Efficient Algorithms for k-out-of-n \& Consecutive-Weighted- k-out-of- n :F System

Jer-Shyan Wu

Chung-Hua Polytechnic Institute, Hsinchu
Rong-Jaye Chen, Member IEEE
National Chiao Tung University, Hsinchu

Key Words - k-out-of- n system, consecutive-weighted-k-out-of$n: F$ system, system reliability, algorithm, parallel computation.

Reader Aids -
General purpose: Report new algorithms Special math needed for explanations: Probability theory Special math needed to use results: Same
Result useful to: Reliability analysts \& theoreticians
Abstract - A new reliability model, consecutive-weighted- k -out-of- n :F system, is proposed and an $O(n)$ algorithm is provided to evaluate its reliability. An $O(n \cdot \min (n, k))$ algorithm is also presented for the circular case of this model. We design an $O(n)$ parallel algorithm using \boldsymbol{k} processors to compute the reliability of \boldsymbol{k}-out-of- \boldsymbol{n} systems, that achieves linear speedup.

1. INTRODUCTION

A consecutive- k-out-of- n : F system consists of a sequence of n ordered components such that the system fails iff at least k consecutive components fail. The reliability of this system was first studied by Chiang \& Niu [3], and later extensively studied in [1, 4-7, 10, 15, 17-18].

Sections 2 \& 3 state a more general consecutive-weighted-k-out-of- n : F system, and designs an $O(n)$ algorithm to evaluate its reliability. Because n components need to be checked in any algorithm, this $O(n)$ algorithm is optimal. In addition, for the circular consecutive-weighted- k-out-of- $n: F$ system, an $O(n \cdot \min (n, k))$ algorithm is proposed to compute the system reliability. If each component has weight 1 , the original consecutive- k-out-of-n:F system is a special case of this new model.

The k-out-of- n systems were studied in [2, 8-9, 11-14, 19], where the system was [good, failed] iff the total number of [good, failed] components was at least k. The reliability of the k-out-of- $n: G$ system is the complement of the probability of failure of the $(n-k+1)$-out-of- $n: \mathrm{F}$ system. Without loss of generality, we discuss k-out-of-n:G systems only.

A sequential algorithm is defined as using one processor, while the parallel algorithm uses more than one processor [16]. The speedup of a parallel algorithm is the ratio [computing time of the best sequential algorithm] \div [computing time of the parallel algorithm]. Given P processors, we would like our parallel algorithm to run P times as fast as the best sequential algorithm. When the speedup of a parallel algorithm is P, the
parallel algorithm achieves linear speedup. It is often hard to propose a parallel algorithm with linear speedup.

So far, the best sequential algorithm for computing the reliability of the k-out-of- n :G systems needs $O(n \cdot k)$ time [2, $8-9,11-14,19$] and it is hard to improve on this time complexity. This paper designs a parallel algorithm using k processors to compute the reliability in $O(n)$ computing time, and thus achieves linear speedup (the speedup is k).

For k-out-of- n systems, we achieved 2 important results:

- an $O(n)$ algorithm for computing system reliability;
- a parallel algorithm with linear speedup.

Section 2 describes the assumptions \& notation. Section 3 shows an $O(n)$ algorithm for consecutive-weighted- k-out-ofn :F systems. Section 4 shows an $O(n \cdot \min (n, k))$ algorithm for circular consecutive-weighted- k-out-of- n :F systems. Section 5 proposes an $O(n)$ parallel algorithm to compute the reliability of the k-out-of- n systems. All proofs are in the appendix.

2. MODEL

Notation (general)

$n \quad$ number of components in a system
p_{i}, q_{i} probability that component i [functions, fails]; $p_{i}+$ $q_{i}=1$
$\mathscr{G}(\cdot) \quad \mathscr{G}($ True $)=1, \mathfrak{I}($ False $)=0:$ Indicator function
Notation (weighted system)
k minimum total weight of failed consecutive components which causes system failure
$w_{i} \quad$ weight of component i
$S_{i} \quad$ minimum event which causes system failure
total number of all possible S_{i}
$\operatorname{Beg}(i), \operatorname{End}(i)$ [first, last] component of S_{i}
Wet (i) total weight of S_{i}
$Q(i) \prod_{j=\operatorname{Beg}(i)}^{\operatorname{End}(i)} q_{j}$
$R_{L}(i, j), R_{C}(i, j)$ reliability of [linear, circular] system consisting of components $i, i+1, \ldots, j$
$F_{\Omega}(i, j) 1-R_{\Omega}(i, j)$, for $\Omega=L, C$
Notation (k-out-of- n : G system)
k minimum number of all good components which make the system good
$R(i, j), F(i, j) \quad$ [reliability, unreliability] of a j-out-of- $i: G$ system.

