11.33

0.5 4.927 8.095 9.228 9.742 11.27

1 0 4.099 8.089 8.089 9.107 9.107

0.1 4.098 7.994 8.089 9.084 9.103

0.2 4.084 7.713 8.089 9.027 9.063

0.3 4.038 7.330 8.089 8.854 8.961

0.4 3.944 6.972 8.089 8.309 8.848

0.5 3.805 6.715 7.265 8.089 8.788

5 0 3.405 6.296 6.296 7.343 7.343

0.1 3.404 6.222 6.296 7.325 7.341

0.2 3.393 6.005 6.296 7.276 7.310

0.3 3.355 5.708 6.296 7.123 7.232

0.4 3.277 5.430 6.296 6.652 7.144

0.5 3.163 5.227 5.811 6.296 7.082

10 0 3.264 5.749 5.749 6.975 6.975

0.1 3.263 5.682 5.749 6.958 6.973

0.2 3.253 5.483 5.749 6.910 6.945

0.3 3.217 5.211 5.749 6.759 6.874

0.4 3.143 4.957 5.749 6.298 6.794

0.5 3.035 4.776 5.494 5.749 6.689

Table 4

Comparisons of oðb2=hÞ
ffiffiffiffiffiffiffiffiffi
r=E

p
predicted by various theories for homogeneous

cracked, SSSS square parallelepipeds modeled as square, thin to moderately thick

SSSS plates (h/b¼0.002, 0.05,0.1) with horizontal side cracks (a¼01) having

various length ratios (d/a) and positioned at cy/b¼0.5a.

d=a h=b Mode

1 2 3 4 5

0.2 0.002 [5.961] [14.89] [14.93] [23.84] [29.62]

(5.961) (14.89) (14.92) (23.84) (29.62)

{5.961} {14.88} {14.93} {23.84} {29.62}

0.05 [5.961] [14.89] [14.93] [23.84] [29.62]

(5.900) (14.54) (14.55) (22.91) (28.29)

{5.905} {14.56} {14.57} {22.95} {28.35}

0.1 [5.961] [14.89] [14.93] [23.84] [29.62]

(5.750) (13.66) (13.69) (20.87) (25.41)

{5.758} {13.72} {13.74} {20.99} {25.57}

0.4 0.002 [5.810] [14.46] [14.60] [21.57] [27.91]

(5.810) (14.46) (14.60) (21.56) (27.91)

{5.810} {14.47} {14.60} {21.57} {27.91}

0.05 [5.810] [14.46] [14.60] [21.57] [27.91]

(5.725) (13.90) (14.23) (20.48) (26.49)

{5.730} {13.92} {14.25} {20.54} {26.55}

0.1 [5.810] [14.46] [14.60] [21.57] [27.91]

(5.562) (12.84) (13.39) (18.54) (23.83)

{5.572} {12.90} {13.43} {18.66} {23.97}

a [ ]: classical thin plate theory [2,3]; ( ): Mindlin plate theory [4]; { }: present

3-D elasticity-based solution.

Table 5

Frequency parameters oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rC=EC

p
for Al/Al2O3 FGM ðm̂¼ 0,1,5,10Þ SSSS

square parallelepipeds modeled as Al/Al2O3 FGM SSSS square, moderately thick

plates (h/b¼0.1) with horizontal side cracks (a¼01) having various length ratios

(d/a) and positioned at cY=b¼ 0:5a.

m̂ d=a Mode

1 2 3 4 5

0 0 5.777 13.81 13.81 19.48 19.48

0.1 5.775 13.78 13.80 19.25 19.48

0.2 5.758 13.72 13.74 18.57 19.48

0.3 5.697 13.54 13.60 17.64 19.48

0.4 5.572 12.90 13.43 16.79 18.66

0.5 5.385 11.40 13.35 16.19 17.35

1
0

4.426 10.63 10.63 16.20 16.20

(4.347) [4.426] (10.42) (10.42) (15.94)

0.1 4.425 10.60 10.62 16.01 16.20

0.2 4.411 10.56 10.58 15.44 16.20

0.3 4.365 10.43 10.46 14.67 15.74

0.4 4.270 9.963 10.34 13.95 14.45

0.5 4.127 8.819 10.28 13.34 13.51

5 0 3.772 8.927 8.927 12.64 12.64

0.1 3.771 8.908 8.924 12.49 12.64

0.2 3.759 8.867 8.885 12.05 12.64

0.3 3.719 8.743 8.791 11.45 12.64

0.4 3.636 8.316 8.687 10.89 11.97

0.5 3.513 7.334 8.635 10.49 11.18

10
0

3.641 8.587 8.587 11.52 11.52

(3.592) [3.642] (8.504) (8.504) (12.89)

0.1 3.640 8.567 8.583 11.39 11.52

0.2 3.629 8.526 8.546 10.98 11.52

0.3 3.590 8.401 8.456 10.44 11.52

0.4 3.510 7.977 8.356 9.929 11.47

0.5 3.391 7.025 8.307 9.573 10.73

a ( ): Mac and Huang [19]; [ ]: He et al. [21]
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overall, especially for the first mode. When the inclination angle of
crack varies from a¼01 to 301, and then to a¼451, oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
in the fundamental mode increases, reflecting a significant increase
of stiffness in the fundamental mode of FFFF cracked FGM
parallelepipeds. Two extremes in oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
trends can also

be seen across the spectrum of FFFF cracked FGM parallelepiped
data reported in Tables 7 and 8. A shallow crack with d/a¼0.1 only
reduces the frequencies less than 3% relative to those for an intact
FFFF parallelepiped (d/a¼0), whereas a deep crack with length
ratio, d/a¼0.5, decreases oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
up to 43%, occurring at

the fourth mode of FFFF FGM (m̂¼ 10) parallelepiped having a
crack positioned at cy/b¼0.5 and crack inclination a¼451 (Table 8).

