
 
Figure 1.  A coherence mechanism when multiple cores share the 
same data. The colored cache blocks are shared among different cores. 
They should be either updated or invalidated while this particular 
block is being written.
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Abstract—The snoopy protocol is a widely used scheme to 
maintain cache coherence. However, the protocol requires a 
broadcast scheme and forces substantial unnecessary data 
searches at the local cache. This paper proposes a novel Double 
Layer Counting Bloom Filter (DLCBF) to significantly reduce 
the redundant data searches and transmission. The DLCBF 
implements an extra layer of hash function and the counting 
feature at each filter entry. By using the hierarchical structure 
of the hash function, DLCBF can effectively increase the 
successful filter rates while requiring a smaller memory usage 
than the conventional Bloom filters. Experimental results show 
that the DLCBF can screen out 4.05X of unnecessary cache 
searches and use 18.75% less memory compared to 
conventional Bloom filters. The DLCBF is also used to filter 
out the redundant data transmission on a hierarchical shared 
bus. Simulation results show that the DLCBF outperforms 
conventional filters by 58% for local transmissions and 1.86X 
for remote transmissions. 

Keywords-multi-core; memory coherence; bloom filter; cache 
optmization;memory efficient design 

I. INTRODUCTION 
In modern computing systems, multi-core architectures 

have dominated from high-end servers to personal 
computers. The shared-memory Symmetric Multi-processor 
(SMP) is one of the main architectures that have been widely 
used. However, data sharing among multiple cores in a SMP 
introduces cache coherence issues [1]. In order to maintain a 
coherent memory system, a multi-core system needs to 
update or invalidate the shared data whenever one of its 
owners writes a new value to this data location. As depicted 
in Fig. 1, Core 1 and Core 3 share the same data (A = 5). 
When Core 1 performs a write operation to its copy of the 
shared data (A = 7), a coherent system updates the shared 
copy in Core 3 with the latest result or otherwise invalidates 
it. 

A snoopy coherence protocol [1] is one of the popular 
methods to enable the cache coherence. When a data 
operation (read/write) is performed, the snoopy protocol 
forces all the caches in a multi-core system to check the data 
operation emerged on the shared interconnection. By 
invalidating each conflicting data, the protocol preserves data 
coherence. However, the snoopy coherence protocol adopts a 
broadcast scheme and every processor in the system needs to 

perform a search in its associated local cache whenever it 
sees a broadcast message. From the point of view of a 
parallel application, the snoopy coherence protocol is 
invoked whenever two or more processors need to exchange 
data. In general, the data sharing behavior is usually 
happened within a certain number of parallel tasks. The 
number of these affined tasks is typically much smaller than 
the size of the overall multi-core system. Therefore, if the 
snooping broadcast happens too frequently, a huge number 
of needless searches would be performed by the local cache 
which does not have the data specified by the broadcast 
message. For example, assume that there is a datum owned 
by only one processor. When this particular datum is written, 
the snoopy protocol would broadcast an invalidation 
message and invoke searches at all the caches while none of 
these searches are actually needed. This broadcast behavior 
of the snoopy protocol would unnecessarily put a cache in a 
busy mode that could increase the energy consumption as 
well as degrade the system performance. 

This paper proposes a novel architecture of Double-Layer 
Counting Bloom Filter (DLCBF), and applies the DLCBF to 
filter out the unnecessary data communication and cache 
searches in a SMP system. A Bloom filter [2] is a classic unit 
used in database management. It uses hash functions to 
maintain the data mapping structure and provides an 
effective method to perform membership querying. However, 
due to the limited size of the filter, it suffers from rapid array 
saturation problem [3]. If the dataset of an application is too 
large, the data mapping structure would saturate and make 
the filtering mechanism ineffective. The DLCBF proposed 
by this paper implements an extra layer of hash function and 
the counting feature at each filter entry. By using the 
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Figure 2.  (a) Hash collision. (b) Hash reports a false positive for 
element B. 

 
Figure 3.  The mapping mechanism of a Bloom filter (k = 3) 

hierarchical structure of the hash function, DLCBF can 
effectively increase the successful filter rates while requiring 
a smaller memory usage than the conventional Bloom filters. 
The counting feature of DLCBF further enhances the ability 
to handle the array saturation issue. 