Other, standard notation is given in ' 'Information for Readers \& Authors' at the rear of each issue.

Assumptions

1. Each component and the system either functions or fails.
2. All n component states are mutually s-independent.
3. For weighted systems: a) each component has its own positive integer weight; b) the system fails iff the total weight of the failed consecutive components is at least k.
4. For k-out-of- n :G systems: a) each processor is unique; b) the system is good iff the number of good components is at least k.

3. CONSECUTIVE-WEIGHTED- k-out-OF- $n: F$ SYSTEMS

We present our algorithm to compute the reliability of a consecutive-weighted- k-out-of- n : F system. Before deriving the algorithm, we need lemmas $1 \& 2$.

Lemma 1. A consecutive-weighted- k-out-of- $n: F$ system needs only $O(n)$ computing time to derive each S_{i}, for $i=1, \ldots$, m.

```
Algorithm A
begin
    /* Set initial value for variables. */
    \(\mathrm{m}=0\); event \(=1\);
    Wet(event) \(=0 ; Q\) (event) \(=1 ; \operatorname{Beg}(\) event \()=1\);
    \({ }^{*}\) * Scan components from the first one. */
    for component \(=1\) to \(n\)
    begin
        Wet(event) \(=\) Wet(event) \(+W_{\text {component }}\);
        \(Q(\) event \()=Q(\) event \() \cdot q_{\text {component }}\);
        if Wet(event) \(\geq k\) then
        /* New event appears */
        begin
            \(m=m+1 ;\)
            End(event) = component;
            /* Check whether the event is minimum */
            while (Wet(event) \(-W_{\text {Beg(event) }} \geq k\) ) then
                begin
                    Wet(event) \(=\) Wet(event) \(-W_{\text {Beg(event })}\);
                    \(Q(\) event \()=Q(\) event \() / q_{\text {Beg(event) }} ;\)
                    \(\operatorname{Beg}(\) event \()=\operatorname{Beg}(\) event \()+1\);
                end
            endwhile
        \(\operatorname{Beg}(\) event +1\()=\operatorname{Beg}(\) event \()+1 ;\)
        Wet(event +1\()=\) Wet(event) \(-W_{\text {Beg(event) }}\);
        \(Q(\) event +1\()=Q(\) event \() / q_{\text {Beg(event })}\);
        event \(=\) event +1 ;
        end
    end
endfor
end
/* End of Algorithm */
```


Example 1. Illustration of Algorithm A

Given a consecutive-weighted-4-out-of-7:F system, the weights of components $1-7$ are: $1,1,1,2,3,2,1$. Use algorithm A to obtain the results in figure 3.1. There are 3 minimum events ($S_{1}: 2-4, S_{2}: 4-5, S_{3}: 5-6$) which cause system failure. Figure 3.1 shows these minimum events as dark consecutive components. The computing time of the for-loop is $7=n$, and the while-loop is $5=\operatorname{Beg}(m)$.

event	event weight	$\begin{aligned} & \text { for } \\ & \text { copp } \end{aligned}$	while loop	
1	1	1		(1) 1
	2	2		(1) ${ }_{1}{ }_{1}^{2}$
	3	3		$\begin{array}{lll} (1) & (2) & (3) \\ 1 & 1 & 1 \end{array}$
	5	4		$\begin{array}{cccc} 1 & (2) & (3) & (4) \\ 1 & 1 & 1 & 2 \end{array}$
	4		1	$\underset{1}{(2)} \underset{1}{(3)} \underset{2}{4}$
	4		2	$\begin{array}{\|c} 1273 \\ 1 \\ 1 \end{array}$
2		5		(3) (4) ${ }_{1}{ }_{2}(5)$
	5		3	$\begin{array}{ll}\text { (4) } & \text { (5) } \\ 2\end{array}$
			4	울
3	5	6		(5) ${ }_{3}{ }^{(6)}$
	5		5	$\text { (3) } 3$
4	3	7		(6) ${ }_{2}{ }^{(7)}$