Tables 9 and 10 summarize the first five oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for

CFCF cracked FGM rectangular parallelepipeds (a/b¼2) modeled
as moderately thick (h/b¼0.1) and very thick (h/b¼0.3) plates.
The parallelepipeds are assumed made of aluminum (Al) and
zirconia (ZrO2), the material properties varying through the
parallelepiped thickness according to Eq. (1) with m̂¼1, 5 and
10. The crack configuration under consideration is similar to that
shown in Fig. 1b. Table 9 reveals that oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
of Al/ZrO2

FGM parallelepipeds modeled as moderately plates (h/b¼0.1)
increase as volume fraction GðzÞ ¼ EðzÞ

½2ð1þ uðzÞ�¼1 increases to m̂¼ 5,
and oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
decrease as m̂¼ 5 further increases to m̂¼ 10.

Table 10 shows that oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
of Al/ZrO2 FGM parallelepi-

peds modeled as very thick plates (h/b¼0.3) decrease with
increasing m̂, and the trend is consistent to that seen in
Tables 5 and 6 for SSSS square Al/Al2O3 FGM parallelepipeds
modeled as thick plates. There are less clear trends on changes in
oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
caused by shifting the crack position from

cx/a¼0.25 to 0.5 or by changing inclination angle of crack a from
901 to 1351. Tables 9 and 10 indicate that a shallow crack with
d/b¼0.1 results in maximum reduction in oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
about

5% relative to oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for an intact plate, which occurs at

the third mode of the plate with m̂¼ 5 and having a crack with
cx/a¼0.25 and a¼901 in Table 9. A large crack with d/b¼0.5
decreases the frequencies up to 29%, occurring at the fifth mode of
the plate with m̂¼ 5 and having a deep crack (cx/a¼0.5) and crack
orientation a¼901 in Table 10.



Table 8

Frequency parameters oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rC=EC

p
for Al/Al2O3 FGM (m̂¼ 5) FFFF square

parallelepipeds modeled as Al/Al2O3 FGM FFFF square, moderately thick plates

(h/b¼0.1) with various positioned (cy/b) and inclined (a) side cracks with varying

length ratios (d/a).

a m̂ cy=b d=a Mode

1 2 3 4 5

01

5 0.5

0 2.512 3.746 4.608 6.270 6.270

0.1 2.484 3.690 4.552 6.125 6.168

0.2 2.369 3.536 4.431 5.760 5.918

0.3 2.146 3.285 4.307 5.058 5.800

0.4 1.839 2.978 4.217 4.455 5.601

0.5 1.525 2.666 4.085 4.149 4.212

5

0.75

0.1 2.494 3.723 4.586 6.147 6.230

0.2 2.420 3.639 4.488 5.642 6.149

0.3 2.252 3.404 4.242 5.055 6.057

0.4 1.952 3.040 4.051 4.760 5.031

0.5 1.593 2.769 3.655 3.987 4.622

301

5

0.5

0.1 2.490 3.703 4.565 6.150 6.190

0.2 2.403 3.587 4.468 5.849 5.951

0.3 2.228 3.400 4.321 5.138 5.772

0.4 2.078 3.160 4.107 4.589 5.583

0.5 1.605 2.885 3.573 3.661 4.340

5

0.75

0.1 2.495 3.722 4.588 6.170 6.227

0.2 2.428 3.603 4.506 5.758 6.112

0.3 2.288 3.271 4.372 5.178 5.977

0.4 2.046 2.816 4.270 4.762 5.881

0.5 1.722 2.471 4.169 4.497 4.986

451 5 0.5 0.1 2.496 3.715 4.578 6.180 6.123

0.2 2.437 3.636 4.511 5.958 6.008

0.3 2.318 3.503 4.387 5.277 5.794

0.4 2.108 3.309 4.021 4.613 5.091

0.5 1.717 2.710 3.010 3.552 4.323

5 0.75 0.1 2.499 3.727 4.593 6.197 6.235

0.2 2.452 3.630 4.531 5.898 6.127

0.3 2.349 3.327 4.422 5.313 5.973

0.4 2.170 2.860 4.312 4.821 5.831

0.5 1.869 2.483 4.150 4.528 5.192

Table 7

Frequency parameters oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rC=EC

p
for Al/Al2O3 FGM (m̂¼ 5) FFFF square

parallelepipeds modeled as Al/Al2O3 FGM FFFF square, thin plates (h/b¼0.02)

with various positioned (cy/b) and inclined (a) side cracks with varying length

ratios (d/a).

a m̂ cy=b d=a Mode

1 2 3 4 5

01

5 0.5

0 2.665 3.896 4.824 6.881 6.881

0.1 2.631 3.853 4.779 6.738 6.752

0.2 2.514 3.726 4.668 6.332 6.516

0.3 2.287 3.506 4.538 5.614 6.366

0.4 1.963 3.210 4.431 4.947 6.299

0.5 1.627 2.896 4.361 4.536 6.292

5

0.75

0.1 2.641 3.880 4.808 6.750 6.837

0.2 2.563 3.819 4.737 6.228 6.764

0.3 2.392 3.644 4.521 5.479 6.684

0.4 2.082 3.304 4.280 5.127 6.613

0.5 1.703 3.009 4.188 4.955 6.549

301 5

0.5

0.1 2.638 3.862 4.789 6.761 6.779

0.2 2.551 3.764 4.705 6.440 6.553

0.3 2.376 3.600 4.578 5.718 6.348

0.4 2.080 3.369 4.325 4.971 6.176

0.5 1.710 3.157 3.952 4.681 6.069

5

0.75

0.1 2.642 3.877 4.807 6.772 6.829

0.2 2.575 3.781 4.737 6.364 6.710

0.3 2.437 3.494 4.608 5.702 6.560

0.4 2.189 3.028 4.490 5.196 6.439

0.5 1.847 2.662 4.394 4.900 6.383

451 5 0.5 0.1 2.645 3.871 4.799 6.787 6.806

0.2 2.584 3.759 4.721 6.495 6.575

0.3 2.470 3.683 4.652 5.905 6.387

0.4 2.202 3.520 4.253 5.023 6.113

0.5 1.865 3.271 3.860 4.692 5.889

5 0.75 0.1 2.649 3.881 4.811 6.803 6.839

0.2 2.600 3.824 4.772 6.543 6.742

0.3 2.502 3.533 4.651 5.891 6.546

0.4 2.326 3.084 4.543 5.303 6.377

0.5 2.015 2.670 4.402 4.925 6.252

C.S. Huang et al. / International Journal of Mechanical Sciences 70 (2013) 1–25 19
5. Vibration modes of cracked FGM parallelepipeds

Depicted in Figs. 2–6 are 3-D mode shapes and nodal patterns
and oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
(for homogeneous) and oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
(for

FGM) SSSS, FFFF, and CFCF parallelepipeds modeled as moderately
thick plates (h/b¼0.1). The influence of volume fraction (m̂), crack
length ratios (d/a and d/b), crack positions (cx/a and cy/b), and
crack inclination angles (a) on the 3-D mode shapes and nodal
patterns are studied. No published vibration modes shapes using
3-D approaches for cracked homogeneous and FGM parallelepi-
peds having SSSS, FFFF, and CFCF face conditions are known
to exist.

