
Knowledge-Based Systems 44 (2013) 78–89
Contents lists available at SciVerse ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys
Differential evolution with local information for neuro-fuzzy systems optimisation

Ming-Feng Han ⇑, Chin-Teng Lin, Jyh-Yeong Chang
Institute of Electrical Control Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan, ROC
a r t i c l e i n f o

Article history:
Received 3 October 2012
Received in revised form 21 December 2012
Accepted 23 January 2013
Available online 4 February 2013

Keywords:
Neuro-fuzzy systems (NFSs)
Differential evolution (DE)
Neuro-fuzzy systems optimisation
Evolutionary algorithm (EA)
Optimisation
0950-7051/$ - see front matter Crown Copyright � 2
http://dx.doi.org/10.1016/j.knosys.2013.01.023

⇑ Corresponding author. Tel.: +886 3 5712121.
E-mail addresses: ming0901@gmail.com (M.-F. H

(C.-T. Lin), jychang@mail.nctu.edu.tw (J.-Y. Chang).
a b s t r a c t

This paper proposes a differential evolution with local information (DELI) algorithm for Takagi–Sugeno–
Kang-type (TSK-type) neuro-fuzzy systems (NFSs) optimisation. The DELI algorithm uses a modified
mutation operation that considers a neighbourhood relationship for each individual to maintain the
diversity of the population and to increase the search capability. This paper also proposes an adaptive
fuzzy c-means method for determining the number of rules and for identifying suitable initial parameters
for the rules. Initially, there are no rules in the NFS model; the rules are automatically generated by the
fuzzy measure and the fuzzy c-means method. Until the firing strengths of all of the training patterns sat-
isfy a pre-specified threshold, the process of rule generation is terminated. Subsequently, the DELI algo-
rithm optimises all of the free parameters for NFSs design. To enhance the performance of the DELI
algorithm, an adaptive parameter tuning based on the 1/5th rule is used for the tuning scale factor F.
The 1/5th rule dynamically adjusts the tuning scale factor in each period to enhance the search capability
of the DELI algorithm. Finally, the proposed NFS with DELI model (NFS-DELI) is applied to nonlinear con-
trol and prediction problems. The results of this paper demonstrate the effectiveness of the proposed
NFS-DELI model.

Crown Copyright � 2013 Published by Elsevier B.V. All rights reserved.
1. Introduction

The popular research topic of neuro-fuzzy systems (NFSs) has
been successfully applied to many areas [1–10]. Such systems
bring both low-level learning and computational power of neural
networks into fuzzy systems and the high-level, human-like think-
ing and reasoning of fuzzy systems to neural networks. To train the
parameters for designing an NFS, many papers had employed the
backpropagation (BP) algorithm [1,8–10]. The BP algorithm is a
powerful training technique that quickly minimises the error func-
tion of the NFS. However, the BP algorithm may become trapped at
a local optimal solution and never find the global optimal solution.
To overcome this disadvantage, many researchers have proposed
NFS design that uses evolutionary algorithms (EA) [11–23].

The genetic algorithm (GA) is one of the most well-known EAs.
Many researchers have developed GAs to implement fuzzy systems
and neuro-fuzzy systems to automate the determination of param-
eters and structures [14–22].The genetic fuzzy system [8–17] was
characterised using a fuzzy system as an individual in a genetic
operator. Russo [18] applied a GA to the design of fuzzy controller
membership functions, in which each fuzzy rule was treated as an
individual. Ng and Li [19] applied chromosomes in a GA to opti-
013 Published by Elsevier B.V. All

an), ctlin@mail.nctu.edu.tw
mise the sophisticated membership functions for a nonlinear
water-level control system. Seng [20] proposed a neuro-fuzzy net-
work that was based on the radial basis function neural network in
which all of the parameters are tuned simultaneously using a GA.
Juang [22] successfully applied a GA to TSK-type recurrent neu-
ro-fuzzy system design for control problems.

Another category of EAs for NFSs design called particle swarm
optimisation (PSO) appears to provide efficient and powerful
search capability in the search space; this evolutionary computa-
tion technique was developed by Kennedy and Eberhart in 1995
[42]. The underlying motivation for the development of the PSO
algorithm is the social behaviour of animals, such as bird flocking,
fish schooling and swarming. The PSO algorithm has been success-
fully applied to many optimisation problems, such as NFSs design
[23–26] for control problems, and has shown improved perfor-
mance over GAs.

Hybrid EAs have been investigated in many studies [27–30].
Such hybrids are frequently combinations of local searches and
EA s, also known memetic algorithms [29,30]. A hybrid of a cultural
method and a cooperative PSO (CPSO) was applied in the design of
a functional link-based neural fuzzy network (FLNFN) [27]; this
method was referred to as the FLNFN–CCPSO algorithm. In the
FLNFN–CCPSO algorithm, a swarm optimises only one parameter
of an FLNFN. Another hybrid EA was the combination of a GA
and a PSO, which is called the HGAPSO algorithm [28]. In the HGA-
PSO algorithm, new individuals are created by a combination of a
PSO and the crossover and mutation operations of a GA.
rights reserved.

http://dx.doi.org/10.1016/j.knosys.2013.01.023
mailto:ming0901@gmail.com
mailto:ctlin@mail.nctu.edu.tw
mailto:jychang@mail.nctu.edu.tw
http://dx.doi.org/10.1016/j.knosys.2013.01.023
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

R1 R2 Rr

 X1 X2 Xn

y

...

...

...

...

Layer 4

Layer 3

Layer 2

Layer 1

Fig. 1. The architecture of the NFS.

M.-F. Han et al. / Knowledge-Based Systems 44 (2013) 78–89 79
Moreover, the differential evolution (DE) algorithm, proposed
by Storn and Price [31,32], which is an efficient global optimiser
in the continuous search domain. The DE algorithm employs the
difference of two randomly selected individuals as the source of
random variations for third individual and applies to difficult opti-
misation problems [31–39,52–54]. Comparison with GA, the DE
algorithm is faster and easier EA. Further research [40] has pro-
posed a modified DE (MODE) algorithm for an adaptive neural fuz-
zy network (ANFN-MODE) design. This MODE algorithm provides a
cluster-based mutation scheme for preventing the algorithm from
becoming trapped in the local optima of the search space. In addi-
tion, the MODE algorithm has been applied to locally recurrent
NFSs design [41]. However, the MODE algorithm lacks a self-
adaptive parameter tuning strategy for obtaining more reliable
convergence performance [34,39].

This paper proposes a DELI algorithm for designing a TSK-type
NFS. Initially, there are no rules in the NFS model; the fuzzy rules
are automatically generated by an adaptive fuzzy c-means method.
Subsequently, all free parameters are learned by the proposed DELI
algorithm. In the DELI algorithm, a self-adaptive parameter tuning
strategy based on the 1/5th rule is used to adjust the tuning scale
factor F effectively. In the simulation, the proposed NFS with DELI
model (NFS-DELI) is applied to nonlinear control and prediction
problems. The contributions of this paper are summarized as
follows:

(1) An adaptive fuzzy c-means method is proposed to determine
the number of rules for the NFS and identify suitable initial
parameters for an individual in the DELI algorithm.

(2) The proposed DELI algorithm adopts a modified mutation
operation in evaluating the global best individual, the local
best individual, and randomly chosen individuals for main-
taining the diversity of population and increasing the search
capability.

