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In this study, the hopping conduction distance variation of Zn:SiO2 resistance random access

memory (RRAM) devices with different operating compliance currents was discussed and

verified. To investigate and determine the hopping conduction distance dependent activation

energy characteristics, the Arrhenius plot of low resistance state of Zn:SiO2 RRAM devices was

applied, from which we proposed carrier conduction model. With the increase of current

compliance, more metal ions would accumulate to form precipitates with larger diameter, which

in turn resulted in the shortening of hopping distance. Because of shorter hopping distance,

activation energy for carrier hopping would decrease. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4799655]

Recently, the non-volatile random access memory devi-

ces were widely discussed and investigated for applications,

including resistance random access memory (RRAM), ferro-

electric random access memory (FeRAM), magnetic random

access memory (MRAM), and phase change memory

(PCM).1–9 Among these memory devices, silicon oxide based

RRAM devices attract vast attention owing to great compati-

bility in integrated circuit (IC) processes, non-destructive

readout, low operation voltage, high operation speed, long

retention time, and simple structure.10–15

Various materials have been reported having resistance

switching properties.16–24 And zinc is an extensively

researched material in semiconductor device.25–29 In this let-

ter, the resistive switching mechanism of zinc-doped SiO2

RRAM was thoroughly analyzed. In the experiment, we

found that the low resistance state (LRS) of Zn:SiO2 RRAM

devices using different operating compliance currents had

different hopping distances. Besides, the hopping conduction

distance dependent activation energy was investigated by the

Arrhenius plot, which also confirmed the hopping distance

variation.

Metal-insulator-metal (MIM) structure for RRAM devi-

ces, which was fabricated over a polished p-Si wafer with

nominal resistance �1.0 X cm, was schematically shown in

inset of Fig. 1. Native-oxide, contaminant particles, and

metal ions on silicon wafer were removed during RCATM

clean process. In order to remove contaminants of metal

target and obtain relative pure plasma during deposition

time, pre-sputtering was maintained for 30 min under argon

ambient. The Zn:SiO2 thin film was later deposited on the

TiN/Ti/SiO2/Si substrate by co-sputtering with pure SiO2

and zinc targets. The sputtering power was fixed with RF

power 200 W and DC power 10 W for silicon dioxide and

zinc targets, respectively. Additionally, the Pt top electrode

with a thickness of 200 nm was deposited on Zn:SiO2 film to

form Pt/Zn:SiO2/TiN sandwich structure by DC magnetron

sputtering. The entire electrical measurements of devices

FIG. 1. I-V characteristics of Zn:SiO2 RRAM devices with different operat-

ing compliance currents of 10 lA and 100 lA, respectively. The inset is the

structure of device.
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with the Pt electrode of 4 lm diameter were performed using

Agilent B1500 semiconductor parameter analyzer.

Figure 1 shows the typical I-V curves of Zn:SiO2

RRAM devices under different operating compliance cur-

rents of 10 lA and 100 lA, respectively. By conduction

current fitting, both LRS with different operating compliance

currents were dominated by hopping conduction mechanism.

From comparison, we could find that the I-V window with

higher current compliance was escalated by nearly two order

magnitude.

To investigate the resistance switching behaviors in

Zn:SiO2 RRAM with different compliance currents, the rela-

tionship between LRS and temperature was measured as

shown in Figs. 2(a) and 2(b). We could observe in both

Figures 2(a) and 2(b) that current increased with the rising

temperature, which was similar to semiconductor current-

temperature property. According to the equation of hopping

conduction, J ¼ qNat0e�q/T=kTeqaV=2dkT , where N, a, /T , t0,

and d are density of space charge, mean of hopping distance,

barrier height of hopping, intrinsic vibration frequency,

and film thickness, respectively, we can draw out the curve

/T-aV/2d with a vertical axis of In(I) and a lateral axis of

1/kT (Figure 2(c) for 10 lA of compliance current, Fig. 2(d)

for 100 lA). From Figs. 2(c) and 2(d), we could observe that

experimental data matched with hooping conduction equa-

tion, which was also testified by our previous current fitting

(Figure 1).

In order to further investigate the characteristics of hop-

ping conduction with different current compliances, activa-

tion energy verses voltage were drew out in Figure 3.

Arrhenius equation was applied to analyze the relationship

between activation energy and voltage. The activation

energy equation is EA;exp ¼ � @ logI
@ð 1

kTÞ
, where Ea is active

energy, k is the Boltzmann’s constant, and T is the absolute

temperature. The intercept of vertical axis represent their

corresponding activation energy. And from Figure 3, we

could obtain the activation energy of 10 lA and 100 lA com-

pliance current operating situation, which were 0.1533 eV

and 0.0682 eV, respectively. With the increase of current

compliance, activation energy dropped from 0.1533 eV to

0.0682 eV.

Furthermore, hopping distance could be extracted from

Arrhenius equation. As EA;exp ¼ � @ logI

@ 1 1
kTð Þ
¼ EC � EF �qVA

Dz
2ua

,

FIG. 2. (a) and (b) are the current tempera-

ture relationship for 10 lA and 100 lA cur-

rent compliance, respectively. (c) and (d)

are their corresponding hopping equation

plots.

FIG. 3. The activation energy and volt-

age properties for 10 lA and 100 lA

compliance current operating situation.
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we could get dEA

dVA
¼ qDz
ð2uaÞ, where EA is activation energy, VA is

applied voltage, Dz is average hopping distance, and ua is the

thickness of switching layer. According to our previous

research,24 the thickness of switching layer is about 5 nm,

namely ua equals to 5 nm. What’s more dEA

dVA
can be obtained

from Figure 3, it is the slope of fitting curve. By substituting dEA

dVA

and ua into dEA

dVA
¼ qDz
ð2uaÞ, hopping distance can be obtained,

which are 1.44 nm for 10 lA compliance operating situation

0.3 nm for 100 lA compliance operating situation,

respectively.

Based on the analysis above, carrier conduction model

was proposed, which was shown in Figure 4. As the intensity

of current was the main reason for the soft break down of

switching dielectric layer, the more intensive the conduction

current, the easier the dielectric to break down, which in turn

denser metal ions would accumulate to form conduction fila-

ment. With the increasing of current compliance, the diame-

ter of metal precipitates would rise and it became easier for

carrier hopping, from which shorter hopping distance was

obtained. When the compliance current was smaller, there

was less possibility for metal precipitate growing bigger.

In conclusion, bipolar resistance switching characteris-

tics with different compliance currents of 10 lA and 100 lA

of Zn:SiO2 RRAM were thoroughly analyzed. By conduction

current fitting, both LRS with different operating compliance

currents were dominated by hopping conduction mechanism.

With assistance of Arrhenius equation, we found that activa-

tion energy dropped from 0.1533 eV to 0.0682 eV when cur-

rent compliance rose from 10 lA to 100 lA. Owing to the

increase of current, it became easier for metal ions to form

precipitates with larger diameter, which led to the decrease

of hopping distance.
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