For cracked parallelepipeds shear deformation and rotary
inertia effects are significant in the lower predominately flexural
modes and substantially in the higher ones, while large elastic
warping stresses considerably increase the predominately tor-
sional modes. Vibratory stresses become unbounded near the
crack terminus edge, showing a well-known fracture mechanics
fact that the order of 3-D components of stresses are sij �Oðr�1=2Þ

(see Appendix), as r approaches zero (see Fig. 1). Nonetheless,
these unbounded stresses oftentimes lead to theoretical predic-
tion errors in the lower modes as well as some of the higher
modes of cracked rectangular parallelepipeds.

In the present 3-D continuum formulation, complicating
effects, such as shear deformation, rotary inertia, and elastic
warping stresses at the clamped faces of the CFCF parallelepiped
mode shapes depicted in Figs. 5–6, are inherent. Most of all, the
key advantage of the present 3-D continuum analysis is that no
kinematic constraints (as in beam, plate or shell theories) are
dictated, except those enforced through the assumed face func-
tions defined at the top of the previous Section 4.

All possible 3-D vibratory displacement patterns falling within
the first five modes are depicted and appropriately described in
captions of Figs. 2–6. For an intact homogeneous parallelepiped,
longitudinal flexure, sideways flexure, longitudinal extension, and
torsional modes (even dilatational modes) are each uncoupled,
forming four distinct symmetry classes of vibratory motion. For
cracked FGM parallelepipeds, depending on the volume fraction
(m̂), crack length ratios (d/a and d/b), crack positions (cx/a and
cy/b), and crack inclination angles (a), distinct symmetry classes of
modes may be possible with longitudinal flexure and torsional
modes classified into one symmetry class, and sideways flexure
and longitudinal extensional modes classified into a second
symmetry class. Generally speaking, for m̂a0, d/aa0, d/ba0,
cx/aa0, and cy/ba0, and aa0o, all possible modes are insepar-
ably coupled with no identifiable symmetry classes present.

The dynamic stress field near the crack terminus edge within a
FGM parallelepiped may be classified as three basic dynamic
responses each associated with a local mode of crack deformation.
First, a crack opening mode in FGM parallelepiped vibration is
associated with local displacement in which the crack surfaces
move directly apart; second, a crack shearing or edge-sliding
mode in FGM parallelepiped vibration is characterized by defor-
mations in which the crack surfaces slide over one another
perpendicular to the leading terminus edge of the crack; third, a
crack tearing mode in FGM parallelepiped vibration finds the



Table 10

Frequency parameters oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for Al/ZrO2 FGM CFCF rectangular (a/b¼2)

parallelepipeds modeled as Al/ZrO2 FGM ðm̂¼ 10Þ CFCF rectangular, very thick

plates (h/b¼0.3) with various positioned (cx/a) and inclined (a) side cracks with

varying length ratios (d/b).