(3) We also propose a self-adaptive parameter tuning strategy
based on the 1/5th rule to effectively adjust the tuning scale
factor F in the DELI algorithm and balance the exploitation
ability and the exploration ability.

(4) Three simulations are conducted to evaluate the perfor-
mance of the NFS-DELI algorithm. Comparisons with other
EAs demonstrate the superiority of the performance of the
NFS-DELI model.

(5) In the simulation, we use non-parametric Wilcoxon signed-
rank test to verify the statistical significance. Results indi-
cate that the DELI algorithm and the other algorithms show
a statistically significant difference.

This paper is organised as follows: Section 2 describes the basic
operation of the NFS and DE. Section 3 introduces the rule genera-
tion and parameter optimisation algorithms used with the DELI
algorithm. Section 4 presents the NFS-DELI design and compares
its performance with other EAs. Finally, Section 5 draws
conclusions.

2. Neuro-fuzzy systems and DE algorithm

This section describes the architecture of the TSK-type NFSs to
be designed in this paper. The basic evolution process of the DE
algorithm, including mutation operation, crossover operation and
selection operation, is also described in this section.

2.1. Neuro-fuzzy systems

The NFSs realises a first-order TSK-type fuzzy IF–THEN rule, i.e.,
the ith rule, (Rule i), which is instantiated as:
Rulej : IF x1 is A1j and x2 is A2j and . . . xn is Anj

THEN yj ¼ w0j þw1jx1 þ . . .þwnjxn;
ð1Þ

where x1, . . . , xn are the input variables, yi is the system output
variable, A1i, . . . , Ani are the linguistic terms of the pre-condition
part with a Gaussian membership function, n is the number of input
variables, and w0j, . . . , wnj are the TSK weights.

The architecture of four-layered NFS is shown in Fig. 1, which is
comprised of the input, membership function, rule, and output lay-
ers. The operation functions of the nodes in each layer of the NFS
are described as follows, where O(l) denotes the output of a node
in the lth layer:

2.1.1. Layer 1—input layer
No computation is performed in this layer. Each node in this

layer corresponds to one input variable and only transmits input
values directly to the next layer. That is,

Oð1Þ ¼ xi; ð2Þ

where i = 1, 2, . . . , n are the input variables of the NFS.

2.1.2. Layer 2—membership function layer
Each node in this layer is a membership function that corre-

sponds to the linguistic label of one of the input variables in layer
1. In other words, the membership value specifies the degree to
which an input value belongs to a fuzzy set and is calculated in
layer 2 according to the expression:

Oð2Þ ¼ lij ¼ exp �ðxi �mijÞ2=r2
ij

� �
; ð3Þ

where j = 1, 2, . . . , M, M is the number of rules in the NFS, and
mij and rij are the centre (mean) and the width (variance) of the
Gaussian membership function of the input variable, respectively.

2.1.3. Layer 3—Rule layer
This layer receives one-dimensional membership degrees of the

associated rule from a set of nodes in layer 2. Here, the product
operator is adopted to perform the precondition part of the fuzzy
rules. As a result, the output function of each inference node is

80 M.-F. Han et al. / Knowledge-Based Systems 44 (2013) 78–89
Oð3Þ ¼ Rj ¼
Yn

i¼1

lij: ð4Þ

The output of a layer 3 node represents the firing strength of the
corresponding fuzzy rule.

2.1.4. Layer4—output layer
Each node in this layer corresponds to one output variable. The

node integrates all of the actions recommended by layer 3 and the
consequent part and acts as a defuzzifier with

Oð4Þ ¼ y ¼
PM

j¼1Rj
Pl

i¼1wijxi þw0j

� �
PM

j¼1Rj

: ð5Þ

In this paper, the consequent part uses a TSK-type rule, which is
a linear combination of the TSK parameters wij and the input
variables.

2.2. DE algorithm

Initially, a population of NP D-dimensional parameter vectors,
which represent the candidate solutions (individuals), is generated
by a uniformly random process. A simple representation of the
ith individual at the current generation, gen, is shown as Zi,gen =
(zi,1,gen, zi,2,gen, zi,3,gen, . . . , zi,D�1,gen, zi,D,gen). After the first NP individ-
uals are produced, the fitness evaluation process measures the
quality of the individuals to calculate the individual performance.
The succeeding steps, including mutation operation, crossover
operation and selection operation, are described in the following
paragraphs.

In the mutation operation, each individual in the current gener-
ation is allowed to breed through mating with other randomly se-
lected individuals from the population. The process randomly
selects a parent pool of three individuals to produce an offspring.
For each individual Zi,gen, i = 1, 2, . . . , NP, where gen denotes the
current generation and NP is population size, three other random
individuals, Zr1,gen, Zr2,gen and Zr3,gen are selected from the popula-
tion such that r1, r2 and r3 2 f1;2; . . . ;NPg and i – r1 – r2 – r3.
In this way, a parent pool of four individuals is formed to produce
an offspring. The different mutation strategies are frequently used
as follows:

DE=rand=1 : Vi;gen ¼ Zr1;gen þ FðZr2;gen � Zr3;genÞ ð6Þ

DE=best=1 : Vi;gen ¼ Zgbest;gen þ FðZr1;gen � Zr2;genÞ ð7Þ

DE=target� to� best : Vi;gen ¼ Zr1;gen þ FðZgbest;gen � Zr1;genÞ
þ FðZr2;gen � Zr3;genÞ ð8Þ

where F is the scaling factor e[0, 1] and Zgbest,gen is the best-so-far
individual (i.e., Zgbest,gen stores the best fitness value in the popula-
tion up to the current time).

After the mutation operation, the DE algorithm uses a crossover
operation, often referred to as discrete recombination, in which the
mutated individual Vi,gen is mated with Zi,gen and generates the off-
spring Ui,gen. The elements of an individual Ui,gen are inherited from
Zi,gen and Vi,gen, which are determined by the parameter crossover
probability (CR 2 [0, 1]), as follows:

Ud;i;gen ¼
Vd;i;gen; if randðdÞ 6 CR
Zd;i;gen; if randðdÞ > CR

�
ð9Þ

where d = 1, 2, . . . , D denotes the dth element of individual vectors,
D is total number of elements of the individual vector and
rand(d) 2 [0, 1] is the dth evaluation of a random number generator.

In the selection operation, the DE algorithm applies the selec-
tion operation to determine whether the individual survives to
the next generation. A knockout competition occurs between each
individual Zi,gen and its offspring Ui,gen, and the winner, selected
deterministically based on objective function values, is then pro-
moted to the next generation. The selection operation is described
as follows:

Zi;genþ1 ¼
Zi;gen; if fitnessðZi;genÞ < fitnessðU i;genÞ
U i;gen;otherwise

�
ð10Þ

where f(Z) is the fitness value of individual z. After the selection
operation, the population gets better or retains the same fitness va-
lue, but never deteriorates. All steps are repeated until the evolution
process reaches the terminal condition.

3. NFS-deli design

This section describes the structure learning and parameter
learning for the design of NFSs. An AFCM method for structure
learning determines the number of rules automatically. Follow-
ing rule generation, all of the free parameters in the NFSs are
learned by the DELI algorithm for parameter learning. Finally, a
self-adaptive parameter tuning strategy adjusts the tuning factor
F for the DELI algorithm during parameter learning.