Figure 3.1. An Example of a Consecutive-Weighted-4-out-of-7:F system

We need to derive $F_{L}(1, i)$, for $i=1, \ldots, n$.
Lemma 2. For a consecutive-weighted- k-out-of- n : F system, the $F_{L}(1, i)$, for $i=1, \ldots, n$, is:
$F_{L}(1, i)=0$, for $\mathrm{i}=0,1, \ldots, \operatorname{End}(1)-1$.
$F_{L}(1, i)=\operatorname{Pr}\left\{S_{1} \cup S_{2} \cup \ldots \cup S_{j}\right\}=F_{L}(1$, End $(j))$,
for $i=\operatorname{End}(j), \operatorname{End}(j)+1, \ldots, \operatorname{End}(j+1)-1$,
and $j=1,2, \ldots, m-1$.
$F_{L}(1, i)=\operatorname{Pr}\left\{S_{1} \cup S_{2} \cup \ldots \cup S_{m}\right\}=F_{L}(1, \operatorname{End}(m))$,
for $i=\operatorname{End}(m), \operatorname{End}(m)+1, \ldots, n$.
(3-3) 4

Apply lemmas $1 \& 2$; only $\mathrm{O}(\mathrm{n})$ computing time is needed to obtain $R_{L}(1, n)$ - as stated formally in theorem 1.

Theorem 1. For a consecutive-weighted- k-out-of- n : F system, the $F_{L}(1, \operatorname{End}(j))$, for $j=2,3, \ldots, m$, is:

$$
\begin{aligned}
& F_{L}(1, \operatorname{End}(j))=F_{L}(1, \operatorname{End}(j-1)) \\
& \quad+\sum_{i=0}^{\operatorname{Beg}(j)-\operatorname{Beg}(j-1)-1} R_{L}(1, \operatorname{Beg}(j-1)+i-1) \cdot p_{\operatorname{Beg}(j-1)+i}
\end{aligned}
$$

$$
\begin{equation*}
\cdot\left[\prod_{l=\operatorname{Beg}(j-1)+i+1}^{\operatorname{Beg}(j)-1} q_{l}\right] \cdot Q(j) \tag{3-4}
\end{equation*}
$$

and the time to obtain $R_{L}(1, n)$ is $O(n)$.

Example 2. Compute $R_{L}(1, n)$ in $O(n)$

For a consecutive-weighted-4-out-of-7:F system, the weight for components $1-7$ is $1,1,1,2,3,2,1$. From example 1, there are 3 minimum events ($E_{1}: 2-4, E_{2}: 4-5, E_{3}: 5-6$) which cause system failure.

Initially, by algorithm A :

$$
\begin{aligned}
& \operatorname{Beg}(1)=2, \operatorname{End}(1)=4, Q(1)=q_{2} \cdot q_{3} \cdot q_{4} ; \\
& \operatorname{Beg}(2)=4, \operatorname{End}(2)=5, Q(2)=q_{4} \cdot q_{5} ; \\
& \operatorname{Beg}(3)=5, \operatorname{End}(3)=6, Q(3)=q_{5} \cdot q_{6} ;
\end{aligned}
$$

in $O(n)$ computing time. Then, by lemma 2 :
$F_{L}(1,1)=F_{L}(1,2)=F_{L}(1,3)=0 ;$
$F_{L}(1,4)=F_{L}(1, \operatorname{End}(1)) ;$
$F_{L}(1,5)=F_{L}(1, \operatorname{End}(2)) ;$
$F_{L}(1,6)=F_{L}(1,7)=F_{L}(1, \operatorname{End}(3)) ;$
in $O(n)$ computing time. Furthermore, by theorem 1 :

$$
\begin{aligned}
& F_{L}(1, \operatorname{End}(1))=Q(1) \\
& F_{L}(1, \operatorname{End}(2))=F_{L}(1, \operatorname{End}(1))+R(2) \cdot p_{3} \cdot Q(2)
\end{aligned}
$$

$$
+R(1) \cdot p_{2} \cdot q_{3} \cdot Q(2)
$$

$$
F_{L}(1, \operatorname{End}(3))=F_{L}(1, \operatorname{End}(2))+R(3) \cdot p_{4} \cdot Q(3) ;
$$

in $O(n)$ computing time. So, it takes $O(n)$ computing time to derive $F_{L}(1,7)$. Finally,