a m̂ cx/a d/b Mode

1 2 3 4 5

901 1 0.25 0 1.348 1.945 2.536 3.268 4.095

0.1 1.344 1.932 2.534 3.241 4.070

0.2 1.331 1.892 2.526 3.180 4.021

0.3 1.301 1.828 2.505 3.091 3.978

0.4 1.248 1.760 2.460 2.987 3.950

0.5 1.170 1.707 2.389 2.884 3.924

1 0.5 0.1 1.336 1.938 2.506 3.253 4.051

0.2 1.312 1.926 2.448 3.192 3.903

0.3 1.279 1.914 2.394 3.000 3.701

0.4 1.241 1.907 2.356 2.653 3.587

0.5 1.199 1.904 2.300 2.335 3.544

1351 1 0.25 0.1 1.345 1.938 2.533 3.251 4.080

0.2 1.336 1.916 2.515 3.210 4.041

0.3 1.314 1.878 2.469 3.148 3.986

0.4 1.273 1.826 2.394 3.076 3.920

0.5 1.209 1.769 2.300 3.012 3.602

1 0.5 0.1 1.341 1.941 2.520 3.258 4.069

0.2 1.328 1.932 2.484 3.223 3.979

0.3 1.312 1.918 2.451 3.108 3.804

0.4 1.293 1.900 2.430 2.837 3.617

0.5 1.276 1.878 2.424 2.472 3.499

901 5 0.25 0 1.337 1.906 2.395 3.178 3.970

0.1 1.333 1.893 2.393 3.153 3.948

0.2 1.319 1.854 2.386 3.096 3.905

0.3 1.289 1.793 2.365 3.012 3.865

0.4 1.234 1.729 2.323 2.915 3.836

0.5 1.156 1.680 2.256 2.817 3.718

5 0.5 0.1 1.326 1.900 2.367 3.163 3.926

0.2 1.303 1.888 2.312 3.102 3.783

0.3 1.271 1.878 2.261 2.914 3.591

0.4 1.234 1.871 2.225 2.581 3.483

0.5 1.194 1.868 2.205 2.243 3.441

1351 5 0.25 0.1 1.334 1.898 2.392 3.162 3.956

0.2 1.325 1.877 2.375 3.125 3.923

0.3 1.303 1.841 2.332 3.069 3.873

0.4 1.262 1.791 2.260 3.003 3.813

0.5 1.200 1.738 2.172 2.945 3.496

5 0.5 0.1 1.331 1.902 2.379 3.168 3.943

0.2 1.318 1.894 2.346 3.133 3.856

0.3 1.302 1.881 2.315 3.023 3.687

0.4 1.285 1.865 2.295 2.765 3.508

0.5 1.268 1.846 2.289 2.418 3.395

901 10 0.25 0 1.331 1.895 2.347 3.156 3.942

0.1 1.326 1.882 2.345 3.132 3.921

0.2 1.313 1.843 2.338 3.075 3.878

0.3 1.282 1.783 2.318 2.993 3.839

0.4 1.228 1.719 2.277 2.897 3.800

0.5 1.150 1.670 2.211 2.800 3.646

10 0.5 0.1 1.320 1.889 2.319 3.141 3.899

0.2 1.297 1.878 2.265 3.081 3.757

0.3 1.266 1.867 2.216 2.893 3.566

0.4 1.228 1.860 2.180 2.563 3.459

0.5 1.189 1.858 2.161 2.228 3.418

1351 10 0.25 0.1 1.328 1.887 2.344 3.141 3.929

0.2 1.318 1.866 2.327 3.104 3.896

0.3 1.297 1.830 2.285 3.049 3.848

0.4 1.256 1.781 2.215 2.985 3.788

0.5 1.194 1.728 2.129 2.927 3.470

10 0.5 0.1 1.324 1.891 2.332 3.147 3.916

0.2 1.312 1.883 2.299 3.112 3.829

0.3 1.296 1.871 2.268 3.003 3.661

0.4 1.279 1.855 2.249 2.746 3.484

0.5 1.262 1.835 2.244 2.402 3.372

Table 9

Frequency parameters oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for Al/ ZrO2 FGM CFCF rectangular (a/b¼2)

parallelepipeds modeled as Al/ZrO2 FGM ðm̂¼ 1Þ CFCF rectangular, moderately

thick plates (h/b¼0.1) with various positioned (cx/a) and inclined (a) side cracks

with varying length ratios (d/b)

a m̂ cx/a d/b Mode

1 2 3 4 5

901 1 0.25 0 1.512 2.392 4.083 5.400 7.184

0.1 1.507 2.374 4.045 5.350 7.164

0.2 1.499 2.323 3.967 5.265 7.090

0.3 1.477 2.239 3.851 5.187 6.812

0.4 1.433 2.140 3.713 5.130 6.158

0.5 1.362 2.054 3.574 5.084 5.564

1 0.5 0.1 1.498 2.378 4.067 5.348 7.179

0.2 1.471 2.359 4.015 5.161 7.176

0.3 1.433 2.342 3.837 4.848 7.162

0.4 1.387 2.328 3.434 4.616 6.916

0.5 1.338 2.323 2.952 4.533 6.652

1351 1 0.25 0.1 1.508 2.381 4.056 5.366 7.170

0.2 1.500 2.353 3.996 5.293 7.103

0.3 1.479 2.304 3.901 5.196 6.792

0.4 1.435 2.233 3.791 5.082 5.870

0.5 1.365 2.150 3.699 4.780 5.137

1 0.5 0.1 1.503 2.382 4.071 5.369 7.180

0.2 1.488 2.367 4.036 5.263 7.166

0.3 1.469 2.345 3.910 5.031 7.094

0.4 1.447 2.315 3.595 4.731 6.821

0.5 1.428 2.281 3.117 4.517 6.425

901 5 0.25 0 1.539 2.423 4.315 5.450 7.169

0.1 1.534 2.405 4.096 5.400 7.162

0.2 1.525 2.353 4.016 5.314 7.139

0.3 1.502 2.268 3.899 5.237 6.875

0.4 1.456 2.168 3.759 5.182 6.196

0.5 1.383 2.082 3.618 5.136 5.601

5 0.5 0.1 1.524 2.410 4.119 5.398 7.080

0.2 1.497 2.391 4.064 5.207 6.914

0.3 1.458 2.373 3.877 4.893 6.761

0.4 1.411 2.360 3.464 4.666 6.653

0.5 1.361 2.355 2.977 4.585 6.592

1351 5 0.25 0.1 1.535 2.412 4.107 5.416 7.158

0.2 1.526 2.384 4.046 5.344 7.105

0.3 1.505 2.334 3.951 5.247 6.853

0.4 1.460 2.262 3.841 5.133 5.899

0.5 1.388 2.179 3.748 4.817 5.181

5 0.5 0.1 1.529 2.414 4.123 5.419 7.120

0.2 1.514 2.399 4.086 5.310 7.019

0.3 1.495 2.376 3.956 5.075 6.924

0.4 1.473 2.346 3.633 4.775 6.865

0.5 1.453 2.312 3.148 4.563 6.479

901 10 0.25 0 1.535 2.416 4.123 5.434 7.027

0.1 1.530 2.399 4.084 5.383 7.020

0.2 1.521 2.347 4.004 5.297 6.998

0.3 1.498 2.262 3.887 5.221 6.853

0.4 1.452 2.162 3.748 5.166 6.175

0.5 1.379 2.077 3.608 5.121 5.582

10 0.5 0.1 1.520 2.403 4.107 5.381 6.940

0.2 1.493 2.384 4.052 5.191 6.777

0.3 1.455 2.366 3.865 4.878 6.627

0.4 1.407 2.353 3.452 4.652 6.521

0.5 1.358 2.348 2.967 4.572 6.462

1351 10 0.25 0.1 1.531 2.405 4.096 5.400 7.016

0.2 1.523 2.378 4.035 5.328 6.964

0.3 1.501 2.328 3.940 5.231 6.831

0.4 1.456 2.256 3.831 5.118 5.877

0.5 1.385 2.173 3.738 4.801 5.164

10 0.5 0.1 1.526 2.407 4.111 5.402 6.978

0.2 1.511 2.392 4.074 5.294 6.880

0.3 1.491 2.369 3.945 5.058 6.786

0.4 1.469 2.340 3.622 4.760 6.730

0.5 1.450 2.306 3.138 4.550 6.459
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crack surfaces sliding with respect to one another parallel to the
leading terminus edge of the crack. Crack opening and crack
shearing or edge-sliding in FGM parallelepiped vibration can be
modeled as two-dimensional plane-extension theory of elasticity,
classified as symmetric (crack opening) and skew-symmetry
(crack shearing/sliding) with respect to the leading edge of the
crack. Crack tearing in FGM parallelepiped vibration may be
modeled as two-dimensional pure shear (or torsion). Well-known
superposition of crack opening, shearing or sliding, and tearing
modes or ‘‘mixed mode’’ cracking in FGM parallelepiped vibration
is sufficient to describe the most general three-dimensional
dynamic aspects of local crack-edge deformation and stress fields
in cracked parallelepipeds.