3.1. Rule generation using the adaptive fuzzy c-means algorithm

The first step is to determine the number of clusters in the
universal of discourse of each input variable. One cluster in the
input space corresponds to one potential fuzzy logic rule accord-
ing to the mean (mij) and width (rij) of that cluster. Many previ-
ous studies have employed a clustering technique, such as fuzzy
c-means [43], possibilistic C-means [44], and linear vector quanti-
sation [45] for rule generation. However, these clustering tech-
niques require prior knowledge, such as the number of clusters
present in a pattern set. To solve this problem, an AFCM algo-
rithm was proposed for rule generation. This algorithm used the
rule firing strength as a criterion for determining whether to
add a new rule. Based on this concept, previous studies
[6,12,12–14,41] have used the same idea to generate a new fuzzy
rule by assigning preliminary or random values to the centre and
width of Gaussian fuzzy set. However, this assignment strategy
likely has no benefit for optimal solution search. Therefore, the
AFCM algorithm employed the FCM methods and statistical the-
ory to locate effective starting values for the centre and the width
of the fuzzy sets. A detailed flowchart of rule generation based on
the AFCM algorithm is shown in Fig. 2. The NFS-DELI algorithm
initially has no rules. This algorithm performs FCM with one clus-
ter to obtain the first fuzzy rule. The centre and width of this
Gaussian fuzzy set Aij was assigned as:

mi1 ¼
XN

k¼1

xiðkÞ
N

; for i ¼ 1; . . . ;n ð11Þ

ri1 ¼
XN

k¼1

ðxiðkÞ �mi1Þ2

N
; for i ¼ 1; . . . ;n ð12Þ

Next, the criterion for rule generation is defined by

I ¼min
i

maxjRijðx
*

iÞ; 1 < i < N; 1 < j < M ð13Þ

where Rij is the firing strength of the jth fuzzy rule with an ith
dimensional input, N is the total of input patterns, and M is the total
of fuzzy rules. If I 6 Rth, where Rth e [0, 1] is a pre-specified thresh-
old, then the FCM method with M + 1 clusters is performed to gen-
erate a new fuzzy rule. The centre and width of Gaussian fuzzy sets
are defined as follows:

Fig. 2. A flow chart representing the AFCM method for rule generation.

Initialize Population

Calculate Fitness Values

Calculate local best and
global best for each

individual

Mutation Opertation

Crossover Opertation

Selection Opertation

Meeting
Termination
Criterion ?

Return The Best Solution

Generation = Generation + 1

N

Y

Fig. 3. A flow chart representing the DELI algorithm.

M.-F. Han et al. / Knowledge-Based Systems 44 (2013) 78–89 81
mij ¼
X

k2jth cluster

xiðkÞ
Nj

; for i ¼ 1; . . . ;Nj and j ¼ 1; . . . ;M ð14Þ

rij ¼
X

k2jth cluster

ðxiðkÞ �mijÞ2

Nj
; for i ¼ 1; . . . ;Nj and j ¼ 1; . . . ;M

ð15Þ

where Nj is the total of patterns in the jth cluster. The above process
for rule generation is repeated until the criterion satisfies the pre-
specified threshold. In the AFCM algorithm, the threshold Rth is an
important parameter. The threshold is set to between zero and
one. A low threshold leads to fewer rules in the NFS, whereas a high
threshold leads to more rules. As a result of our extensive experi-
ments and by carefully examining the threshold value, which uses
the range [0, 1], we concludes that the threshold is defined as
0.01–0.001 times of the number of input variables.

3.2. The DELI algorithm for parameter learning

To effectively learn parameters in EAs, a trade off between
exploration and exploitation is necessary. However, the traditional
DE algorithm favours exploitation when determining the global
best solution. All of the individuals in an optimal solution search
based on the best position may have contributed to convergence
towards the same solution [34,39]. To deal with this drawback,
we consider local information as neighbourhood relationship of
each individual in the DELI algorithm. This idea employs the local
best solution in the local region of each individual to increase the
diversity of the population and prevent the population from get-
ting trapped in a local minimum solution.

The DELI learning algorithm for NFSs optimisation consists of
six major steps: the coding step, the population step, the evalua-
tion step, the mutation step, the crossover step, and the selection
step. Fig. 3 shows a flow chart of DELI, and the entire learning pro-
cess is described as follows:

(1) The coding step: The foremost step in the DELI algorithm is
the coding of the NFS into an individual. Fig. 4 shows an
example of the coding of parameters of the NFS into an indi-
vidual, where NP is the population size, r is the number of
rules, and n is the total number of input variable. In this
paper, a Gaussian membership function is used with vari-
ables that represent the mean and width of the membership
function. Fig. 4 represents the NFS that consists of the mean
mij and width rij of a Gaussian membership function with
the weight of the consequent part wkj, where i and j repre-
sent the ith input variable and the jth rule, respectively.

(2) The population step: Before the DELI method can be designed,
the individuals that constitute the initial population must be
created. A niching operation [13,14,41] creates a good initial
population in the input space for NFSs optimisation. The ini-
tial population is created according to the range of the mean
and variance of the membership function, which are com-
puted by the AFCM algorithm in section III-A. The following
formulations represent the generation of the initial
population:
NFSq ¼ ½ruleq
1jruleq

2j . . . jruleq
r �

¼ ½m�i1 þ Dmq
i1;r

�
i1 þ Drq

i1;w
q
k1j � � � jm

�
ij þ Dmq

ij;r
�
ij

þ Drq
ij;w

q
kjj � � � jm

�
ir þ Dmq

ir;r
�
ir þ Drq

ir;w
q
kr � ð16Þ

where m�ij and r�ij are the results of AFCM algorithm for the
mean and width of the Gaussian membership function of

Fig. 4. A schematic showing encoding of the NFSs into individuals and the population for the DELI algorithm.

82 M.-F. Han et al. / Knowledge-Based Systems 44 (2013) 78–89
the jth rule of the ith input variable, Dmq
ij and Drq

ij are small
random deviations that are uniformly generated from the
interval [�0.1,0.1], and wkj are randomly and uniformly gen-
erated from an interval with a range identical to the NFS out-
put y range. The size of the population depends on the
complexity of the problem. Many experiments have shown
that a population size of 50 is the most effective [27,40,41].
In addition to the number of fuzzy systems to be formed
and evaluated in each generation, the crossover rate, and
the mutation rate and these parameters must be set and also
depend on the complexity of the problem.
(3) The evaluation step: In this paper, we adopted a fitness func-
tion (i.e., objective function) to evaluate the performance of
each individual. The fitness function used in this paper is the
root mean-squared error (RMSE) between the desired out-
put and the actual output. In NFSs control, for example,
the performance of a NFS is the RMSE between its controlled
plant-output trajectory and the desired trajectory. The fit-
ness function is defined as follows:

ffis

fitness ¼

PN
k¼1ðyk � �ykÞ2

N
; ð17Þ

where yk represents the model output of the kth pattern, �yk

represents the desired output of the kth pattern, and N repre-
sents the number of the training pattern.
(4) The mutation step: Each individual in the current generation
is allowed to breed through mating with other randomly
selected individuals from the population. Specifically, for
each individual Zi,gen, i = 1, 2, ..., NP, where gen denotes the
current generation, and NP denotes the population size, four
other random individuals, Zr1,gen, Zr2,gen, Zr3,gen, and Zr4,gen