$$
R_{L}(1,7)=1-F_{L}(1,7) .
$$

4. CIRCULAR CONSECUTIVE-WEIGHTED-k-out-OF-n:F SYSTEM

Section 3 gives an $O(n)$ algorithm for consecutive-weighted- k-out-of- $n:$ F systems, and [18] proposed an $O(n \cdot k)$ algorithm for circular consecutive- k-out-of- $n: \mathrm{F}$ systems. Combining these two algorithms, we propose an $O(n \cdot \min (n, k))$ algorithm to compute the reliability of circular consecutive-weighted- k-out-of- n : F systems. The formula for circular consecutive-weighted- k-out-of- $n: \mathrm{F}$ systems is:
$R_{C}(1, n)=\sum_{A} \delta(s, l)$,
$A_{k, n, s, l} \equiv \sum_{i=1}^{s-1} w_{i}+\sum_{j=l+1}^{n} w_{j}<k$
$\delta(s, l) \equiv\left[\prod_{i=1}^{s-1} q_{i}\right] \cdot p_{s} \cdot R_{L}(s+1, l-1) \cdot p_{l}$
$\cdot\left[\prod_{j=l+1}^{n} q_{j}\right] \cdot \mathscr{J}\left(A_{k, n: s, l}\right)$.
Consider two cases: 1) $n \geq k$, and 2) $n<k$.
$4.1 n \geq k$
Because each component has at least weight 1, (4-1) can be presented as:
$R_{C}(1, n)=\sum_{s-1+n-l<k} \delta(s, l)=\sum_{s=1}^{k} \sum_{l=n-k+s}^{n} \delta(s, l)$.

It takes $O\left(k^{2}\right)$ computing time to check condition A since number of terms in (4-2) is $1 / 2 k \cdot(k+1)$. To obtain $\delta(s, l)$, we need to calculate:
$\left\{R_{L}(2, j)\right\}_{j=n-k}^{n-1}$,
$\left\{R_{L}(3, j)\right\}_{j=n-k+1}^{n-1}$,
\vdots
$\left\{R_{L}(k, j)\right\}_{j=n-1}^{n-1} ;$
$\left\{\prod_{i=1}^{j} q_{i}\right\}_{j=1}^{k-1},\left\{\prod_{i=j}^{n} q_{i}\right\}_{j=n-k+2}^{n}$.
In section 3 , while computing $R_{L}(1, n)$, we also obtain $\left\{R_{L}(1, j)\right\}_{1}^{n-1}$ in $O(n)$ time. By this property, we can compute (4-3) in $O(n \cdot k)$ time. It needs only $O(k)$ time to obtain (4-4). Finally, (4-2) contains $1 / 2 k \cdot(k+1)$ terms, so the time complexity for computing $R_{C}(1, n)$ is:
$O\left(k^{2}\right)+O(n \cdot k)+O(k)+O\left(k^{2}\right)=O(n \cdot k)$.

$4.2 \mathrm{n}<k$

$\mathrm{Eq}(4-1)$ can be presented as:
$R_{C}(1, n)=\sum_{s=1}^{n-2} \sum_{l=s+2}^{n} \delta(s, l)$
where $\delta(s, l$ is $)$ the same as in section 4.1 ; and it is necessary to get:

$$
\begin{align*}
& \left\{R_{L}(2, j)\right\}_{j=2}^{n-1} \\
& \left\{R_{L}(3, j)\right\}_{j=3}^{n-1} \\
& \vdots \\
& \left\{R_{L}(n-1, j)\right\}_{j=n-1}^{n-1} \tag{4-6}\\
& \left\{\prod_{i=1}^{j} q_{i}\right\}_{j=1}^{n-2},\left\{\prod_{i=j}^{n} q_{i}\right\}_{j=3}^{n} \tag{4-7}
\end{align*}
$$

The time complexity for computing $R_{C}(1, n)$ is $O\left(n^{2}\right)+$ $O\left(n^{2}\right)+O(n)+O\left(n^{2}\right)=O\left(n^{2}\right)$. Therefore the time complexity for computing $R_{C}(1, n)$ is $O(n \cdot \min (n, k))$.

5. k-out-OF- $n:$ G SYSTEM

This section presents an $O(n)$ parallel algorithm using k processors to compute the reliability of the k-out-of- n : G system.

$$
\begin{equation*}
R(n, k)=0, \text { if } n<k \tag{5-1}
\end{equation*}
$$

We start with an $O(n \cdot k)$ sequential algorithm.
Let $n \geq k$, for $\mathrm{i}=1, \ldots, n$, and $j=1,2, \ldots, k$. We derive a recurrence relation:
$R(i, j)=p_{i} \cdot R(i-1, j-1)+q_{i} \cdot R(i-1, j)$.
In order to derive $R(n, k)$, by (5-2), it is necessary to obtain $R(i, j)$, for $i=0,1, \ldots, n$, and $j=0,1, \ldots, k$, during the recursive processing. Put all $R(i, j)$ in a table with ($n+1$) rows and $(k+1)$ columns as in figure 5.1. We have initial $R(i, j)$ in row 1 and column 1:
$R(0, j)=0$, for $j=1,2, \ldots, k ;$
$R(i, 0)=1$, for $i=0,1, \ldots, n$.
The following details the method for computing $R(n, k)$.
By (5-1), if $n<k$ then $R(n, k)=0$. Otherwise, by (5-3) \& (5-4), we construct column 1 and row 1 in the $R(i, j)$ table. Then, by (5-2), we construct row 2 , row $3, \ldots$, row $n+1$ in that order. $R(n, k)$ is eventually derived. Because the size of the $R(i, j)$ table is $(n+1) \cdot(k+1)$, the sequential algorithm needs $O(n \cdot k)$ running time.

