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We theoretically study infrared (IR)-driven high-order harmonic generation (HHG) assisted by attosecond pulses
with a central energy above the atomic ionization threshold. We provide a clear physical picture for controlling
HHG using the time delay between the attosecond pulses and the IR laser reported by Faria et al. [Phys. Rev. A 74,
053416 (2006)]. This physical picture also indicates that the combined attosecond pulses and IR laser can help
resolve the dynamics of ionized electrons from time-dependent harmonic spectra. We present the quantum effect
on HHG as an example. While leaving parent ions, ionized electrons can still emit harmonics in the semi-
classically forbidden situation. The two-color excitation provides a practical method to observe the quantum effect
experimentally. Furthermore, in our work, attosecond pulses and an IR field are considered with a realistic pulse
shape, which shows a quantitatively important effect in controlling harmonic spectra. Accordingly, a guide to
optimize the control capability for HHG is presented, and a method to determine the IR carrier-envelope phase
based on the pulse-shape effect on the HHG is also proposed. © 2013 Optical Society of America

OCIS codes: (020.2649) Strong field laser physics; (020.4180) Multiphoton processes; (190.2620) Harmonic
generation and mixing; (340.7480) X-rays, soft x-rays, extreme ultraviolet (EUV).
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1. INTRODUCTION
High-order harmonic generation (HHG) is a highly nonlinear
optical process in a medium that can be used to generate
extremely ultraviolet (XUV) light from an infrared (IR) laser.
Generally, high harmonics in intensity decrease quickly at
low orders, then form a plateau over a number of orders,
and finally decay rapidly after a cutoff order. By the XUV
harmonic plateau, an optical pulse with an attosecond dura-
tion can be created [1,2]. An attosecond pulse (attopulse) can
be used to resolve electronic dynamics in atomic scales
[3–9], such as atomic inner-shell dynamics [3], real-time tun-
neling observation [4], and time-resolved Fano resonance
[5,6]. On the other hand, attopulses are also powerful tools
for controlling electronic dynamics in atoms [10–20]. Until
now, they have been applied to perform electron wave
packet interferometry [10,11], attosecond control of atomic
ionization [12–14], and molecular dissociation [15,16]. Inter-
estingly, this extremely short pulse can also be used to
control a new source of HHG [17–21]. This is because the
basic mechanism of HHG from atoms or molecules can be
described in three electronic steps, i.e., ionization, accelera-
tion, and recombination (the three-step model) [22,23]. Thus,
if one of these three steps is controlled, HHG could become a
controllable source.

Schafer et al. [18] were the first to propose using attopulses
to control the quantum path and HHG. To control HHG with
attopulses, the central energy of attopulses to cross the
atomic ionization threshold plays a particular role. If the cen-
tral energy of the attopulses is below the ionization threshold,
the attopulses excite an unperturbed atom to higher bound
states. When an IR laser is injected later, the excited atom
can then be easily ionized, producing a considerable amount

of continuum electrons. Hence, the HHG is dramatically
enhanced [20,24,25] compared with the case without below-
ionization (BI) attopulses. However, the HHG including the
cutoff energy and plateau height is not sensitive to the time
delay between the attopulses and the IR field, which is simply
called the IR delay phase later [26]. Conversely, if the central
energy of the attopulses is above the ionization threshold, the
HHG becomes sensitive to the IR delay phase. Faria et al. [17]
showed that a wide variation of cutoff energy from Ip � 1.8Up

to Ip � 2.5Up can be achieved together with a large change in
plateau height as the IR delay phase changes, where Ip is the
ionization potential andUp is the ponderomotive energy at the
IR frequency. This result was explained by the interference
effect between various quantum orbits of electrons [17],
which can show a coincident cutoff energy as the IR delay
phase varies. However, this interpretation leaves some ques-
tions unanswered. For example, why is the cutoff energy
lower than Ip � 3.17Up predicted by the three-step model?
Does this type of HHG satisfy the three-step model? Why is
the controlled HHG sensitive to the IR delay phase? These
questions arise because the result shows behaviors that sig-
nificantly differ from another kind of controlling the HHG
by two-color (800 nm� 1300 nm) IR fields [27]. In the later
case, the cutoff energy becomes higher than Ip � 3.17Up,
and can be written in a formula that fits the three-step model
with only a modification for the two-color IR fields. This in-
dicates that the cutoff energy [27] is sensitive to the intensity
ratio between the two-color IR fields rather than their IR delay
phase. However, if the second color 1300 nm is replaced with
400 nm, the cutoff energy caused by the two-color excitation
(800 � 400 nm) can recover to depend on the IR delay phase
again [28].