are selected from the population such that r1, r2, r3,and
r4 2 {1, 2, . . . , NP}and i – r1 – r2 – r3 – r4. In this way, a
parent pool of four individuals is formed to produce an off-
spring. A mutation operation with local information applies
a differential operation to generate a mutated individual
Vi,gen according to the following equation:

local global
V i;gen ¼ aðVi;genÞ þ ð1� aÞðV i;gen Þ

¼ aðZi;gen þ FðZlbest;i;gen � Zi;genÞ þ ð1� FÞðZr1;gen

� Zr2;genÞÞ þ ð1� aÞðZi;gen þ FðZgbest;gen � Zi;genÞ
þ ð1� FÞðZr3;gen � Zr4;genÞÞ; ð18Þ
where a and F are the scaling factors e[0, 1], Zgbest,gen is the best-
so-far individual (i.e., Zgbest,gen maintains the best fitness value of
the current individual in the population), and Zlbest,i,gen is local best
individual in the neighbourhood of individual Zi,gen.

A convex relationship is set as F and (1 � F) in Eq. (18). This idea
is recommended by [40,41]. Their papers use convex relationship
to achieve a better performance for NFSs optimisation in the evo-
lutionary algorithm. The same idea is also applied in the scaling
factor a and (1 � a). In addition, this paper employs a new and flex-
ible mutation operation in DELI for NFSs optimisation. Unlike the
mutation operation conventionally used with the DE algorithm,
which only utilises global information Vglobal

i;gen , the new mutation
operation in the DELI algorithm considers both global information
Vglobal

i;gen and local information V local
i;gen. It is worth noting that conven-

tional DE is a special case of the DELI algorithm, when the scaling
factor a = 0. Thus, the new mutation operation in the DELI algo-
rithm has more variety in offspring production than the conven-
tional mutation operation.

The concept of local information is schematically illustrated in
Fig. 5. To determine the neighbourhood relationship of an individ-
ual, we use a neighbourhood topology based on the Euclidean dis-
tance over the individual space. To set a suitable neighbourhood
size, we performed additional experiments using neighbourhood
sizes of 5%, 10%, 15%, 20%, and 25% of NP individuals near individ-
ual Zi,gen to evaluate the local information for finding local best
individual. Finally, we chose 10% of NP individuals as the neigh-
bourhood size because it obtained the best performance in this
paper.

(5) The crossover step and the selection step: After the mutation
operation, the DELI algorithm uses a crossover operation
and selection operation to generate the offspring. In this
paper, we adopt the traditional crossover and selection oper-
ations from the DE algorithm. The operations are described
in Section 2.2.

3.3. Self-adaptive parameter tuning strategy based on 1/5th rule

An important task within an EA is controlling parameters that
can directly influence the convergence speed and search capability,
such as the scaling factors F and a. However, a conventional DE
algorithm uses a trial-and-error method for choosing a suitable
scaling factor F and requires multiple optimisation runs. In this sec-
tion, we propose a self-adaptive approach based on the 1/5th rule

Fig. 5. Local information in the DELI algorithm.

Fig. 6. The 1/5th rule method for parameter tuning in the DELI algorithm.

Table 1
Initial parameters before training.

Parameter Value

Population size 50
Neighbourhood size 5
Crossover rate 0.8
Adjustment factor b 0.9
Initial F 0.5
Period Gp 20
Generation 2000
Coding type Real number

M.-F. Han et al. / Knowledge-Based Systems 44 (2013) 78–89 83
for automatic parameter tuning. The 1/5th rule [46,47] is a
well-known method for parameter tuning and is typically used in
evolution strategies for controlling the mutation strength. The idea
of the 1/5th rule is to trade off the exploitation ability and the
exploration ability based on a success probability P. If the success
probability P is greater than 1/5, the algorithm increases the explo-
ration ability. If the success probability P is less than 1/5, the algo-
rithm increases the exploitation ability. In the case that P equals
1/5, the same ability is retained by the algorithm. Based on this con-
cept, the scaling factor F is adapted in a similar way by the 1/5th
rule in the DELI algorithm. A larger scaling factor F means that
the DELI algorithm favours the exploitation ability, while a smaller
scaling factor F means that the DELI algorithm favours the explora-
tion ability. Thus, the 1/5th rule is a proper parameter tuning strat-
egy for the DELI algorithm. A complete self-adaptive parameter
tuning strategy based on the 1/5th rule is shown in Fig. 6.

The scaling factor a is also adjusted by parameter tuning. The sig-
nificance of the scaling factor a is to favour global information, local
information or both for offspring based on mutation operation. In the
interesting case when the scaling factor a = 0, the mutation opera-
tion degraded to conventional DE mutation operation as follows:

V i;gen ¼ Zi;gen þ FðZgbest;gen � Zi;genÞ þ ð1� FÞðZr3;gen � Zr4;genÞ: ð19Þ

This mutation operation favours only global information for
evolving a better individual. A similar situation occurs with the
case of a = 1, when the DELI algorithm performs the new mutation
operation that favours only local information. Other cases use both
global information and local information in the mutation opera-
tion. To increase stochastic search capability and to diversify the
population for the DELI algorithm, the scaling factor a is set to vary
as a uniformly distributed random number [0,1] in every period Gp.

For setting the period Gp and adjustment factor b, we follow
suggestions from journal papers [46,47]. They recommend
0.85 6 b < 1 and 1 6 Gp 6 D, where D is the dimensions of Zi,gen.
In this paper, we set reasonable values as b = 0.9 and Gp = 20 for
our simulations.

4. Simulation

This section discusses three simulations to evaluate the NFS
model with DELI method. The first case involves chaotic time series
prediction, the second case involves nonlinear plant-tracking con-
trol, and the third case involves auto-MPG6 prediction [51]. Table 1
presents the initial parameters prior to training used in each of the
three simulations.

For comparison, the evolutionary algorithms, such as GA, PSO,
DE and MODE, are applied to the same problems for NFSs
optimisation. We use the same population size and number of gen-
erations in each of these evolutionary algorithms. The AFCM meth-
od is also used for rule generation.

In the following simulations, the major computation time is
evaluating the performance of the NFSs. All evolutionary algo-
rithms are compared using the same population size and number
of generations in a single run. Thus, the overall computation time
is almost the same for different evolutionary algorithms. In our
simulation, the number of evaluations is 2000 � 50 = 100,000 for
each run.

4.1. Case 1: chaotic series prediction

The time-series prediction problem used in this case is the cha-
otic Mackey–Glass time series, which is generated from the follow-
ing differential equation:

dxðtÞ
dt
¼ 0:2xðt � sÞ

1þ x10ðt � sÞ � 0:1xðtÞ ð22Þ

where s > 17. As in previous studies [6,12], the parameter s = 30,
and x(0) = 1.2 in this simulation. Four past values are used to predict
x(t), and the input–output pattern format is given by
[x(t � 24), x(t � 18), x(t � 12), x(t � 6)|x(t)].