Williams [31] solved the fundamental question of stress field
computation near a crack tip in an elastic, isotropic medium using
the Airy stress function, as employed in related cracked plate
work [35,36] prior to the present 3-D computations. Examining
the vibratory actions of a cracked FGM parallelepiped can suggest
hypotheses of classical crack propagation [33,34], which states
the crack propagates dynamically in the direction perpendicular
to the direction of the maximum tensile stress or maximum strain
energy release rate in any particular crack opening, crack shearing
or sliding, and crack tearing vibration mode depicted in Figs. 2–6.
In the latter case, theoretically, the crack front can be extended
(d/a and d/b) in different crack inclination angles (a) by a small
amount and the reduction in strain energy of the FGM parallele-
piped in a vibratory mode can be calculated. The crack supposedly
propagates in such a FGM parallelepiped normal mode of crack
opening, shearing, sliding, or tearing in the direction that gives
maximum reduction in the strain energy. Analogous albeit not
identical evidences are reached by calculating a maximum tensile
stress of crack propagation in FGM parallelepiped vibration.

As the crack terminus edge dynamically propagates even a
small distance in vibration, the applied stress field in the vicinity
of the crack terminus edge no longer satisfies pure crack opening,
pure crack shearing or sliding, and pure crack tearing states
relative to the crack edge. The resulting FGM parallelepiped
vibration modes exhibit mixed opening, shearing, sliding, and
tearing stress states relative to the crack edge, as can be seen in
Figs. 2–6, depending on the volume fraction (m̂), crack length
ratios (d/a and d/b), crack positions (cx/a and cy/b), and crack
inclination angles (a). Under such mixed crack opening, shearing,
sliding, and tearing FGM parallelepiped vibratory modes, the
crack dynamically propagates in continuously changing direction
until settling along a direction perpendicular to the maximum
tensile stress state or maximum strain energy release (or reduc-
tion) rate. This is what is largely depicted in the 3-D mode shapes
corresponding to the nodal pattern contours shown in Figs. 2–6,
particularly for the FFFF and CFCF FGM parallelepipeds (Figs. 4–6),
where the 3-D modes shapes more clearly depict mixed modes of
crack opening, crack shearing or sliding, and crack tearing, more
so for FFFF FGM parallelepipeds than CFCF ones, and more so for
FGM parallelepipeds having large crack length ratios (d/a and d/b),
asymmetric crack positions (cx/a and cy/b), and large crack
inclination angles (a). As a crack closes potentially causing two
sides of the crack to collide with each other during vibration, it is
a complicated nonlinear phenomenon of fracture mechanics,
which is not considered in the present linear 3-D elasticity-based
study—only admissible crack functions that properly describe the
Wð1=

ffiffiffi
r
p
Þ 3-D stress singularities at the terminus edge front of the

crack, allowing for displacement discontinuities across the crack
sufficient to explain the most general 3-D ‘‘mixed modes’’ of local
crack-edge deformation and stress fields typically seen in fracture
mechanics.

The 3-D mode shapes depicted in Figs. 2–6 show the fully
developed deformations of the cracked parallelepiped vibration
modes, associated with the nodal patterns also depicted in Figs.
2–6 showing only the deformations on the mid-plane. Blank
mode shapes indicate in-plane modes, including predominately
crack opening, crack shearing and sliding or crack tearing in some
cases. For the out-of-plane flexural modes, the 3-D mode shapes
depict the primarily out-of-plane displacements, alongside the
nodal patterns showing nodal lines represented by dash lines. As
expected, the 3-D mode shapes are not significantly affected by
the values of volume fraction (m̂).

Depicted in Figs. 2a and 3a are the first five 3-D mode shapes,
nodal patterns and oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
for a SSSS homogeneous

(Fig. 2a) and oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for a SSSS Al/Al2O3 FGM (Fig. 3a)

square parallelepiped modeled as moderately thick plates (m̂¼0,
5, d/b¼0, h/b¼0.1), which show first longitudinal flexure (Mode
1), followed by a pair of second longitudinal flexure showing
single nodal lines each transverse to the hinged plate edges
(Modes 2 and 3), and finally a pair of longitudinal extension
modes, showing in-plane curvatures of parallel hinged plate
edges (Modes 4 and 5).

In validation, Fig. 3 compares nodal patterns and
oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for SSSS cracked Al/Al2O3 FGM square parallele-

pipeds, modeled as a moderately thick cracked Al/Al2O3 FGM
plate using third-order Reddy thick plate theory [36] (in Fig. 3c)
against the present 3-D elasticity-based theory (in Fig. 3a–b)
(m̂¼ 5, d/b¼0,0.2,0.5, h/b¼0.1, cy/b¼0.5, a¼01). For the intact
SSSS parallelepipeds (m̂¼ 5,d/b¼0, h/b¼0.1), the third-order
Reddy thick plate theory solutions (listed here in parentheses)
slightly under-predicts the correct 3-D solutions for the flexural
Mode 1: 3.772 (3.768), Mode 2: 8.927 (8.909), and Mode 3: 8.927
(8.909), yet correctly predicts the 3-D in-plane Mode 4: 12.64
(12.64), and Mode 5: 12.64 (12.64). For the SSSS shallow cracked
FGM parallelepipeds (m̂¼ 5, d/b¼0.2, h/b¼0.1, cy/b¼0.5, a¼01),
the thick plate theory again slightly under-predicts the correct
3-D solutions for the flexural Mode 1: 3.759 (3.756), Mode 2:
8.867 (8.851), Mode 3: 8.885 (8.867), and correctly predicts the
3-D in-plane Mode 4: 12.05 (12.04), and Mode 5: 12.64 (12.64).
For the SSSS deep cracked FGM parallelepipeds (m̂¼ 5, d/b¼0.5,
h/b¼0.1, cy/b¼0.5, a¼01), the thick plate theory again slightly
under-predicts the correct 3-D flexural Mode 1: 3.513 (3.511),
and Mode 3: 8.635 (8.621), yet significantly over-predicts the
correct 3-D flexural Mode 2: 7.334 (7.379), and correctly predicts
the 3-D in-plane Mode 4: 10.49 (10.49), and Mode 5: 11.18
(11.17).