1294 J. Opt. Soc. Am. B / Vol. 30, No. 5 / May 2013 H. C. Lee and T. F. Jiang

0740-3224/13/051294-09$15.00/0 © 2013 Optical Society of America

http://dx.doi.org/10.1364/JOSAB.30.001294


In this paper, we systematically study the IR-driven HHG
with above-ionization (AI) attopulses, and provide an alterna-
tive picture of the control mechanism of HHG. In this picture,
the reduced and controllable cutoff energy can be clearly elu-
cidated based on the timing analysis of HHG [29–31], which
coincides with the three-step model well. Particularly, this pic-
ture also indicates that an AI single attosecond pulse (SAP) is
a good tool for resolving the IR-driven dynamics of ionized
electrons from the time-dependent harmonic spectrum. This
method can reveal a quantum effect on the harmonic emission
that is beyond the semi-classical prediction of the three-step
model. While leaving away from its parent ion, the ionized
electrons can still emit harmonics even when no collision be-
tween electrons and ions occurs. The result agrees with that
by Pérez-Hernández and Plaja [32], who used one driving IR
field. We use the combined attopulses and IR field to provide a
practical method to observe this effect. Furthermore, we con-
sider that the attopulses and IR field have realistic pulse
shapes, and study their effects on HHG. These results are com-
pared with those by Faria et al. [17], who analytically consid-
ered the attopulses and IR field as a Dirac comb and a
continuous wave, respectively. Our results show a good agree-
ment with those by Faria et al. [17] qualitatively. However, the
realistic shapes of attopulses and the IR field have a quanti-
tatively considerable effect on the harmonic spectra. We will
interpret how to optimize control capability using the atto-
pulse’s shape, and illustrate that the IR field has a particularly
strong pulse-shape effect on the harmonic emission. Based on
this strong effect, a possibility of finding the IR delay phase
from the harmonic spectra is also proposed. The remainder
of this paper is organized as follows. Section 2 describes
the theoretical method. Section 3 provides results and a dis-
cussion. Finally, Section 4 offers the conclusion.

2. THEORETICAL METHOD
Unless otherwise specified, atomic units (a.u.) are used in this
paper. In the controlled HHG, the ionization is dominated by
the attopulses, whereas the acceleration is caused by the IR
field. Thus, the atomic transition amplitude can be written as
[17,33]

T�t� � −i

Z
t

−∞
dt1hψCV

k �r; t1�jVXUV�t1�jψg�r; t1�i; (1)

where ψg�r; t1� � φg�r� exp�−iωgt1�, φg�r� is the ground-state
wave functionandωg is the ground-state energyof unperturbed
Hamiltonian Ĥ0 � 1

2 p̂
2 � VM�r�, andVM�r� is the atomicmodel

potential within the single-active-electron approximation
(SAE) [34]. The interaction VXUV�t1� � 1

c
Aatto�t1� · p̂, and

Aatto�t1� is the vector potential of the AI attopulses, which is
equal to −c

R
t1
−∞ Eatto�t0�dt0,

Eatto�t0� �
X
ξ

��−1�ξEs�t0 − ξTh�� exp
�
−2 ln 2

�
t0

τT

�
2
�
; (2a)

Es�t0� � ẑEX sin�ωXt
0� exp

�
−2 ln 2

�
t0

τX

�
2
�
; (2b)

where Th � π∕ωIR, and ωIR is the IR energy at 1.55 eV. Unless
otherwise specified, the attopulse’s width τX is set to 0.3 fs
and the attopulse’s central energy ωX is set to 35 eV, which is

approximately 10 eV higher than Ip (He). We choose helium
as the target atom, and adapt themodel potential from thework
of Tong and Lin [34]. With the index ξ and the parameter τT ,
attopulses can be tuned from SAP to an attosecond pulse train
(APT) [33]. For SAP, ξ is set as −1, and τT is set to infinity,
whereas for APT, ξ sums over −10 to 10, and τT � 5 fs. The
attopulse’s peak electric fieldEX is set so that its peak intensity
is 5 × 1013 W∕cm2. To improve the Volkov wave used by Faria
et al. [17],weuse theCoulomb–Volkov (CV)waveas IR-dressed
continuum states, where the atomic potential is considered
adiabatically. The CV wave is given by