A total of 1000 patterns are generated from t = 124 to 1123,
where the first 500 patterns [from x(1) to x(500)] are used to train,
and the last 500 patterns [form x(501) to x(1000)] are used to test.
A total of 50 runs are performed for statistical analysis. In the DELI
algorithm, the threshold Rth is set to 0.002.

Table 2 shows the average and standard deviation (STD) of the
number of rules over 50 runs, which is denoted by the aver-
age ± STD. Fig. 7 shows the learning curves of the GA, PSO, DE,
MODE and DELI algorithms in case 1. The learning curve of the
GA algorithm presented a tardy convergence result and ultimately

84 M.-F. Han et al. / Knowledge-Based Systems 44 (2013) 78–89
remained at a training RMSE = 0.081. The PSO and DE presented a
rapid convergence result over the first 150 generations that be-
came trapped at local minimum solutions at training RMSE = 0.066
and 0.069, respectively. The MODE and DELI algorithms continu-
ally kept convergence results during evolution. It is clear from
these data that the proposed DELI method shows better learning
curves than the other methods. Table 2 shows that the average per-
formance of the DELI algorithm compared with those of GA, PSO,
DE, and MODE over 50 runs. The results show that the DELI algo-
rithm for NFSs optimisation offers a smaller testing RMSE than
the other methods. Table 3 shows that the testing RMSE of HGAPSO
[28], SPSO [24], MOGUL-TSK [48], CPSO [49] and HPSO-TVAC [25]
from other journal papers. In this table, the proposed DELI algo-
rithm achieves better performance than other evolutionary algo-
rithms. Fig. 8 shows the prediction results of the DELI algorithm
for the desired output and the actual output. The designed NFS
with four fuzzy IF–THEN rules is presented as follows:

Rule 1: IF x1 is l (0.15;0.16) and x2 is l (0.97;0.16) and x3 is l
(1.03;0.15) and x4 is l (1.91;0.07) THEN y = �0.43x1 + 4.99x2 +
0.52x3 + 0.38x4 + 2.94.
Rule 2: IF x1 is l (0.69;0.19) and x2 is l (0.66;0.05) and x3 is l
(1.01;0.15) and x4 is l (0.80;0.17) THEN y = 0.15x1 + 0.55x2 �
0.18x3 + 0.75x4 + 0.03.
Rule 3: IF x1 is l (1.09;0.03) and x2 is l (0.96;0.03) and x3 is l
(1.31;0.20) and x4 is l (0.74;0.07) THEN y = �0.84x1 + 0.30x2 �
0.29x3 � 4.05x4 + 4.69.
Rule 4: IF x4 is l (1.25;0.15) and x2 is l (1.02;0.14) and x3 is l
(0.85;0.12) and x4 is l (1.12;0.21) THEN y = �0.36x1 � 1.07x2 +
0.06x3 + 0.52x4 + 1.82.

Where the l(m; r)is a Gaussian membership function with cen-
tre m and the width r.

To verify the statistical significance of the difference between
performance of the DELI algorithm and that of the other algo-
rithms, the non-parametric Wilcoxon signed-rank test [50] is em-
ployed. Table 2 shows the result of Wilcoxon signed-rank test.
The null hypothesis is rejected at p-values < 0.05, which indicates
a statistically significant difference between the DELI algorithm
and the other algorithms.

4.2. Case 2: nonlinear plant-tracking control

In this example, the plant to be controlled is described by

yðkþ 1Þ ¼ yðkÞ
y2ðkÞ þ 1

þ u3ðkÞ; ð23Þ

where �2 6 y(k) 6 2, with y(0) = 0, u(k) is the control input, and
uðkÞ 2 ½�1;1�. As in previous studies [13], the objective is to control
the output y(k) to track the following desired trajectory by a NFS:

ydðkÞ ¼ sin
pk
50

� �
cos

pk
30

� �
; 1 6 k 6 250: ð24Þ
Table 2
Performance of the DELI algorithm and the other algorithms in case 1.

GA PSO

Rule number 4 ± 0 4 ± 0

Training RMSE Mean 0.081 0.066
STD 0.032 0.018

Testing RMSE Mean 0.090 0.077
STD 0.037 0.022

p-Values 1.75 � 10�09 7.55 � 1
The designed NFS inputs are yd(k + 1) and y(k), and the output is
u(k). The error function for performance evaluation is defined to be
the RMSE, i.e.,

RMSE ¼

ffiP249
k¼0ðydðkþ 1Þ � yðkþ 1ÞÞ2

250

s
: ð25Þ

In the DELI algorithm, the threshold Rth is set to 0.005. For statis-
tical analysis, the learning process is repeated for 50 runs for all algo-
rithms. Fig. 9 shows the learning curves of the GA, PSO, DE, MODE
and DELI algorithms in case 2. Table 4 shows the performances of
the GA, PSO, DE, MODE and DELI algorithms using the same number
of rules for NFSs optimisation over 50 runs. The performance of the
GA was poorer than other EAs in case2. The PSO and DE algorithms
presented similar learning curves and obtained similar performance
results (training RMSE = 0.033 and 0.032, respectively). The result of
the MODE algorithm remained at a training RMSE = 0.026 after 500
generations, and this result was better than those of the GA, PSO and
DE algorithms. The performance of the DELI algorithm obtained a
training RMSE = 0.022, which was better than the other algorithms
in case 2. In addition, the DELI algorithm is also compared with other
evolutionary algorithms in Table 5. These compared algorithms in-
clude HGAPSO [28], SPSO [24], CPSO [49], CB-CPSO [24], HPSO-TVAC
[25], TPSIA [13] and RACO [13]. The proposed DELI algorithm obtains
better performance than other evolutionary algorithms. Fig. 10
shows the control result of the DELI algorithm for the desired output
(symbol ‘‘+’’) and the actual output (symbol ‘‘O’’). The designed NFS
are presented by seven TSK-type fuzzy IF–THEN rules as follows:

Rule 1: IF x1 is l (0.32;0.15) and x2 is l (0.49;0.13) THEN
y = 0.003x1 + 0.69x2 + 0.17.
Rule 2: IF x1 is l (1.47;0.36) and x2 is l (0.63;0.29) THEN
y = 0.23x1 + 0.50x2 + 0.15.
Rule 3: IF x1 is l (�0.16;0.07) and x2 is l (�0.11;0.22) THEN
y = �0.71x1 + 1.05x2 + -0.05.
Rule 4: IF x1 is l (0.22;0.12) and x2 is l (0.40;0.12) THEN
y = �0.57x1 + 0.26x2 + 0.28.
Rule 5: IF x1 is l (�0.70;0.19) and x2 is l (�0.46;0.25) THEN
y = 0.22x1 + 0.53x2 � 0.14.
Rule 6: IF x1 is l (�0.50;0.20) and x2 is l (�0.73;0.30) THEN
y = 0.08x1 + 0.89x2 + 0.02.
Rule 7: IF x1 is l (�0.09;0.14) and x2 is l (0.07;0.17) THEN
y = 0.22x1 + 0.87x2 � 0.02.

In Table 4, the p-values are smaller than 0.05 for which the null
hypothesis is rejected for statistic comparison using the Wilcoxon
signed-rank test. The DELI algorithm performs significantly better
than other evolutionary algorithms.