This paper implements the DLCBF on two system 
modules of a SMP system to reduce unnecessary data 
processing of snoopy coherence protocol. The first module is 
the local cache of each processor. By connecting a Bloom 
filter between a cache and system interconnection, the filter 
mechanism can be used to screen out the unnecessary 
snooping messages that would be otherwise handled by each 
processor. The second module is the shared system bus. A 
bloom filter is embedded in the system interconnection to 
reduce the costly system-wide data broadcast. When 
compared with conventional bloom filters, the DLCBF can 
manage larger data set with fast data accesses while 
requiring smaller memory area. By deploying the DLCBF in 
a SMP system, a substantial amount of redundant memory 
operations and data transmission can be eliminated. In our 
experiment, the DLCBF can reduce up to 65.8% of 
unnecessary snoops to local caches with 18.75% less 
memory usage. Simulation results also show that the DLCBF 
outperforms conventional filters by 58% for local 
transmissions and 1.86X for remote transmissions. 

The rest of the paper is organized as follows. In section II, 
we introduce the basic architecture of a Bloom filter (BF). 
Two modified versions, Counting Bloom Filter (CBF) and 
Banked Bloom Filter (BBF), are also discussed. Section III 
shows the proposed filter structure, Double Layer Counting 
Bloom Filter (DLCBF). The detail functionality and 
implementation concerns are also discussed. Section IV 
covers our evaluation methodology and demonstrates the 
cycle accurate simulation results. Finally, we conclude this 
paper in section V. 

II. PREVIOUS WORK ON BLOOM FILTER DESIGNS 
To give a general background on membership querying 

techniques, this section will first introduce a simple hash-
based method. Then three types of Bloom filters will be 
discussed, including classic Bloom filter (BF), counting 
Bloom filter (CBF), and banked Bloom filter (BBF). These 
three bloom filters are widely used designs and provide 
different advantages. The proposed DLCBF is a novel 
architecture which combines the features of these three filter 
types and benefits from all of them. 

A. Simple Hash-based Technique 
A membership querying function returns a value of true 

or false to identify the existence of a given input query. A 
straightforward way to implement a membership query 
function is to give an entry to each individual member. 
However, the total number of the members is usually much 
larger than the limitation of the memory size in a design. A 
hash function is a basic yet efficient solution for membership 
querying. An input query will be sent to a hash function, and 
a hashed value is returned to index the corresponding entry 
of the query. However, the single-index hash table is prone 
to returning many false positives for different queries. For 

example, a computer system with n-bit memory addresses 
will introduce 2n distinct memory locations. In an ideal case, 
a hash function needs 2n bits to distinguish each data location. 
But due to the storage limitation in real systems, the hash 
function is forced to map the 2n memory space to a mapping 
table with only m bits, where m is much smaller than 2n. The 
parameter m may vary according to accuracy requirements 
and available resources. Thus, 2n - m datum could be hashed 
to a bit that has already been used by another data (Fig. 2(a)). 
This is referred as a "collision". The collision problem could 
make the single-index hash function to report a false positive 
of membership querying. As an example shown in Fig. 2(b), 
there exists an element A belonging to a set S. The single-
indexed hash unit provides A with a particular bit slot in the 
mapping table and sets this bit to 1. The value 1 indicates 
that A is in set S. But another element B that does not belong 
to S might also be hashed to the same slot. This conflicting 
scenario pollutes the meaning of the returned value and 
creates the situation of a false positive. From this returned 
value, users cannot tell if the element B has really been 
assigned to the slot or not. 

B. Classic Bloom Filter (BF) 
A Bloom filter is a space-efficient data structure 

proposed by Bloom in the 1970s [2]. Bloom filter uses 
multiple hash units for each element and sets several bits 
(depends on k, the number of hash functions) for each 
element. Fig. 3 shows how BF maps a single data to the 
mapping table with k = 3. A specific data C is considered in 
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Figure 4.   Different data maps to same slots in mapping array. In (a), 
we cannot tell if a slot is mapped multiple times. In (b), we can 
decrease the counter to indicate removal of an element. 

 
Figure 5.    (a) Banked Bloom filter with four hash functions. (b) Hard-
wired permutation table of BBF. 

a particular set T only when all the corresponding hashed 
slots are set. Fig. 3 also shows another element D, which 
does not belong to set T, and the corresponding hashed slots. 
Two of the slots collide with two of C's slots (colored). 
However, there is another slot of D that is not set, so the 
Bloom filter correctly reports D as not in the set T. The 
Bloom filter has less possibility that reports a false positive 
than a simple hash function because collision must happen in 
all of the k hash functions. 