ψCV
k �r; t1� � φk�r� exp

�
−i

Z
t1

−∞
Ek�t0�dt0

�
; (3)

where φk�r� �
P∞

l�0

P
l
ml�−l i

le−i�σl�δl�Rkl�r�Ylml
�Ωr�Y�

lml
�Ωk�,

and k is the electron’s wave vector. Rkl�r� �
��������������
�2∕πk�

p
�ul�r�∕r�.

The equation forul�r�with an asymptotic relation can be found
in [33], and can be solved using the Numerov method. Here σl
and δl are the Coulomb and short-range phase shifts, respec-
tively. Ek�t0� � �k� �1∕c�AIR�t0��2∕2:

AIR�t0� � ẑ
cEIR

ωIR
exp

�
−2 ln 2

�
t0

τIR

�
2
�
cos�ωIRt

0 � ϕd�; (4)

where the IRpulse’swidth τIR is 5 fs. The IRdelayphaseϕd, also
called the carrier-envelope phase, is equal to−ωIRtd, where td is
the time delay between the attopulses and the IR field. The IR
peak electric field EIR is set so that its peak intensity
is 5 × 1014 W∕cm2.

In the work of Faria et al. [17], they used neon as a target
atom and set the intensity of attopulses at 1013 W∕cm2. Here
we make a different choice from theirs to ensure that the ion-
ization is dominated by attopulses in all cases we discuss.
Thus, we select a helium target for its higher ionization poten-
tial (Ip � 24.6 eV) than that of neon (Ip � 21.6 eV) to reduce
the IR ionization, and also raise the attopulse’s intensity to
5 × 1013 W∕cm2, while the IR intensity remains the same as
theirs [17]. Our choice can also be confirmed by the result
of the time-dependent Schrödinger equation (TDSE) [18],
where a helium target was used with an attopulse’s intensity
of 1013 W∕cm2 and IR intensity of 4 × 1014 W∕cm2. Moreover,
because the attopulse’s energy in the TDSE’s work [18] par-
tially covers harmonics below the ionization threshold
(H11–H15), the 2p and 3p states (in the SAE approximation)
can be excited, and these excited bound states also contribute
to HHG after IR excitation. Thus, if the BI harmonics are ne-
glected, the required minimum attopulse’s intensity by the
TDSE is further reduced (<1013 W∕cm2). In our calculation,
the average plateau height of the HHG caused by the IR is
10−9 (a.u.), which is calculated by Eq. (6) except with
VXUV�t1� replaced with V IR�t1�. This value is at least one order
lower than those caused by the attopulses. Thus, to fit all our
cases, the required minimum attopulse’s intensity is
5 × 1012 W∕cm2.

With the transition amplitude in Eq. (1), the atomic wave
function under the excitation of AI attopulses and the IR field
can be constructed by
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Ψ�r; t� � ψg�r; t� �
Z

d3kT�t�ψCV
k �r; t�: (5)

Consequently, the dipole moment for the harmonic emis-
sion can be expressed as

d�t�≡ hΨ�t�jzjΨ�t�i

� −i

Z
t

−∞
dt1

Z
d3khψg�t�jzjφkihφkjVXUV�t1�jψg�t1�i

× exp
�
−i

Z
t

t1

Ek�t0�dt0
�
� c:c:; (6)

where multiple integration is calculated accurately without
using stationary phase approximation [23]. Here, c.c. denotes
the complex conjugate. For brevity, the spatial variable (r) is
no longer shown in the bracket.

HHG’s spectrum is then given by

P�ω� �
����
Z

∞

−∞
d�t� exp�−iωt�dt

����
2
: (7)

HHG’s spectrum as a function of emission time can be
obtained using the wavelet transform [29–31]. The detailed

spectral and temporal structure of HHG’s spectrum, also
called the wavelet spectrum, can be calculated as

PW �t;ω� �
����
Z

∞

−∞
d�t0� ����

ω
p

W �ω�t0 − t��dt0
����
2
; (8)

where W �ω�t0 − t�� is the mother wavelet, and the Morlet
wavelet W�x� � τ−1∕2 exp�ix� exp�−x2∕2τ2� is used with
τ � 15 [31].