4.3. Case 3: auto-MPG6 prediction

This is a real-world problem that concerns the prediction of
automobile city-cycle fuel consumption, in miles per gallon
DE MODE DELI

4 ± 0 4 ± 0 4 ± 0

0.069 0.044 0.016
0.021 0.015 0.005

0.072 0.050 0.023
0.020 0.016 0.010

0�10 1.02 � 10�09 2.47 � 10�08 –

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
-1

Generation

Lo
g

(R
M

SE
)

GA
PSO
DE
MODE
DELI

Fig. 7. Training RMSEs at each performance evaluation for the DELI algorithm and other algorithms in case 1.

Table 3
Comparison of the DELI algorithm and other
papers for case 1.

Method Testing RMSE

NFS-DELI 0.023
HGAPSO [28] 0.047
SPSO [24] 0.054
MOGUL-TSK [48] 0.045
CPSO [49] 0.032
HPSO-TVAC [25] 0.047

M.-F. Han et al. / Knowledge-Based Systems 44 (2013) 78–89 85
(MPG). There are five inputs and one output in the prediction mod-
el. The real dataset contains 398 examples and can be downloaded
from KEEL (http://www.keel.es/) [51]. Evaluation of this model
used the five-fold cross-validation datasets in KEEL. The inputs
are scaled to the range [0,1]. For each cross-validation dataset, a
learning algorithm is repeated for ten runs. For the DELI algorithm,
the threshold Rth is set to 0.0005. Fig. 11 shows the learning curves
of the GA, PSO, DE, MODE and DELI algorithms in case 3. Table 6
shows the performances of the GA, PSO, DE, MODE and DELI algo-
rithms using the same number of rules for NFSs optimisation.
When comparing the performances of basic evolutionary algo-
rithm, such as GA, PSO and DE, the result of the DE algorithms
was better than that of the GA and PSO algorithms in cases 1, 2
and 3. We compared the performance of our method with advance
evolutionary algorithms, and the comparison results were
0 100 200 300 400 5
0.4

0.6

0.8

1

1.2

1.4

Time

x(
 t

)

Fig. 8. Symbol ‘‘+’’ represents the desired results and ‘‘O’’ represents the pr
tabulated in Table 6. According to these results, the proposed DELI
algorithm outperforms the MODE algorithm. Table 7 shows a com-
parative result for the DELI algorithm and other papers. The result
presents that the proposed DELI algorithm achieves better perfor-
mance than HGAPSO [28], MOGUL-TSK [48], CPSO [49] and HPSO-
TVAC [25].

Fig. 12 shows the training output of the DELI algorithm for the
desired output (symbol ‘‘+’’) and the actual output (symbol ‘‘O’’).
Fig. 13 shows the testing result of the DELI algorithm. The TSK-type
fuzzy IF–THEN rules of the designed NFS are presented by

Rule 1: IF x1 is l (0.70;0.31) and x2 is l (0.49;0.19) and x3 is l
(0.47;0.19) and x4 is l (1.37;0.38) and x5 is l (0.29;0.21) THEN
y = �7.18x1 � 4.1x2 � 7.24x3 � 6.17x4 + 2.81x5 + 28.49.
Rule 2: IF x1 is l (�0.22;0.17) and x2 is l (0.45;0.08) and x3 is l
(0.18;0.14) and x4 is l (�0.19;0.24) and x5 is l (0.58;0.19)
THEN y = 14.49x1 � 2.89x2 + 49.68x3 � 13.98x4 + 14.63x5 + 4.49.
Rule 3: IF x1 is l (1.44;0.13) and x2 is l (�1.49;0.001) and x3 is
l (1.48;0.14) and x4 is l (�0.95;0.29) and x5 is l (�1.16;1.71)
THEN y = 29.84x1 � 31.02x2 � 35.30x3 � 48.79x4 + 45.61x5 �
49.98.
Rule 4: IF x1 is l (�0.63;0.52) and x2 is l (0.42;0.14) and x3 is l
(1.01;0.38) and x4 is l (1.34;0.36) and x5 is l (1.46;1.32) THEN
y = 12.27x1 � 22.39x2 � 35.38x3 + 5.33x4 + 4.33x5 + 35.71.

The p-values in Table 6 indicate that the null hypothesis is
rejected, with p-values < 0.05. The DELI algorithm and the other
00 600 700 800 900 1000
 Step

ediction results of the DELI algorithm for NFSs optimisation in case 1.

http://www.keel.es/

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
-1.6

10
-1.5

10
-1.4

10
-1.3

Generation

lo
g

(R
M

SE
)

GA
PSO
DE
MODE
DELI

Fig. 9. The training RMSEs for each performance evaluation of the DELI algorithm and the other algorithms in case 2.

Table 4
Performance of the DELI algorithm and the other algorithms in case 2.

GA PSO DE MODE DELI

Rule number 7 ± 0 7 ± 0 7 ± 0 7 ± 0 7 ± 0

Training RMSE Mean 0.039 0.033 0.032 0.026 0.022
STD 0.009 0.010 0.007 0.009 0.005

p-Values 1.65 � 10�09 1.38 � 10�09 2.34 � 10�08 4.00 � 10�02 –

Table 5
Comparison of the DELI algorithm and other papers for case 2.

Method Training RMSE

NFS-DELI 0.022
HGAPSO [28] 0.028
SPSO [24] 0.026
CPSO [49] 0.032
CB-CPSO [24] 0.030
HPSO-TVAC [25] 0.025
TPSIA [13] 0.033
RACO [13] 0.026

0 50 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Sam

O
ut

pu
t

Fig. 10. The control output of the DELI algo

86 M.-F. Han et al. / Knowledge-Based Systems 44 (2013) 78–89
algorithms show a statistically significant difference in perfor-
mance based on Wilcoxon signed-rank test.
5. Conclusion

This study has proposed a DELI algorithm for TSK-type NFSs
optimisation. The AFCM method for rule generation in the DELI
algorithm helps to determine the number of rules and to locate
good initial parameters. All free parameters are learned by the DELI
algorithm. The DELI algorithm considers local best information and
global best information using a mutation operation for increasing
the search capability. In addition, an adaptive parameter tuning
strategy based on the 1/5th rule is used to adjust the scale factor
150 200 250
ples

Desired Y
Actual Y

rithm for NFSs optimisation in case 2.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
0.4

10
0.5

10
0.6

Generation

Lo
g

(R
M

SE
)

GA
PSO
DE
MODE
DELI

Fig. 11. The training RMSEs for each performance evaluation of the DELI algorithm and the other algorithms in case 3.

Table 6
The performance of the DELI algorithm and other algorithms in case 3.

GA PSO DE MODE DELI

Rule number 4 ± 0.8 4 ± 0.8 4 ± 0.8 4 ± 0.8 4 ± 0.8

Training RMSE Mean 3.89 3.35 3.27 2.51 2.36
STD 0.51 0.56 0.56 0.22 0.15

Testing RMSE Mean 4.02 3.66 3.61 2.89 2.58
STD 0.77 0.68 0.72 0.34 0.21

p-Values 8.53 � 10�19 5.36 � 10�09 5.06 � 10�09 2.97 � 10�05 –

Table 7
Comparison of the DELI algorithm and other papers for case 3.