C. Counting Bloom Filter (CBF) 
Classic Bloom filter provides a memory-effective way of 

reducing hash collisions by using multiple hashes. However, 
a classic Bloom filter suffers from two problems. First, as the 
number of hash function increases, its mapping slot is 
"polluted" or "saturated" faster since the Bloom filter 
requires setting k bits for each element. Second, the classic 
Bloom filter does not support "deleting" or "resetting" the 
mapping slots. In other words, once a bit is set, the classic 
Bloom filter has no mechanism to reset it. Eventually, the 
classic Bloom filter will be filled up with 1’s and loses its 
filtering functionality. 

Since the multiple hash function is inevitable for Bloom 
filters, Fan et al. [4] proposed counting Bloom filter (CBF) to 
enable resetting a mapping slot. Counting Bloom filter adds 
an additional counter array along with the mapping slots of 
the classic Bloom filter. Each l-bit counter is associated with 
a mapping slot in a one-to-one fashion. Whenever an 
element is inserted to a set, each hashed slot will increment 
its corresponding counter by 1 and sets the mapping slot to 1. 
Therefore, the counter indicates the number of elements 
hashed to it, as depicted in Fig. 4. On the other hand, 
whenever an element is removed, each slot will decrement 
its corresponding counter. When a counter is decreased to 
zero, its corresponding mapping slot will be reset to zero. 
With this resetting procedure, CBF achieves a lower false 
positive rate and hence reduces the impact of saturation of 
the classic Bloom filter. 

D. Banked Bloom Filter (BBF) 
Both BF and CBF requires k lookups from the mapping 

table because of k hash functions. Making these lookups in a 

serial manner is inefficient and difficult to meet the timing 
constraint in hardware implementation. However, 
parallelizing k lookups requires large memory bandwidth, so 
each memory in the filter has to implement k read/write ports 
for querying and updating elements. Banked Bloom filter 
was proposed to address the issue [5]. Similar to the banked 
cache access, BBF supports required bandwidth by using 
banking instead of adding read/write ports. Assume a 
memory with p ports and each port has B banks, it can 
provide a maximum of p·B simultaneous access as long as no 
more than p operations are accessing the same bank [5]. 

When applying Bloom filters to the local cache or 
interconnection of a SMP system, the filters are usually 
accessed at every cycle. Therefore a delay in the filter is 
undesirable. However, bank conflicts will stall the accessing 
procedure and make the filter to be ineffective. Banked 
Bloom filter uses a hard-wired permutation table to prevent 
bank conflicts. Fig. 5(a) shows how a banked Bloom filter is 
organized. With four hash functions, the BBF is configured 
as four banks to provide a memory bandwidth of 1 × 4 = 4 
accesses simultaneously. Whenever there is a membership 
querying to the filter, the permutation table will return a 
sequence of bit sets to the multiplexers and guide the hash 
functions to the corresponding banks. Fig. 5(b) depicts a 
permutation table with four banks (k = 4). 

III. DOUBLE LAYER COUNTING BLOOM FILTER 
Both the classic Bloom filter and counting Bloom filter 

have difficulty of providing the high accessing bandwidth 
required by k hash functions. The banked Bloom filter 
mitigates this problem by banked memory accesses. 
However, all filters still pose significant storage overhead. 
The classic Bloom filter implements a 1-bit-per-slot, but 
needs a large number of slots to alleviate the array saturation 
issue. Although the banked Bloom filter provides large 
memory bandwidth, it has the same 1-bit-per-slot structure as 
the classic Bloom filter. The counting Bloom filter, on the 
other hand, can handle array saturation better than the classic 
Bloom filter and banked Bloom filter, but it increases the 
storage overhead by using multi-bit counters instead of the 
single set bit. 

To reduce the storage overhead and further increase 
membership querying speed while preserving the 
functionality of the Bloom filter, we propose a novel Double 
Layer Counting Bloom Filter architecture (DLCBF). The 
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Figure 6.    Architecture of Double Layer Counting Bloom Filter. 

 
Figure 7.    SMP with Bloom filters. 