3. RESULTS AND DISCUSSION
A. Control of Cutoff Energy
In the following, the time interval [,] is always in units of the
optical cycle (o.c.) of the IR field, and is no longer written for
brevity. Figure 1(a) schematically shows the vector potentials
of the SAP and IR field for the case of ϕd � 0.5π, where the
SAP is triggered at the zero of the IR vector potential. We plot
the vector potential in this diagram instead of the electric field
because the final momentum pf of the ionized electrons is
closely related to the IR vector potential according to the
streaking effect pf � pi − AIR�t�∕c with pi being the initial mo-
mentum. This is helpful for below physical interpretation.

At t � −0.5 o:c:, the SAP creates an ionized electron,
which is then driven by the IR field. In the half-cycle
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Fig. 1. Schematic diagram for the SAP and IR vector potentials for (a) ϕd � 0.5π and (b) ϕd � 0. Timing HHG’s dipole moment for (c) ϕd � 0.5π
and (d) ϕd � 0. HHG’s wavelet spectrum for (e) ϕd � 0.5π and (f) ϕd � 0. The horizontal axis denotes the emission time in units of the IR o.c. The
peak intensities of the SAP and the IR field are 5 × 1013 W∕cm2 and 5 × 1014 W∕cm2, respectively, where τX � 0.3 fs, ωX � 35 eV, and ωIR � 1.55 eV.
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�−0.5; 0�, the IR vector potential is always positive, thus driv-
ing the electron away from its parent ion. The IR vector po-
tential becomes negative as time crosses the point of t � 0,
and the electron is driven reversely and returns to collide
with its parent ion. Hence, a strongly chirped dipole mo-
ment occurs in the next half-cycle [0, 0.5], as Fig. 1(c)
shows. Specifically, high-order harmonics are generated,
and Fig. 1(e) shows the detailed temporal and spectral dia-
gram. We can see that the cutoff harmonic order increases
as time departs from t � 0 and reaches a maximum at
t � 0.25 o:c:, which corresponds to the peak of the IR vector
potential. The cutoff harmonic order then decreases until
t � 0.5 o:c:, corresponding to a zero IR vector potential ex-
actly. The close match between the cutoff harmonic order
and the IR vector potential indicates that the IR vector po-
tential is indeed a good quantity to analyze the time-
dependent harmonic spectrum. The reverse is also true,
and perhaps more important in applications. In other words,
under the SAP� IR excitation, the time-dependent harmonic
spectrum can be used to identify the IR vector potential be-
cause of their timing match. With the time-dependent IR
vector potential, the dynamics of ionized electrons can be
acquired through the streaking effect. Accordingly, we
can deduce that the ionized electron for ϕd � 0.5π takes an
average of 0.75 o.c. to perform acceleration because the ion-
ized electron is born at t � −0.5 o:c: and becomes fastest
at t � 0.25 o:c:

The acceleration time of ionized electrons varies as the
IR delay phase changes. For ϕd � 0, the SAP remains at
t � −0.5 o:c:, but becomes triggered at the peak of the IR vec-
tor potential, as Fig. 1(b) shows. After the SAP, an ionized
electron is created and driven by the IR field; however, only
0.25 o.c. later does the IR vector potential change direction,
and this is in contrast with ϕd � 0.5π (with 0.5 o.c.). The ion-
ized electron then makes a strongly chirped dipole moment in
the interval �−0.25; 0.25�, as Fig. 1(d) shows, and the emission
of the maximum cutoff harmonics occurs at t � 0, as Fig. 1(f)
shows. In other words, the ionized electron takes only an aver-
age of 0.5 o.c. to accelerate, which is 0.25 o.c. shorter than
ϕd � 0.5π. Hence, a shorter electronic acceleration time pro-
duces a lower cutoff energy for ϕd � 0 than for ϕd � 0.5π,
which is in agreement with the prediction by Faria et al. [17].