$\underline{R(i, j)}$	0	1	2	- -	k-1	k
0	1	0	0	--..	0	0
1	1	$\mathrm{R}(1,1)$	0	- - -	0	0
2	1	$\mathbf{R}(2,1)$	$\mathrm{R}(2,2)$	----	0	0
1	1	1	1		।	1
k-1	1	$\mathrm{R}(\mathrm{k}-1,1)$	$\mathrm{R}(\mathrm{k}-1,2)$	---	$\mathbf{R}(\mathbf{k}-1, \mathrm{k}-1)$	0
k	1	$\mathrm{R}(\mathbf{k}, 1)$	R(k, 2)	--...	$\mathbf{R}(\mathbf{k}, \mathbf{k}-1)$	R(k, \mathbf{k})
I	1	1	1		1	,
1	1	1	1		1	1
n-1	1	$\mathrm{R}(\mathrm{n}-1,1)$	$\mathrm{R}(\mathrm{n}-1,2)$	-..--	$\mathrm{R}(\mathrm{n}-1, \mathrm{k}-1)$	$\mathrm{R}(\mathrm{n}-1, \mathrm{k})$
n	1	$\mathrm{R}(\mathrm{n}, 1)$	$\mathrm{R}(\mathrm{n}, 2)$	-----	$\mathrm{R}(\mathrm{n}, \mathrm{k}-1)$	R(n, k)

Figure 5.1 The $R(i, j)$ Table with $(n+1)$ Rows and ($k+1$) Columns.

We describe an $O(n)$ parallel algorithm to compute $R(n, k)$. Each of our designed processors contains, as shown in figure 5.2:

- 2 inputs (I, J),
- 1 output (O),
- 1 buffer (B).

Figure 5.2 Our Designed Processor. There are two impusts (I, J), One Output (O) and One Buffer (B). The Circular Object Represents the Logic Cirguit for Computing Operation: $\&=j \cdot I+(1-J) \cdot B$.

The computing operation is:
$O=J \cdot I+(1-J) \cdot B$.
The processor stores (O) in $(B): B=O$.
We use k processors and route them as figure 5.3 shows. Initially for each processor, the buffer stores 0 , and input port J receives $p_{1}, p_{2}, \ldots, p_{n}$; and input port I receives the output of its left processor. Input port I of the most-left processor always receives 1 .

Figure 5.3 The Routing for k Processors. Each Processor's Buffer Initially Stores Zero. In Each Step, Each Processor's J Input Port Receives $P_{1}, P_{2}, \ldots, P_{n}$, Orderly; and / Input Port Recieves Its Left Processor's Output. The / Input of Processor 1 is Always 1.

Label the processors from left to right: $1,2, \ldots, k$.

- By (5-3), the buffer of processor j initially stores $R(0, j)$, for $j=1,2, \ldots, k$.
- By (5-4), the input port I of process 1 receives $R(i, 0)$ (value $=0$), in step i.
- By (5-2), (5-5), (5-6), the buffer of processor j stores $R(i, j)$ (value $=1$), in step i, for $i=1, \ldots, n$, and $j=1,2, \ldots, k$.
- After n steps, $R(n, k)$ can be obtained in the buffer of the processor k.

This is an $O(n)$ parallel algorithm using k processors for computing $R(n, k)$.

APPENDIX

A. 1 Proof of Lemma 1

Initially, scan from the first component and compute the total weight until the total-weight $\geq k$, then check whether this event is minimum. Try to remove components from the beginning of this event until the total-weight $<k$. Hence obtain S_{1}. Let the beginning component of the second event be Beg(1) + 1, and continue to scan from the component End(1) +1 . By the this method, we obtain S_{i}, for $i=2, \ldots, m$. The details of this method are given in algorithm A.