Method Testing RMSE

NFS-DELI 2.58
HGAPSO [28] 2.97
MOGUL-TSK [48] 5.16
CPSO [49] 2.66
HPSO-TVAC [25] 2.72

0 50 100 150
5

10

15

20

25

30

35

40

45

50

55

Samp

O
ut

pu
t

Actual Training Y Desired Tra

Fig. 12. The training output of the DELI alg

M.-F. Han et al. / Knowledge-Based Systems 44 (2013) 78–89 87
F in DELI. The experimental results demonstrate that the NFS-DELI
method can obtain a smaller RMSE than other evolutionary algo-
rithms for solving prediction and control problems.

Two advanced topics should be addressed in future research on
the proposed DELI algorithm. First, the DELI algorithm may adopt
other optimisation algorithms to improve the performance. For
example, Lin and Chen [27] applied the notion of symbiotic evolu-
tion to the PSO algorithm for NFSs design. The basic idea of symbi-
otic evolution is that an individual is used to represent a single
fuzzy rule. A fuzzy system is formed when several individuals,
which are randomly selected from a population, are combined.
This method increases the number of combination possibilities in
200 250 300
les

ining Y

orithm for NFSs optimisation in case 3.

10 20 30 40 50 60 70
10

15

20

25

30

35

40

45

Samples

O
ut

pu
t

Desired Testing Y Actual Testing Y

Fig. 13. The testing output of the DELI algorithm for NFSs optimisation in case 3.

88 M.-F. Han et al. / Knowledge-Based Systems 44 (2013) 78–89
evolution process. Second, the advanced crossover and selection
operations [11,33,47,54] will be considered in the DELI algorithm.
The performance of proposed algorithm can be enhanced by these
operations.
Acknowledgement

This work was supported by the UST-UCSD International Center
of Excellence in Advanced Bioengineering sponsored by the Taiwan
National Science Council I-RiCE Program under Grant Number
NSC-101-2911-I-009-101 and by the Aiming for the Top University
Plan of National Chiao Tung University, the Ministry of Education,
Taiwan, under Contract 101W963.
References

[1] C.-T. Lin, C.S.G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to
Intelligent System, Prentice-Hall, Englewood Cliffs, NJ, 1996.

[2] H. Ohtake, K. Tanaka, H.O. Wang, Fuzzy model-based servo and model
following control for nonlinear systems, IEEE Trans. Syst., Man, Cybern. B,
Cybern. 39 (6) (2009) 1634–1639.

[3] D. Coyle, G. Prasad, T.M. McGinnity, Faster self-organizing fuzzy neural
network training and a hyperparameter analysis for a brain–computer
interface, IEEE Trans. Syst., Man, Cybern. B, Cybern. 39 (6) (2009) 458–1471.

[4] S.-S. Kim, K.-C. Kwak, Development of quantum-based adaptive neuro-fuzzy
networks, IEEE Trans. Syst., Man, Cybern. B, Cybern. 40 (1) (2010) 91–100.

[5] P.R. Vundavilli, M.B. Parappagoudar, S.P. Kodali, S. Benguluri, Fuzzy logic-based
expert system for prediction of depth of cut in abrasive water jet machining
process, Knowledge-Based Syst. 27 (2012) 456–464.

[6] C.-F. Juang, C. Lo, Zero-order TSK-type fuzzy system learning using a two-phase
swarm intelligence, Fuzzy Sets Syst. 159 (21) (2008) 2910–2926.

[7] E. Hadavandi, H. Shavandi, A. Ghanbari, Integration of genetic fuzzy systems
and artificial neural networks for stock price forecasting, Knowledge-Based
Syst. 23 (8) (2010) 800–808.

[8] J. Liu, W. Wang, F. Golnaraghi, E. Kubica, A neural fuzzy framework for system
mapping applications, Knowledge-Based Syst. 23 (6) (2010) 572–579.

[9] Y.-H. Chien, W.-Y. Wang, Y.-G. Leu, T.-T. Lee, Robust adaptive controller design
for a class of uncertain nonlinear systems using online T–S fuzzy-neural
modeling approach, IEEE Trans. Syst., Man, Cybern. B, Cybern. 41 (2) (2011)
542–552.

[10] S.-B. Roh, S.-K. Oh, W. Pedrycz, A fuzzy ensemble of parallel polynomial neural
networks with information granules formed by fuzzy clustering, Knowledge-
Based Syst. 23 (3) (2010) 202–219.

[11] S.N. Qasem, S.M. Shamsuddin, A.M. Zain, Multi-objective hybrid evolutionary
algorithms for radial basis function neural network design, Knowledge-Based
Syst. 27 (2012) 475–495.

[12] M.-F. Han, C.-T. Lin, J.-Y. Chang, A compensatory neurofuzzy system with
online constructing and parameter learning, in: Proceedings of 2010 IEEE
International Conference on Systems, Man and, Cybernetics, pp. 552–556,
October 2010.

[13] C.-F. Juang, P.-H. Chang, Designing fuzzy rule-based systems using continuous
ant colony optimization, IEEE Trans. Fuzzy Syst. 18 (1) (2010) 38–149.
[14] C.-F. Juang, Combination of on-line clustering and Q-value based GA for
reinforcement fuzzy system design, IEEE Trans. Fuzzy Syst. 13 (3) (2005) 289–
302.

[15] F. Hoffmann, D. Schauten, S. Holemann, Incremental evolutionary design of
TSK fuzzy controllers, IEEE Trans. Fuzzy Syst. 15 (4) (2007) 563–577.

[16] E. Sanchez, T. Shibata, L.A. Zadeh, Genetic Algorithms and Fuzzy Logic Systems:
Soft Computing Perspectives, World Scientific, Singapore, 1997.

[17] O. Cordoon, F. Herrera, F. Hoffmann, L. Magdalena, Genetic fuzzy systems:
evolutionary tuning and learning of fuzzy knowledge bases, Advances in Fuzzy
Systems—Applications and Theory, World Scientific, Singapore, 2001.

[18] M. Russo, Genetic fuzzy learning, IEEE Trans. Evol. Comput. 4 (3) (2000) 259–
273.

[19] K.C. Ng, T. Li, Design of sophisticated fuzzy logic controllers using genetic
algorithms, in: Proceedings of 3rd IEEE International Conference on Fuzzy
Systems, 1994, pp. 1708–1711.

[20] T.L. Seng, M.B. Khalid, R. Yusof, Tuning of a neuro-fuzzy controller by genetic
algorithm, IEEE Trans. Syst., Man, Cybern. B 29 (1999) 226–236.

[21] C.-H. Chou, Genetic algorithm-based optimal fuzzy controller design in the
linguistic space, IEEE Trans. Fuzzy Syst. 14 (3) (2006) 372–385.

[22] C.-F. Juang, A TSK-type recurrent fuzzy network for dynamic systems
processing by neural network and genetic algorithms, IEEE Trans. Fuzzy Syst.
10 (2) (2002) 155–170.

[23] K.D. Sharma, A. Chatterjee, A. Rakshit, A hybrid approach for design of stable
adaptive fuzzy controllers employing Lyapunov theory and particle swarm
optimization, IEEE Trans. Fuzzy Syst. 17 (2) (2009) 329–342.

[24] C.-F. Juang, C.M. Hsiao, C.H. Hsu, Hierarchical cluster-based multispecies
particle-swarm optimization for fuzzy-system optimization, IEEE Trans. Fuzzy
Syst. 18 (1) (2010) 14–26.