Before the following topics, note that our work uses the CV
wave to improve the Volkov wave, but the CV wave is still an
approximation that adiabatically includes the Coulomb inter-
action in the IR-dressed continuum state. In fact, no exact ana-
lytic solution for the IR-dressed continuum state exists. This
adiabatic approximation fails to consider the Coulomb-laser
(CL) coupling effect, thus making corresponding results still
qualitative. To improve the adiabatic approximation, the
Eikonal–Volkov (EV) wave [35–37] can be considered when
the Coulomb interaction is not strong. The EV wave is derived
within the Eikonal approximation, which is closely related to
the Wentzel–Kramers–Brillouin (WKB) method. By expanding
the wave function into different orders of ℏ, the Coulomb in-
teraction can be treated perturbatively, and then its correction
is taken into the phase part of IR-dressed continuum states
to include the CL coupling effect, which currently shows
a particular role in the accuracy of the attosecond streak
camera for time-resolved photoionization measurement
[38,39].

B. Quantum Effect on HHG
In the previous results, we also find an unusual harmonic
emission in the wavelet spectra. Based on the three-step
model, the ionized electron born at a zero IR vector potential
requires at least 0.5 o.c. to emit harmonics because of the
round-trip process. However, Fig. 1(e) shows that harmonic
emission can still occur in the semi-classically forbidden inter-
val �−0.5; 0�, where the electron runs away from its parent ion.
Similarly, the ionized electron born at the peak of the IR vec-
tor potential requires at least 0.25 o.c. semi-classically, but
Fig. 1(f) also shows harmonic emissions in the interval
�−0.5; − 0.25�. The unusual emission is due to the quantum ef-
fect on HHG. Because of the wave behavior of electrons, the
spreading electronic wave packet can overlap its parent ion at
any time. Thus, even if the electron leaves its parent ion, a
nonzero overlapping integral between the continuum and
the ground states [Eq. (6)] still makes recombination possible.
This result is in agreement with those by Pérez-Hernández and
Plaja [32]. The XUV� IR excitation can successfully be used
to explore the quantum effect because of the extremely short
width of SAP, which makes the ionization process accom-
plished within a very small fraction of the IR cycle. Thus, sub-
sequent IR-driven acceleration of ionized electrons can take
place without the ionization process. This is unlike the one-
color excitation [32], which mixes the acceleration with the
ionization process. The advantage here is that the wavelet
spectrum is only determined by IR-driven acceleration.
Hence, the recombination of ionized electrons with their pa-
rent ions in the semi-classically forbidden situation can be
time resolved by the wavelet spectrum theoretically or by
the time-dependent harmonic spectrum experimentally.

C. Attopulse Shape Effect on HHG
To study the control mechanism of HHG in detail, Fig. 2(b)
shows the SAP� IR harmonic spectra with the same condi-
tions as those in Fig. 1. The red-solid and black-dashed lines
in this figure denote the results of ϕd � 0.5π and ϕd � 0, re-
spectively. The spectrum of ϕd � 0.5π has a broader cutoff
energy than the spectrum of ϕd � 0, but with a lower plateau
height. This dependence is in good qualitative agreement with
the results by Faria et al. [17]. However, on a quantitative side,
a relatively significant difference exists between our results
and theirs. For example, our cutoff energy shows a weak
variation from Ip � 2.60Up to Ip � 2.86Up as the IR delay
phase changes. This is unlike the strong variation from Ip �
1.8Up to Ip � 2.5Up in their results [17]. In addition, our cutoff
energy for each IR delay phase is larger than their correspond-
ing cutoff energy. Both discrepancies are due to the realistic
shape effect of attopulses, which was neglected in their work
[17]. To illustrate this effect, Fig. 2(a) shows the harmonic
spectra with the SAP’s width at a current experimental limit
of 80 as [40], where the cutoff energy of ϕd � 0 greatly shrinks
to Ip � 2.24Up, whereas that of ϕd � 0.5π remains unchanged.
In other words, the cutoff energy recovers to strongly depend
on the IR delay phase. In contrast, if we enlarge the SAP’s
width to 600 as, the cutoff energy of ϕd � 0, as shown in
Fig. 2(c), approaches to that of ϕd � 0.5π, which is unable
to control the cutoff energy.