In algorithm A, the computing time of the For loop is $O(n)$, and the worst computing time of the while loop is:

$$
\begin{aligned}
& \operatorname{Beg}(1)+(\operatorname{Beg}(2)-\operatorname{Beg}(1))+(\operatorname{Beg}(3)-\operatorname{Beg}(2))+\ldots \\
& +(\operatorname{Beg}(m)-\operatorname{Beg}(m-1))=\operatorname{Beg}(m)=O(n)
\end{aligned}
$$

So it needs only $O(n)$ computing time to derive each S_{i}, and obtain $\operatorname{Beg}(i), \operatorname{End}(i), Q(i)$, for $i=1,2, \ldots, m$. Q.E.D.

A. 2 Proof of Lemma 2

$$
F_{L}(1, i)=0, \text { for } i=0,1, \ldots, \operatorname{End}(1)-1
$$

$F_{L}(1, i)=\operatorname{Pr}\left\{S_{1} \cup S_{2} \cup \ldots \cup S_{j}\right\}$, for $i=\operatorname{End}(j)$, and $j=1$,
$2, \ldots, m$.

Consider a consecutive-weighted- k-out-of $i: \mathrm{F}$ system, for $i=$ $\operatorname{End}(j), \operatorname{End}(j)+1, \ldots$, End $(j+1)-1$, and $j=1,2, \ldots$, $m-1$; all the minimum events which cause the system failure are still $S_{1}, S_{2}, \ldots, S_{j}$. So (3-2) is proved.

Eq. (3-3) is obtained similarly to (3-2), if we consider only components from $\operatorname{End}(m)$ to n.
Q.E.D.

A. 3 Proof of Theorem 1

Initially, by lemma $2, F_{L}(1,0) \equiv 0$; and $R_{L}(1,0)=1$. By the sum-of-disjoint-products method, for $j=2,3, \ldots, m-$

$$
\begin{align*}
& F_{L}(1, \operatorname{End}(j))=\operatorname{Pr}\left\{S_{1} \cup S_{2} \cup \ldots \cup S_{j}\right\} \\
& =\operatorname{Pr}\left\{S_{1} \cup S_{2} \cup \ldots \cup S_{j-1}\right\}+\operatorname{Pr}\left\{\overline{\left.S_{1} \cup S_{2} \cup \ldots \cup S_{j-1} \cap S_{j}\right\}}\right. \\
& =F_{L}(1, \operatorname{End}(j-1))+R_{L}(1, \operatorname{Beg}(j)-2) \cdot p_{\operatorname{Beg}(j)-1} \cdot Q(j) \\
& +R_{L}(1, \operatorname{Beg}(j)-3) \cdot p_{\operatorname{Beg}(j)-2} \cdot q_{\operatorname{Beg}(j)-1} \cdot Q(j)+\ldots \\
& \\
& +R_{L}(1, \operatorname{Beg}(j-1)-1) \cdot p_{\operatorname{Beg}(j-1)} \cdot q_{\operatorname{Beg}(j-1)+1} \cdot \ldots \cdot q_{\operatorname{Beg}(j)-1} \cdot Q(j) \\
& =F_{L}(1, \operatorname{End}(j-1)) \\
& +\sum_{i=0}^{\operatorname{Beg}(j)-\operatorname{Beg}(j-1)-1} R_{L}(1, \operatorname{Beg}(j-1)+i-1) \cdot p_{\operatorname{Beg}(j-1)+i} \tag{A-1}\\
& \cdot\left[\prod_{l=\operatorname{Beg}(j-1)+i+1}^{\operatorname{Beg}(j)-1} q_{l}\right] \cdot Q(j) .
\end{align*}
$$

Apply lemma 1; we need only $O(n)$ computing time to derive each S_{i}, and obtain $\operatorname{Beg}(i), \operatorname{End}(i), Q(i)$, for $i=1,2, \ldots$, m. By lemma 2, each $F_{L}(1, i)$, for $i=0,1, \ldots, n$, is zero or any one of the $F_{L}(1, \operatorname{End}(j))$, for $j=1,2, \ldots, m$. By (A-1), the worst computing time for deriving $F_{L}(1, \operatorname{End}(j))$, for $j=$ $1,2, \ldots, m$, is:

```
\(\operatorname{Beg}(1)+(\operatorname{Beg}(2)-\operatorname{Beg}(1))+(\operatorname{Beg}(3)-\operatorname{Beg}(2))+\ldots\)
    \(+(\operatorname{Beg}(m)-\operatorname{Beg}(m-1))=\operatorname{Beg}(m)=O(n)\).
```

Because $R_{L}(1, n)=1-F_{L}(1, n)$, it takes $O(n)$ computing time to derive $R(n)$.
Q.E.D.