[25] A. Ratnaweera, S.K. Halgamuge, H.C. Watson, Self-organizing hierarchical
particle swarm optimizer with time-varying acceleration coefficients, IEEE
Trans. Evol. Comput. 8 (3) (2004) 240–255.

[26] R.-E. Precup, R.-C. David, E.M. Petriu, M.-B. Rădac, S. Preitl, J. Fodor,
Evolutionary optimization-based tuning of low-cost fuzzy controllers for
servo systems, Knowledge-Based Syst. 38 (2013) 74–84.

[27] C.-J. Lin, C.-H. Chen, C.-T. Lin, A hybrid of cooperative particle swarm
optimization and cultural algorithm for neural fuzzy network and its
prediction applications, IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. 39 (1)
(2009) 55–68.

[28] C.-F. Juang, A hybrid of genetic algorithm and particle swarm optimization for
recurrent network design, IEEE Trans. Syst., Man, Cybern. B, Cybern. 34 (2)
(2004) 997–1006.

[29] N. Krasnogor, J. Smith, A memetic algorithm with self-adaptive local search:
TSP as a case study, in Proceedings of Genetic and Evolutionary Computation
Conference, Las Vegas, NV, July 2000, pp. 987–994.

[30] H. Ishibuchi, T. Yoshida, T. Murata, Balance between genetic algorithm and
local search in memetic algorithms for multiobjective permutation flowshop
scheduling, IEEE Trans. Evol. Comput. 7 (2003) 204–223.

[31] R. Storn, K. Price, Differential evolution: a simple and efficient heuristic for
global optimization over continuous spaces, J. Global Optimiz. (1997).

[32] R. Storn, System design by constraint adaptation and differential evolution,
IEEE Trans. Evol. Comput. 3 (1) (1999) 22–34.

[33] R.M. Alguliev, R.M. Aliguliyev, N.R. Isazade, DESAMC + DocSum: Differential
evolution with self-adaptive mutation and crossover parameters for multi-
document summarization, Knowledge-Based Syst. 36 (2012) 21–38.

[34] S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art,
IEEE Trans. Evol. Comput. 14 (1) (2011) 4–31.

[35] S. Das, A. Abraham, U.K. Chakraborty, A. Konar, Differential evolution using a
neighborhood-based mutation operator, IEEE Trans. Evol. Comput. 13 (3)
(2009) 526–553.

M.-F. Han et al. / Knowledge-Based Systems 44 (2013) 78–89 89
[36] J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self-adapting control
parameters in differential evolution: a comparative study on numerical
benchmark problems, IEEE Trans. Evol. Comput. 10 (6) (2006) 646–659.

[37] F. Al-Obeidat, N. Belacel, J.A. Carretero, P. Mahanti, Differential Evolution for
learning the classification method PROAFTN, Knowledge-Based Syst. 23 (5)
(2010) 418–426.

[38] L. Wang, C.-X. Dun, W.-J. Bi, Y.-R. Zeng, An effective and efficient differential
evolution algorithm for the integrated stochastic joint replenishment and
delivery model, Knowledge-Based Syst. 36 (2012) 104–114.

[39] M.-F. Han, C.-T. Lin, J.-Y. Chang, D.-L. Li, Group-based differential evolution for
numerical optimization problems, Int. J. Innov. Comput., Inform. Control 9 (3)
(2013) 1357–1372.

[40] C. -H Chen, C.-J. Lin, C.-T. Lin, Nonlinear system control using adaptive neural
fuzzy networks based on a modified differential evolution, IEEE Trans. Syst.
Man Cybern. Part C, Appl. Rev. 39 (4) (2009) 459–473.

[41] C.-T. Lin, M.-F. Han, Differential evolution based optimization of locally
recurrent neuro-fuzzy system for dynamic system identification, in: The 17th
National Conference on Fuzzy Theory and its Applications, 2010, pp. 702–707.

[42] J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of
IEEE International Conference on Neural Network, December, 1995, pp.
1942–1948.

[43] M.-C. Hung, D.-L. Yang, The efficient fuzzy c-means clustering technique, in:
Proceedings of IEEE International Conference on Data Mining, December 2001,
pp. 225–232.

[44] R. Krishnapuram, J.M. Keller, The possibilistic C-means algorithm: insights and
recommendations, IEEE Trans. Fuzzy Syst. 4 (3) (1996).
[45] J. He, L. Liu, G. Palm, Speaker identification using hybrid LVQ-SLP networks, in:
Proceedings of IEEE International Conference on Neural Networks, vol. 4, 1995,
pp. 2052–2055.

[46] T. Thomas Bäck, H.-P. Schwefel, Evolution strategies I: variants and their
computational implementation, Gen. Algor. Eng. Comput. Sci. (1995) 111–126.

[47] H.G. Beyer, H.P. Schwefel, Evolution strategies: a comprehensive introduction,
Natural Comput. (2002) 3–52.

[48] R. Alcaĺa, J. Alcaĺa-Fdez, J. Casillas, O. Cord́on, F. Herrera, Local identification of
prototypes for genetic learning of accurate TSK fuzzy rule-based systems, Int. J.
Intell. Syst. 22 (2007) 909–941.

[49] F. Van Den Bergh, A.P. Engelbrecht, A cooperative approach to particle swarm
optimization, IEEE Trans. Evol. Comput. 8 (3) (2004) 225–239.

[50] J. Demsar, Statistical comparisons of classifiers over multiple data sets, J. Mach.
Learn. Res. (2006) 1–30.

[51] J. Alcalá-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. García, L. Sánchez, F.
Herrera, KEEL data-mining software tool: data set repository, integration of
algorithms and experimental analysis framework, J. Mult.-Val. Logic Soft
Comput. 17 (2011) 255–287.

[52] M.-F. Han, S.-H. Liao, J.-Y. Chang, C.-T. Lin, Dynamic group-based differential
evolution using a self-adaptive strategy for global optimization problems,
Appl. Intell., (in press) doi:http://dx.doi.org/10.1007/s10489-012-0393-5.

[53] Y. Wang, Z. Cai, Q. Zhang, Differential evolution with composite trial vector
generation strategies and control parameters, IEEE Trans. Evolution. Comput.
15 (1) (2011) 55–66.

[54] Y. Wang, Z. Cai, Q. Zhang, Enhancing the search ability of differential evolution
through orthogonal crossover, Inform. Sci. 185 (1) (2012) 153–177.

http://dx.doi.org/10.1007/s10489-012-0393-5

	Differential evolution with local information for neuro-fuzzy systems optimisation
	1 Introduction
	2 Neuro-fuzzy systems and DE algorithm
	2.1 Neuro-fuzzy systems
	2.1.1 Layer 1—input layer
	2.1.2 Layer 2—membership function layer
	2.1.3 Layer 3—Rule layer
	2.1.4 Layer4—output layer

	2.2 DE algorithm

	3 NFS-deli design
	3.1 Rule generation using the adaptive fuzzy c-means algorithm
	3.2 The DELI algorithm for parameter learning
	3.3 Self-adaptive parameter tuning strategy based on 1/5th rule

	4 Simulation
	4.1 Case 1: chaotic series prediction
	4.2 Case 2: nonlinear plant-tracking control
	4.3 Case 3: auto-MPG6 prediction

	5 Conclusion
	Acknowledgement
	References