The effect of the SAP’s width can be explained using
Fig. 1(b). Ideally, if the SAP has a Dirac-delta shape, the
ionized electron born at t � −0.5 o:c: has exactly 0.5 o.c. to
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accelerate before arriving at the fastest velocity at t � 0, as
discussed before. However, because the SAP has a finite
width, some ionized electrons are born before t � −0.5 o:c:,
and thus they have a longer acceleration time than ionized
electrons born at exactly t � −0.5 o:c:, which then makes
the cutoff energy increase. If the SAP’s width increases to
600 as, the SAP shown in the inset of Fig. 2(c) even spreads
over t � −0.75 o:c:; in other words, the ionized electron can
have 0.75 o.c. to accelerate, and thus its cutoff energy ap-
proaches that of ϕd � 0.5π. If the SAP’s width is further en-
larged to 1300 as, both the cutoff energy and the plateau
height become almost indistinguishable between the two IR
delay phases, as Fig. 2(d) shows. Otherwise, the cutoff energy
for ϕd � 0.5π is insensitive to the SAP’s width because the ion-
ized electron born at t � −0.5 o:c: already has a maximum ac-
celeration time (0.75 o.c.). If ionized electrons are born earlier
than t � −0.5 o:c: because of a finite SAP’s width [Fig. 1(a)],
they run away from their parent ion until t � −0.5 o:c: and re-
turn to emit maximum cutoff harmonics at t � −0.25 o:c: Thus,
their acceleration times are shorter than those born at exactly
t � −0.5 o:c: Conversely, if ionized electrons are born later
than t � −0.5 o:c:, they emit maximum cutoff harmonics at t �
−0.25 o:c: and also have a shorter acceleration time than those
born at exactly t � −0.5 o:c: Consequently, the cutoff energy
for ϕd � 0.5π remains unchanged when the SAP has a
finite width.

D. Control of Plateau Height
This section presents an analysis of plateau height control.
The plateau height generally can exhibit a nearly one-order
variation as the IR phase changes [Figs. 2(b) and 2(c)],
except for an extremely short SAP’s width [Fig. 2(a)]. Interest-
ingly, the variation of the plateau height can be enhanced by

increasing the central energy of the SAP. Figure 3(b) shows
the harmonic spectrum with the same conditions as those
in Fig. 2(b) except that ωX increases to 50 eV. The variation
of the plateau height is clearly enhanced compared with that
in Fig. 2(b). This enhancement can also apply to the extremely
short SAP’s width shown in Fig. 3(a), with ωX at 50 eV.
The enhancement can be interpreted as follows. As the central
energy of the SAP increases, the transition amplitude
hφkjVXUV�t1�jψg�t1�i in Eq. (6) decreases, and thus lowers
the plateau height, which is valid for all IR delay phases. How-
ever, for ϕd � 0, the decreased transition amplitude can be
compensated for by the IR streaking effect. The streaking ef-
fect is strong at the given IR phase because of the ionized elec-
tron born at peaks of the IR vector potential. This effect gives
the ionized electron an initial momentum from the IR field to
move toward a higher energy distribution, and therefore
raises the plateau height after recombination. As a result,
the variation of the plateau height between the two IR phases
is enhanced as the central energy of the SAP increases. This
idea is also supported by the streaking effect, making the pla-
teau height at ϕd � 0 smoother than that at ϕd � 0.5π, which
is particularly evident in Fig. 2(b) and Figs. 4(c) and 4(d).

In the previous work [17], Faria et al. considered an atom
to be excited by the APT. To see the APT’s effect, Figs. 3(c)
and 3(d) show the APT� IR harmonic spectra, in which the
other conditions are the same as those in Figs. 3(a) and 3(b),
respectively. With the APT, the harmonic order becomes se-
lective in the spectrum (i.e., the odd order enhances, whereas
the even order weakens in general). This is because of the in-
terference effect among ionized electrons born by distinct
bursts of the APT, leading to a multipeak structure. However,
this interference effect does not change the magnitude of the
cutoff energy and the dependence of the plateau height on the
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Fig. 2. Attopulse shape effect on the SAP� IR harmonic spectra at distinct attopulse widths (a) τX � 80 as, (b) τX � 300 as, (c) τX � 600 as, and
(d) τX � 1300 as, where ωX � 35 eV. Red-solid and black-dashed lines denote the results of ϕd � 0.5π and ϕd � 0, respectively. Insets of (c) and
(d) show the schematic diagram for the SAP and IR vector potentials at τX � 600 as and τX � 1300 as, respectively, where the horizontal axis is in
units of the IR o.c.
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IR delay phase. The spectrum of ϕd � 0.5π still has a broader
cutoff energy but a lower plateau height than that of ϕd � 0.
Thus, the control mechanism of the HHG discussed earlier
also holds for the APT’s case.