REFERENCES

[1] I. Antonopoulou, S. Papastavridis, "Fast recursive algorithm to evaluate the reliability of a circular consecutive- k-out-of- n : F system', IEEE Trans. Reliability, vol R-36, 1987 Apr, pp 83-84.
[2] R.E. Barlow, K.D. Heidtmann, "Computing k-out-of $-n$ system reliability", IEEE Trans. Reliability, vol R-33, 1984 Oct, pp 322-323.
[3] D.T. Chiang, S.C. Niu, 'Reliability of consecutive- k-out-of- n :F system", IEEE Trans. Reliability, vol R-30, 1981 Apr, pp 87-89.
[4] C. Derman, G. Lieberman, S. Ross, "On the consecutive-k-out-of-n:F system'', IEEE Trans. Reliability, vol R-31, 1982 Apr, pp 57-63.
[5] J.C. Fu, "Reliability of consecutive- k-out-of-n:F systems with (k-1)-step Markov dependence', IEEE Trans. Reliability, vol R-35, 1986 Dec, pp 602-606.
[6] G. Ge, L. Wang, "Exact reliability formula for consecutive- k-out-ofn :F system with homogeneous Markov dependence', IEEE Trans. Reliability, vol 39, 1990 Dec, pp 600-602.
[7] F.K. Hwang, "Fast solutions for consecutive-k-out-of-n:F system", IEEE Trans. Reliability, vol R-31, 1982 Dec, pp 447-448.
[8] S.P. Jain, K. Gopal, "Recursive algorithm for reliability evaluation of k-out-of-n:G system", IEEE Trans. Reliability, vol R-34, 1985 Jun, pp 144-146.
[9] P.W. McGrady, "The availability of a k-out-of- n :G network', IEEE Trans. Reliability, vol R-34, 1985 Dec, pp 451-452.
[10] S. Papastavridis, M. Lambiris, "Reliability of consecutive- k-out-of- $n: F$ system for Markov-dependent components", IEEE Trans. Reliability, vol R-36, 1987 Apr, pp 78-79.
[11] H. Pham, S.J. Upadhyaya, "The efficiency of computing the reliability of k-out-of- n systems', IEEE Trans. Reliability, vol 37, 1988 Dec, pp 521-523.
[12] S. Rai, A.K. Sarje, E.V. Prasad, A. Kumar, "Two recursive algorithm for computing the reliability of k-out-of- n systems", IEEE Trans. Reliability, vol R-36, 1987 Jun, pp 261-265.
[13] T. Risse, "On the evaluation of the reliability of k-out-of- n systems", IEEE Trans. Reliability, vol R-36, 1987 Oct, pp 433-435.
[14] A.K. Sarje, E.V. Prasad, "An efficient non-recursive algorithm for computing the reliability of k-out-of- n systems", IEEE Trans. Reliability, vol 38, 1989 Jun, pp 234-235.
[15] J.G. Shanthikumar, "Recursive algorithm to evaluate the reliability of a consecutive- k-out-of- n :F system', IEEE Trans. Reliability, vol R-31, 1982 Dec, pp 442-443.
[16] F.T. Leighton, "Introduction to parallel algorithms and architectures: arrays trees hypercubes", 1992; Morgan Kaufmann Publishers.
[17] J.S. Wu, R.J. Chen, "An $O(k \cdot n)$ algorithm for a circular consecutive-k-out-of-n:F system", IEEE Trans. Reliability, vol 41, 1992 Jun, pp 303-305.
[18] J.S. Wu, R.J. Chen, 'Efficient algorithm for reliability of a circular consecutive-k-out-of-n:F system', IEEE Trans. Reliability, vol 42, 1993 Ma, pp 163-164.
[19] J.S. Wu, R.J. Chen, "An algorithm for computing the reliability of weighted- k-out-of-n systems’’, IEEE Trans. Reliability, vol 43, 1994 Jun, pp 327-328.

AUTHORS

Jer-Shyan Wu; Dept. of Computer Science; Chung-Hua Polytechnic Inst; 30 Tung Shiang; Hsinchu 30067 TAIWAN - R.O.C.

Jer-Shyan Wu was born in Taipei, Taiwan in 1967. He received his BS (1989) in Computer Science from National Taiwan University, and MS (1991) \& PhD (1994) in Computer Science from National Chiao-Tung University. Dr. Wu is Ass't Professor in the Dept. of Computer Science at Chung-Hua Polytechnic Institute. His research interests include reliability analysis, queueing theory, parallel computing, interconnected networks, and algorithms.

Dr. Rong-Jaye Chen; Dept. of Computer Science and Information Engineering; National Chiao-Tung University; 1001 Ta Hsueh Road; Hsinchu 30050 TAIWAN - R.O.C.