In Figs. 2–6, a side crack destroys any modal symmetries about
the horizontal or vertical central line of the parallelepipeds, and a
shallow crack (i.e., d/b¼0.2) or a deep side crack (i.e., d/b¼0.5)
does alter the 3-D mode shapes and nodal patterns considerably
from those for a correspondingly intact parallelepiped. For
instance, an intact SSSS homogeneous parallelepiped modeled as
a square thin plate (for h/ao0.05), the reference exact values
(Leissa, [37]) of the first five oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
are 5.9737, 14.93, 14.93,

23.89 and 29.87 (ob2 ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
¼np2, with n¼2, 5, 5, 8, 10). For a

small cracked (d/b¼0.2) SSSS parallelepipeds modeled as a mod-
erately thick plates (h/b¼0.1), it is seen in Fig. 2a–d that a shallow
crack (i.e., d/b¼0.2) causes an unappreciable change in the first
three 3-D longitudinal flexure mode shapes and nodal patterns, but
the small crack does cause an appreciable change in the
oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
(for homogeneous) and oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
(for FGM).

As expected, a deep side crack (i.e., d/b¼0.5) results in decreasing
values of oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
and oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for all modes.

For parallelepipeds with centrally positioned (cy/b¼0.5) side
cracks, oriented (a¼01) parallel to the parallelepiped edges, the
free vibration mode shapes are either symmetric or anti-sym-
metric to one axis (y¼b/2) of the parallelepiped. This is seen
in the nodal patterns (lines of zero displacement) shown in
Figs. 2–6. In this case all modes are symmetric (e.g., modes 1, 2, 5)
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or anti-symmetric (e.g., modes 3, 4) with respect to that paralle-
lepiped axis, with exceptions of in-plane modes (indicated by an
asterisk) which may fall within the first five oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
and oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
. For shallow cracked SSSS parallelepipeds

(d/a¼0.2) the node lines seen in Fig. 2 for the first four modes
are almost identical to those of the plate with no crack. The
difference shows up more clearly for mode 5, where the two
diagonal node lines, which are perfectly straight with no crack,
are distorted significantly.

Shown in Fig. 4a are the first five 3-D mode shapes, nodal
patterns and oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
for a FFFF square Al/Al2O3 FGM

parallelepiped modeled as a moderately thick Al/Al2O3 FGM plate
(m̂¼5, d/b¼0, h/b¼0.1, cx/a¼0.5, a¼01), which exhibits as non-
rigid body motions, flexure possessing two nodal diameters trans-
verse to the FFFF parallelepiped sides (Mode 1), followed by flexure
possessing two nodal diameters emanating from the corners of the
FFFF parallelepiped (Mode 2), then flexure characterized by a single
nodal circle (Mode 3), and finally a pair of torsional modes
featuring a pair of nodal diameters transverse to the parallelepiped
sides which are orthogonal to a single nodal diameter transverse to
the opposite parallelepiped sides (Modes 4 and 5). Shown in
validation in Fig. 4e are reference nodal patterns for a homoge-
neous intact FFFF parallelepiped (d/a¼0), showing the first five
nonzero oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
are 4.076, 5.934, 7.348, 10.54 and 10.54

[37,38]. The authors know of no other published frequencies or
nodal patterns for FFFF cracked parallelepipeds.

Finally, Fig. 5b shows the first five 3-D mode shapes, nodal
patterns and oðb2=hÞ

ffiffiffiffiffiffiffiffiffi
r=E

p
for CFCF homogeneous cracked

rectangular parallelepipeds modeled as moderately thick cracked
plates m̂¼0, a/b¼2, d/b¼0.2,0.5, h/b¼0.1, cx/a¼0.5, a¼901),
which show evidence of first longitudinal flexure (Mode 1),
first torsion featuring a nodal diameter transverse to the para-
llelepiped sides (Mode 2), second longitudinal flexure including a
nodal diameter transverse to the parallelepiped sides (Mode 3),
second torsion presenting a pair of orthogonal nodal diameters
transverse to the parallelepiped sides (Mode 4), and finally long-
itudinal extension, showing in-plane curvatures of parallel free
edges of the plate, also clearly depicting crack tearing, (Modes 5).

Figs. 2–6 summarize the first five 3-D mode shapes, nodal
patterns and oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
of SSSS, FFFF, and CFCF rectangular

Al/Al2O3 and Al/ZrO2 FGM parallelepipeds with side cracks. The
oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
displayed in Figs. 2–6 are exact to at least four

significant figures. Depicted in Figs. 2–6 are effects of the volume
fraction (m̂¼0, 1, 5, 10), thickness ratios (h/b¼0.02, 0.1, 0.2, 0.3),
crack length ratios (d/a or d/b¼0,1, 0.2, 0.5), crack positions
(cy/b¼0.5, 0.75 or cx/a¼0.25, 0.5) and crack orientations (a¼01,
301, 451, 901, 1351) on the first five 3-D mode shapes and nodal
patterns. It should be noted that oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
decline as h/b or

d/a or d/b increases, as h/b is assumed in the definition of
oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
, and the stiffness of the FGM parallelepipeds

decreases with the increase of crack length ratios (d/a or d/b).
The frequencies of Al/Al2O3 FGM parallelepipeds decrease with
the increase of m̂, but the trend may not be valid for Al/ZrO2

FGM parallelepipeds. The oðb2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
of CFCF Al/ZrO2 FGM

rectangular parallelepipeds modeled as moderately thick plates
(h/b¼0.1) increase as the volume fraction m̂¼ 1 increases to 5,
and oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
decrease when m̂¼ 5 increase further to m̂¼ 10.