E. IR Pulse-Shape Effect on HHG
Unlike the attopulse shape, the IR pulse shape has a positive
effect on the control of the cutoff energy. The IR shape effect
is considered by changing the SAP’s trigger time, whereas the
IR field remains unchanged, as shown in Fig. 4(a). The red-
solid, green-dashed, and blue-dash-dotted lines in this figure
denote the SAP triggered at t � −0.5 o:c: �ξ � −1�, 0 �ξ � 0�,
and 0.5 o.c. �ξ � 1�, respectively, and τX � 300 as and
ϕd � 0.5π. Because they are born at different times, the ion-
ized electrons experience distinct sections of the IR pulse,
consequently enabling an examination of the IR pulse-shape
effect. Figure 4(c) shows the corresponding harmonic spec-
tra. The cutoff energy varies significantly when the SAP’s trig-
ger time changes. The dramatic effect can have a clear
interpretation. Based on a previous discussion [Figs. 1(a)
and 1(e)], the ionized electrons born at a zero IR vector po-
tential require 0.75 o.c. to emit maximum cutoff harmonics.
Thus, the maximum cutoff energy for each SAP’s trigger time
ti is related to jAIR�ti � 0.75�j2, where ti is in o.c. units.
Namely, the cutoff energies for the SAP triggered at
ti � −0.5 o:c:, 0, and 0.5 o.c. are determined by jAIR�0.25�j2,
jAIR�0.75�j2, and jAIR�1.25�j2, respectively. Because of its
Gaussian shape, AIR�t� rapidly decays for t > 0, and has a con-
siderable effect on the cutoff energy. Similarly, ionized elec-
trons born at peaks of the IR vector potential (ϕd � 0), as
shown in Fig. 4(b), require 0.5 o.c. to emit maximum cutoff
harmonics. Thus, the maximum cutoff energy is related to
jAIR�ti � 0.5�j2. The corresponding harmonic spectra shown
in Fig. 4(d) also illustrate a dramatic change in the cutoff

energy. Thus, the IR shape effect is really an efficient way
to control the cutoff energy.

F. IR Carrier-Envelope Phase from HHG
The strong IR pulse-shape effect can also have a reverse ap-
plication. With the harmonic spectrum, the IR pulse’s informa-
tion, including its phase, can be acquired from the dramatic
change in the cutoff energy with the SAP’s trigger time. Par-
ticularly, measuring the IR delay phase (i.e., carrier-envelope
phase) is an important issue for frequency combs consisting of
discrete and equally spaced components with absolute
frequencies [41,42], which constitute a basis for high-precision
metrology and receive considerable attention [43,44]. The IR
phase is generally not constant from pulse to pulse because
the group and phase velocities differ inside the laser cavity.
The IR phase is locked unless a feedback electronic module
is equipped [41,42], which requires the IR phase as a consecu-
tive input. The IR phase is often measured using the so-called
f-to-2f heterodyne technique [41,42]. This measurement can
also be performed by anisotropic photoelectron spectra
excited by either a linearly [45] or a circularly [46]
polarized few-cycle IR field. With the help of attopulses, direct
measurement of the IR field using the streaking effect is also
possible [47], which consequently enables us to acquire the IR
phase. However, to date, measuring the IR phase from the
harmonic spectrum has not been proposed.