Rong-Jaye Chen (M'90) was born in Taiwan in 1952. He received his BS (1977) in Mathematics from National Tsing-Hua University, and PhD (1987) in Computer Science from University of Wisconsin-Madison. Dr. Chen is now Professor in the Department of Computer Science and Information Engineering at National Chiao-Tung University, and is a member of IEEE. His research interests include reliability theory, algorithms, mathematical programming, and computer networking.

Manuscript received 1993 September 30.
IEEE Log Number 92-15598
4TR

MANUSCRIPTS RECEIVED MANUSCRIPTS RECEIVED

"Safety \& reliability of comma-free digital coding for railway track circuits" (R. Hill, J. Bouillevaux), Dr. R. John Hill • School of Electrical Engineering - University of Bath • Claverton Down • Bath BA2 7AY • GREAT BRITAIN. (TR94-115)
"Optimal release policy for hyper-geometric distribution software-reliability growth model" (R. Hou, S. Kuo, Y. Chang), Sy-Ken Kuo • Dept. of Electrical Eng'g • National Taiwan Univ. • Taipei • TAIWAN - R.O.C.. (TR94-116)
"Optimal design of parallel-series systems with both open \& short failure modes' (V. Kirilyuk), Dr. V. Kirilyuk • Prosp. Nauki 35/4, fl. 61 • 252028 Kiev•UKRAINE. (TR94-117)
"A reliability approach to transmission-expansion planning using minimal cut theory" (P. Bhattacharjee, et al.), P. K. Bhattacharjee • Electrical Eng'g Dept. - Jadavpur Univ. - Calcutta - 700 032 • INDIA. (TR94-118)
"Reliability-modeling techniques for fault-tolerant systems'" (G. Yang, D. Yu), Guu-Chang Yang - Dept. of Electrical Engineering - National Chung-Hsing University • Taichung - TAIWAN - R.O.C.. (TR94-119)
"Estimating component-defect probability from masked system success/failure" (B. Reiser, B. Flehinger, A. Conn), Dr. Betty J. Flehinger • T.J. Watson Research Ctr • POBox 218 • Yorktown Heights, New York 10598 • USA. (TR94-120)
"A model for accelerated life testing" (O. Tyoskin, et al.), Dr. Oleg I. Tyoskin - c/o Sergej Terskin - 491 Sunburst Ct - Gaithersburg, Maryland 20877 • USA. (TR94-121)
"Contribution to an analytic theory of availability" (M. Nallino), Michel Nallino - 16 rue Louis Garneray • F06300 Nice • FRANCE. (TR94-122)

MANUSCRIPTS RECEIVED MANUSCRIPTS RECEIVED

"Characterization of bivariate mean residual life function" (H. Kulkarni, et al.), H. V. Kulkarni • Dept. of Statistics • Shivaji Univ. - Kolhapur - 416004 - INDIA. (TR94-123)
"Efficient algorithm for calculating minimal-path sets of a system" (N. Ebrahimi, et al.), Dr. Nader B. Ebrahimi - Division of Statistics - Dept. of Mathematical Sciences - Northern Illinois University - DeKalb, Illinois 60115-2888 • USA. (TR94-125)
"An automatic VLSI-tester correlation method" (B. Svrcek), Ben C. Svrcek - Digital Signal Processor Div • Motorola Inc. • 6501 William Cannon Dr; MD OE314 - Austin, Texas 78735-8598 • USA. (TR94-126)
"Accelerated life tests for products of unequal size" (D. Bai, H. Yu), Dr. Do Sun Bai, Professor - Dept. of Industrial Engineering - Korea Adv. Inst. of Science \& Technology • 373-1 Gusung-dong, Yusung-gu • Taejon 305-701 • Rep. of KOREA. (TR94-127)
"Reliability modeling of large circular consecutive-(n-2)-out-of-n:G systems" (W. Schneeweiss), Dr. W. G. Schneeweiss, Professor • FernUniversitaet • Postfach 940 - D-58084 Hagen 1-Fed. Rep. GERMANY. (TR94-128)
"Using 3-stage sampling for inferring fault-coverage probabilities" (C. Constantinescu), Dr. Cristian Constantinescu • Electrical Engineering Dept. CBox 90291 • Duke University • Durham, North Carolina 27708-0291• USA. (TR94-129)
"Developing ASIC testability requirements for high reliability multi-ASIC systems" (W. Willing, A. Helland), Walter E. Willing • 4 Mill Pool Court • Catonsville, Maryland 21228-2450•USA. (TR94-130)