DLCBF adopts the idea of two-tier Bloom filter [6]. By 
adding a second tier cache Bloom filter, the two-tier Bloom 
filter is able to reduce the membership querying time. 
Whenever a query is invoked, the two-tier filter will check 
both the filter cache and main filter simultaneously. If the 
queried element is cached, the faster filter cache will respond 
with either a true or a false. Otherwise, the main filter will be 
responsible for returning the result of membership querying. 

The proposed DLCBF differs from the two-tier Bloom 
filter in the utilization of the extra "tier" or "layer". The 
DLCBF introduces an extra upper layer of hash units upon a 
banked Bloom filter (lower layer) to catch the data locality 
behavior. In other words, the upper layer is responsible for 
the membership querying for a consecutive memory region, 
not only for a single element. Besides, the extra hash 
function can generate different permutation for lower layer 
hash functions. Fig. 6 depicts the memory structure of the 
DLCBF. 

There are three main benefits enabled by DLCBF. First 
DLCBF adopts the banked structure and adds an extra layer 
to meet the heavy memory bandwidth requirement [5] and 
reduce membership querying time. With multiple access 
banks, the DLCBF requires only one lookup for each banked 
memory while CBF needs k lookups with k different hash 
functions. Second, DLCBF takes the advantage of data 
locality. It separates memory space into different regions. 
Since data in different regions are less likely to be accessed 
in a consecutive way, an extra layer can filter out 
unnecessary data operations with higher speed. Third, 
DLCBF benefits from the extra permutation array, which 
further lowers the probability of data collision. 

IV. EVALUATION 
This section first shows the experimental setup used in 

this paper. Then the performance of DLCBF is analyzed and 
compared with other Bloom filters in a SMP system. The 
DLCBF will be implemented on two system modules to 
reduce unnecessary data processing. The first module is the 
local cache of each processor. The DLCBF is used to reduce 
the unnecessary cache searches from snoopy coherence 
protocol. The second module is on the shared system bus to 
filter out the redundant data transmission. 

A. Experimental Setup 
We use GEM5 [7], a full-system event-driven simulator, 

as our experiment platform. We use a simple in-order 
processor model so that we can evaluate the proposed 
scheme within a reasonable simulation time. Table I lists the 
configuration parameters we used in our simulations. A 
single transaction shared bus takes charge of the 
communication among processors. The experiments were 
executed with 11 representative workloads from PARSEC 
benchmark suite [8]. 

TABLE I.  PROCESSOR AND CACHE/MEMORY PARAMETERS 

Component Parameters 
Processor core 2GHz, single-issue in-order 
Block size 64bytes 
L1 I-caches (Private) 32kB, 2-way, 2-cycle 
L1 D-caches (Private) 64kB, 2-way, 2-cycle 
Memory 60-cycle access latency 
Bus 1GHz, single transaction, 1-cycle 

overhead/transaction 
 
Four types of Bloom filters were implemented and 

compared, including the classic Bloom filter (BF), counting 
Bloom filter (CBF), banked Bloom filter (BBF), and the 
proposed double layer counting Bloom filter (DLCBF). As 
depicted in Fig. 7, the Bloom filters were connected in 
between of caches and the shared bus. All the filters in the 
experiment used four hash functions. The classic Bloom 
filter, CBF, and BBF are implemented with 1K bytes of 
memory per processor core. The DLCBF uses only 0.8175K 
bytes per core, bringing an 18.75% of memory usage 
reduction. This difference is from the upper layer of memory 
array, which is only 25% of a standard memory array. 

B. Results of Filtering Unnecessary Cache Searches 
Fig. 8 shows the filtered snooping rate using classic 

Bloom filter, CBF, BBF, and DLCBF for each benchmark. 
The filtered rate represents how many snoops are screened 
out by the filter. These are the unnecessary snoops that do 
not need to be handled by a cache. The experiments were 
performed on multi-core systems with two, four, eight, and 
sixteen processors. The right most column of Fig. 8 
represents the geometric mean of the filtered rates observed 
in the benchmarks. We can see that the classic Bloom filter 
performs poorly in all benchmarks. The reason is that the 
classic Bloom filter faces array saturation problem and does 
not support "resetting" a slot whenever an element is 
removed from the set. In this context, removal of an element 
is considered as cache line invalidation or eviction. 
Therefore, its mapping array saturates even when data set 
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Figure 8.    Filtered rate of classic Bloom filter (BF), counting Bloom filter (CBF), banked Bloom filter (BBF), and double layer counting Bloom filter 
(DLCBF). 