Across the board in Figs. 2–6 there appears to be no general
trends within the first five 3-D mode shapes, nodal patterns and
oðb2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
of SSSS, FFFF, and CFCF cracked FGM parallelepi-

peds under the influence of varying with the crack positions and
orientations. Nonetheless, the resulting cracked FGM parallele-
piped vibration modes in coupled longitudinal flexure, sideways
flexure, longitudinal extension, and torsional modes exhibit
mixed opening, shearing, sliding, and tearing stress states relative
to the crack edge, depending on the volume fraction (m̂), crack
length ratios (d/a and d/b), crack positions (cx/a and cy/b), and
crack inclination angles (a). These crack size effects imply flaw-
size influence in FGM parallelepiped vibration and fracture,
suggesting that these crack size effects can be fully analyzed,
only if crack-edge stress singularity analysis (see Appendix),
allowing for displacement discontinuities across the crack (suffi-
cient to describe the most general 3-D ‘‘mixed-modes’’ of local
crack-edge deformation and stress fields), are conducted, given
the dominate (n¼1) generalized stress intensities,

ffiffiffiffiffiffi
2p
p

BðiÞ1ml andffiffiffiffiffiffi
2p
p

CðiÞ1ml, (predicted by the present 3-D Ritz procedure in Eq. (5)
for each cracked FGM parallelepiped normal mode). As the crack
is slightly off-set of center (e.g., cy/b¼0.75), Figs. 2–6 shows that
the frequencies can be either more or less affected by crack offset
(cy/b), depending upon the modes. An off-center crack completely
destroys any symmetry, as may be seen in the lack of symmetry
in the node lines of Figs. 2–6 (see for example, the SSSS and FFFF
parallelepipeds with aa01, cy/b¼0.75, and the CFCF parallelepi-
peds with a¼01, cy/b¼0.25). For aa01, Figs. 2–6 shows that
otherwise symmetrical node lines of intact parallelepipeds are
further distorted for cracked FGM parallelepipeds. It is also
interesting to note in Figs. 2–6 that node lines may intersect a
shallow (d/b¼0.2) or deep (d/b¼0.5) crack and, in some cases,
even the tip of a crack. One can also contrast in Figs. 2–6 that the
presence of an edge crack affects the fundamental (i.e. lowest)
frequency of the FFFF cracked FGM parallelepipeds much more
than that of the SSSS or CFCF ones. For instance, the fundamental
mode shape of an intact FFFF parallelepiped is anti-symmetric,
whereas for the SSSS one it is symmetric. But this effect does not
extend to the other modes of the parallelepipeds; that is, sym-
metric mode frequencies in some cases are more greatly affected
by a crack than the anti-symmetric modes.
6. Conclusions

Proposed herein is a three-dimensional elasticity-based Ritz
procedure to predict accurate vibration frequencies and mode
shapes of FGM rectangular parallelepipeds with side cracks.
A hybrid set of admissible displacement fields have been pro-
posed, which consists of mathematically complete orthogonal
polynomials, and of admissible crack functions that properly
describe the Wð1=

ffiffiffi
r
p
Þ3-D stress singularities at the terminus edge

front of the crack, allowing for displacement discontinuities
across the crack sufficient to explain the most general 3-D ‘‘mixed
modes’’ of local crack-edge deformation and stress fields typically
seen in fracture mechanics. Discussed in this paper is an assess-
ment of the dynamic stress in the vicinity of crack terminus edge,
exhibiting in vibration mixed opening, shearing, sliding, and
tearing stress states relative to the crack edge.

The efficiency of the proposed admissible functions has been
substantiated through comprehensive convergence studies of
non-dimensional frequencies for simply-supported, completely
free, and clamped-free homogeneous and FGM cracked rectan-
gular parallelepipeds modeled as thin and thick plates with
horizontal cracks positioned along a symmetry axis. It is shown
that both the hybrid assumed displacement fields of orthogonal
polynomials and corner functions indeed accelerate the conver-
gence of numerical solutions, especially for parallelepipeds hav-
ing a deep (d/a or d/b¼0.5, see Fig. 1) more than a shallow (d/a or
d/b¼0.2) crack. The convergent results for the cracked thin
homogeneous plate (h/b¼0.01) agree excellently with previously
published results based on the classical thin plate theory, con-
firming the correctness and accuracy of the present 3-D solutions.
Convergence studies also demonstrate that the present 3-D
approach yields the least upper bounds on the exact solution
of cracked homogeneous and FGM rectangular parallelepipeds
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modeled as thick plates, when such 3-D solutions are compared
against previously published upper bounds on exact solutions
using the Ritz method combined with various shear deformable
thick plate theories. In addition, the present 3-D approach has
been applied to investigate the effects of volume fraction (m̂),
crack length ratios (d/a and d/b), crack positions (cx/a and cy/b),
and crack inclination angles (a), on the free vibration frequencies
and mode shapes of simply-supported, completely free, and
clamped-free parallelepipeds modeled as thick plates with side
cracks, including cracks which are not along a symmetry axis, but
are skewed. Most of the 3-D results reported are novel, which can
be used as standard to judge the accuracy of other numerical
methods and various plate theories.
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Appendix: summary of dynamic stress in the vicinity of a FGM
parallelepiped crack

Among the acceptable values of (2n�1)/2 in the displacement
and stress fields (Eqs. (9)–(10)) that yield maximum stresses in
the vicinity of the crack terminus edge (Fig. 1) corresponds to
n¼1. As already identified, the crack-edge stress fields are
dominated by the order of an inverse square root of a local polar
coordinate (r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
, see Fig. 1), Wð1=

ffiffiffi
r
p
Þ, emanating from the

crack terminus edge, whereas the crack-edge deformations are
dominated by the order of a square root of the local polar
coordinate, r, Wð

ffiffiffi
r
p
Þ. For small values of r in the vicinity of the

crack terminus edge, the stress fields become extremely large,
and the normal mode responses (Figs. 2–6) becomes distorted in
free vibration of a cracked FGM parallelepiped having various
combinations of clamped, hinged or stress free face conditions.
For other integer values of n¼2,3,4,5, y, the stress fields are
bounded yet significantly less at the crack-edge. In summary, near
a crack terminus edge, where the terms corresponding to n¼1
dominates, and given the dominate (n¼1) generalized stress
intensities,

ffiffiffiffiffiffi
2p
p

BðiÞ1ml and
ffiffiffiffiffiffi
2p
p

CðiÞ1ml, (predicted by the present 3-D
Ritz procedure in Eq. (5) for each cracked FGM parallelepiped
normal mode), one can determined the dynamic stress fields in
the local polar (r,y) coordinates (see Fig. 1) as follows:

sx ¼ lðzÞðU1,rÞ ¼ lðzÞ½Û1c,r �,sy ¼ lðzÞr�1ðU2,yþU1Þ

¼ lðzÞr�1½Û2c,yþU1c�,

sz ¼ lðzÞðU3,zÞ ¼ lðzÞ½Û3c,z�,

try ¼ tyr ¼ ðGðzÞ=2Þðr�1U1,yþU2,r�r�1U2,yÞ

¼ ðGðzÞ=2Þ½r�1Û1c,yþU2c,r�r�1Û2c,y�,

tyz ¼ tzy ¼ ðGðzÞ=2ÞðU2,zþr�1U3,yÞ ¼ ðGðzÞ=2Þ½Û2c,zþr�1U3c,y�,

trz ¼ tzr ¼ ðGðzÞ=2ÞðU1,zþU3,rÞ ¼ ðGðzÞ=2Þ½Û1c,zþU3c,r�: ðA:1Þ

where lðzÞ ¼ uðzÞEðzÞ=ð1þuðzÞÞð1�2uðzÞÞ and GðzÞ ¼ EðzÞ=½2ð1þuðzÞ�
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In Eqs. (A.1)–(A.8), it is assumed that the displacement corner
functions (A.2) are most dominate (n¼1) in the local dynamic
stress fields in the vicinity of a crack terminus edge of the FGM
parallelepiped.
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Physically,
ffiffiffiffiffiffi
2p
p

BðiÞ1ml and
ffiffiffiffiffiffi
2p
p

CðiÞ1ml, may be regarded as the

dominant (n¼1) intensities of vibratory loads through the crack
edge region of a FGM parallelepiped. Hence, ‘‘mixed mode’’
cracking in FGM parallelepiped vibration, exhibiting mixed open-
ing, shearing, sliding, and tearing stress states relative to the crack

edge, depending on the volume fraction (m̂), crack length ratios
(d/a and d/b), crack positions (cx/a and cy/b), and crack inclination
angles (a), is sufficient to describe the most general three-dimen-
sional dynamic ‘‘small-scale’’ yielding of local crack-tip deforma-
tion and stress fields in cracked parallelepipeds. Because fracture
processes of a functionally graded material may be regarded as
‘‘caused’’ by this surrounding crack-edge stress field nature, the

‘‘mixed-mode’’ intensities
ffiffiffiffiffiffi
2p
p

BðiÞ1ml and
ffiffiffiffiffiffi
2p
p

CðiÞ1ml may be inter-

preted in a generalized sense as fracture correlation coefficients in
current practice. It should be noted that these stress intensities
have units of (force)� (length)�3/2 [33,34], and since the intensi-
ties are linear factors in elastic stress, they must be proportional to
the vibratory force, and other characteristic lengths, such as crack
size, i.e., determined in the present analysis by various crack length
ratios (d/a and d/b), crack positions (cx/a and cy/b), and crack
inclination angles (a) (see Fig. 1). These crack size effects imply
flaw-size influence in FGM parallelepiped vibration and fracture,
suggesting that these crack size effects can be fully analyzed only if
crack-edge stress singularity effects are incorporated, allowing for
displacement discontinuities across the crack (sufficient to
describe the most general 3-D ‘‘mixed-modes’’ of local crack-edge
deformation and stress fields). For SSSS, FFFF, and CFCF cracked
rectangular FGM parallelepiped, the face tractions are determined
by the 3-D stress Eqs. (A.3)–(A.8) to maintain dynamic equilibrium
of the parallelepiped in the vibratory modes shown in Figs. 2–6.
Note that these 3-D stresses are known at all points on the SSSS,
FFFF, and CFCF faces.

By assuming simple harmonic motion at peak cycle, e
ffiffiffiffiffi
�1
p

ot-1,
Eqs. (A.1)–(A.8) serve to establish the maximum dynamic fracture
stresses from the maximum dynamic energies (Eq. (2)–(3)), first
proposed in classical works by Griffith [42]. As determined by
crack length ratios (d/a and d/b), crack positions (cx/a and cy/b),
and crack inclination angles (a) (see Fig. 1), these crack size
effects imply original flaw-size area, A, in FGM parallelepiped
vibration and fracture, in which such flaw-size area may be
ideally propagated, as AþDA during vibration in mixed opening,
shearing, sliding, and tearing stress states relative to the crack
edge (see Figs. 2–6). When the maximum dynamic energies
(Eq. (2)–(3)), induced by progressing from a cracked FGM paral-
lelepiped vibratory state to another one wherein the crack is
slightly propagated during vibration, is greater than the max-
imum dynamic energies of a cracked-propagated FGM parallele-
piped vibratory state, then the cracked FGM parallelepiped
vibrates from an non-propagated (n–p) to a propagated (p) state,
because the parallelepiped achieves a minimum dynamic energy,
according to the Griffith theory [42].

In using the present Ritz procedure, the maximum dynamic
characteristics of the cracked parallelepiped vibrating from a non-
propagated to a propagated flaw-size state may be predicted by
the energy functional:

Pn�p ¼ ðVmax�TmaxÞn�p

Pp ¼ ðVmax�TmaxÞp
ðA:9Þ

where Vmax is the maximum strain energy (Eq. (3a)), and Tmax is
the maximum kinetic energy (Eq. (3b)) in simple harmonic motion,
e
ffiffiffiffiffi
�1
p

ot-1, at peak crack displacements and crack stresses (Eqs.
(A.1)–(A.8)) of the vibratory cycle. Neglected herein are any
generations in heat energy in the FGM parallelepiped due to
temperature gradients associated with vibratory crack propaga-
tion, or any plastic dissipation associated with such dynamic crack
broadening. Thus, the Griffith’s criterion for such potential crack
propagation during FGM parallelepiped vibration is (pc being the
surface energy per unit area of new flaw-size surface, DA):

Pn�pZPpþ
R
DA

pcdA

) Pp�Pn�pþ
R
DApcdAr0

ðA:10Þ

For DA -0 ,

)
Pp�Pn�p

DA þpc r0

) DP
DA þpc r0

ðA:11Þ

Hence, as DA-0, according to Griffith [42], as DP
DA þpc r0, the

crack propagates and the FGM parallelepiped vibrates from an
non-propagated to a propagated flaw-size state. In contrast, as
DP
DA þpc 40, the FGM parallelepiped does not vibrate to a propa-
gated state, largely because the cracked FGM parallelepiped is
vibrating at lower energy in a non-propagated flaw-size state and
hence more stable energy than in a propagated flaw-size state.
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