To interpret this idea, Fig. 5(a) shows the harmonic spectra
as a function of the SAP’s trigger time, where τX � 80 as and
ϕd � 0.5π. First, the harmonic spectra vary clearly with the
SAP’s trigger time, and the harmonic peaks and valleys are
distinguishable. Next, harmonic peaks occur at approximately
0.5n o:c: with n being an integer, whereas harmonic valleys
appear at approximately �0.5n� 0.25� o:c: Suppose an experi-
ment shows a result like this; one can deduce that the zero IR
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vector potential is at 0.5no:c: because the ionized electrons
born here result in harmonic peaks. Thus, the IR phase should
be �0.5π with a cosine carrier wave. The choice of the �sign
of the IR phase can be determined by comparing calculated
results to judge between the two cases. In contrast, if the
IR phase becomes zero, as shown in Fig. 5(b), harmonic peaks
occur at approximately �0.5n� 0.25� o:c:, whereas harmonic
valleys appear at approximately 0.5n o:c: Suppose an experi-
ment shows a result like this; one can deduce that the peaks of
the IR vector potential are at 0.5no:c: because the ionized
electrons born here result in harmonic valleys. Thus, the IR
phase should be zero or π with a cosine carrier wave. Simi-
larly, the two choices can be determined with the help of cal-
culations. For the IR phase between 0 and 0.5π, the method is
still applicable by using the trigger time of harmonic peaks or
valleys to deduce the profile of the IR vector potential. In a
series of calculations, the estimated accuracy of the IR phase
is approximately ϕd � 0.1π. Although the accuracy may not be
precise compared to that done by photoelectrons [45,48], it
provides an alternative way to examine the IR phase and cre-
ates a new application to the HHG. Third, we use the SAP with
τX � 80 as here to achieve a better time resolution, but the
method is not limited to the critical condition. Even if the
SAP’s width is enlarged to 300 as, the harmonic peaks and
valleys are still distinguishable enough to determine the
IR phase.

4. CONCLUSION
In conclusion, we theoretically study IR-driven HHG with AI
attopulses, and introduce new applications based on this ex-
citation. The conclusion is threefold. First, the control mecha-
nism of the SAP� IR HHG is clearly elucidated using timing
analysis. The ionized electrons born at a zero IR vector

0 20 40 60 80
10-15

10-13

10-11

10-9

10-7

10-5

10-3

φ
d
=0

 SAP (ξ=-1)
 SAP (ξ=0)
 SAP (ξ=1)

H
H

G
 y

ie
ld

Harmonic order
0 20 40 60 80

10-14

10-12

10-10

10-8

10-6

10-4 φ
d
=0.5π 

 SAP (ξ=-1)
 SAP (ξ=0)
 SAP (ξ=1)

Harmonic order

H
H

G
 y

ie
ld

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-0.04

-0.02

0.00

0.02

0.04 ξ=1

ξ=0

ξ=-1  φ
d
=0

V
ec

to
r 

po
te

nt
ia

l (
ar

bi
tr

ar
y 

un
it)

Time (o.c.)
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-0.04

-0.02

0.00

0.02

0.04
ξ=1

ξ=0

ξ=-1 

V
ec

to
r 

po
te

nt
ia

l (
ar

bi
tr

ar
y 

un
it)

Time (o.c.)

 φ
d
=0.5π

(d)(c)

(b) (a) 
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and the horizontal axis is in units of the IR o.c.
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potential have the longest acceleration time, and thus result in
the highest cutoff energy. In contrast, ionized electrons born
at peaks of the IR vector potential have the shortest acceler-
ation time, and result in the lowest cutoff energy. However,
these ionized electrons can gain an initial momentum from
the IR field to move toward a high energy distribution because
of the streaking effect. This increases the plateau height for
ionized electrons born at peaks of the IR vector potential com-
pared to those born at a zero IR vector potential. This effect
becomes stronger as the central energy of the attopulse
increases, and thus enhances the controlling capability of
the plateau height. Second, in the two-color excitation the
acceleration and ionization processes are exactly decoupled
because of the extremely short width of the SAP. This makes it
possible to resolve the IR-driven dynamics of ionized
electrons from time-dependent harmonic spectra. Thus, this
approach can illustrate the quantum effect on the HHG.
The SAP� IR excitation provides a practical way to observe
the harmonic emission for an ionized electron leaving its pa-
rent ion, which is in the semi-classically forbidden situation.
Third, the realistic pulse shape of the SAP and IR field is quan-
titatively important in controlling HHG. A finite SAP’s width
shall weaken the controlling capability of the cutoff energy,
and thus the SAP’s width should be minimized in this HHG
application. In contrast, the IR pulse shape has a positive
strong effect on controlling the cutoff energy. Based on this
effect, the IR carrier-envelope phase could be experimentally
determined by the SAP� IR harmonic spectra with the assis-
tance of some calibration calculations.
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