Figure 9.    Segmented bus architecture for 16-core processor. 

size is small and the classic Bloom filter loses its filtering 
functionality very quickly. Banked Bloom filter suffers from 
the same reason, although it supports faster querying access. 
On the other hand, because the counting feature enables the 
"resetting" ability, CBF reduces the array saturation rate. 
With lower saturation rates, CBF achieves better filtering 
behavior than the classic and banked Bloom filters. When 
compared with a classic Bloom filter, CBF achieves up to 
3.57X filtered rate improvement. 

With an additional hash function and hard-wired 
permutation table, DLCBF divides and maps the whole 
memory space to several storage arrays. This design avoids 
the data in different memory spaces colliding with each other. 
Inside each storage array, DLCBF utilizes multiple hash 
functions to prevent collision. In addition, the counting 
feature enables a much lower probability of collision and the 
ability to reset an element more effectively. Therefore, 
DLCBF further improves the filtered rate and significantly 
outperforms the classic Bloom filter, CBF, and BBF. The 
average improvement of filtered rate is 4.05X and 72.31% 
when compared to classic Bloom filter and CBF respectively. 

Another observation from Fig. 8 shows that the filtered 
rate increases with the number of processors for all four 
filters. This is because that when the number of processors 
increases, each processor is responsible for a smaller size of 
data set. For example, assume the total data set is 1MB; each 
processor in a 2-core multi-processor system would deal 
with 512kB of data. And in a 4-processor system, each core 
will be responsible for only 256kB of data. The effective 
data set size allocated to each individual core decreases with 

the increasing number of processors in a system. The smaller 
effective data set size lowers the memory space that needs to 
be handled by each filter. Therefore, the characteristics of 
each filter are improved with more processors in a system. 

C. Results of Filtering Unnecessary Data Transmission on 
A Shared Segmented Bus 
The segmented bus is proposed as an energy-efficient, 

bus-based on-chip interconnection [9]. It separates a long bus 
into several shorter buses and organizes them in a 
hierarchical manner. Fig. 9 depicts a 16-core processor with 
the segmented bus and filters. As we know, not every 
coherence transaction is expected to be broadcasted to every 
processor. A segmented bus implements two filters, In-filter 
and Out-filter, at each sub-bus to maintain some knowledge 
of cache contents in the local and remote segments and 
screens out unnecessary transactions. The In-filter keeps 
track of cache lines that are currently in the segment. When a 
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Figure 10.    Filtered rate of DLCBF and HPCA10 filter. 

broadcast is invoked, every segment will first look up at its 
local In-filter. And a broadcast to local processors will be 
performed if the In-filter allows. The Out-filter keeps track 
of cache lines that is sent out to remote segments. If a 
specific cache line has never been sent out before, the local 
segment does not broadcast it to the remote segments. Each 
segmented bus filter contains two arrays of 8192 entries, one 
array for In-filter and the other for Out-filter. Every entry is 
consisted of a 10-bit counter. In all, each filter requires 20K 
bytes of storage overhead. 

In this experiment, we apply the DLCBF to a segmented 
bus. We simulated a 16-processor system with a segmented 
bus. We compared two filter schemes. The first scheme is 
the Bloom filter design (HPCA10) used in [9], and the 
second scheme adopts the proposed DLCBF. The HPCA10 
is implemented with 20kB of memory, while the DLCBF is 
13kB in size. Fig. 10 shows the simulation results, DLCBF 
and HPCA10 [9] are compared. Basically, the HPCA10 filter 
is a counting Bloom filter with big counters and a large 
storage. The outperforming filtered rate of DLCBF confirms 
that the additional hash is helpful even when compared to a 
large CBF. The average improvement of filtered rate is 58% 
for In-filter and 1.86X for Out-filter in comparison to 
HPCA10. 

V. CONCLUSION 
In this paper, we propose an area efficient double layer 

architecture of Bloom filter, DLCBF. By adding extra 
filtering layer, DLCBF can use 18.75% smaller memory to 
achieve 4.05X and 72.31% better filtered rate when 
compared with a classic Bloom filter and CBF respectively. 
When applying on segmented bus, DLCBF outperforms 
HPCA10 filter by 58% for In-filter and 1.86X for Out-filter. 
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