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Abstract—The snoopy protocol is a widely used scheme to
maintain cache coherence. However, the protocol requires a
broadcast scheme and forces substantial unnecessary data
searches at the local cache. This paper proposes a novel Double
Layer Counting Bloom Filter (DLCBF) to significantly reduce
the redundant data searches and transmission. The DLCBF
implements an extra layer of hash function and the counting
feature at each filter entry. By using the hierarchical structure
of the hash function, DLCBF can effectively increase the
successful filter rates while requiring a smaller memory usage
than the conventional Bloom filters. Experimental results show
that the DLCBF can screen out 4.05X of unnecessary cache
searches and use 18.75% less memory compared to
conventional Bloom filters. The DLCBF is also used to filter
out the redundant data transmission on a hierarchical shared
bus. Simulation results show that the DLCBF outperforms
conventional filters by 58% for local transmissions and 1.86X
for remote transmissions.

Keywords-multi-core; memory coherence; bloom filter; cache
optmization;memory efficient design

L INTRODUCTION

In modern computing systems, multi-core architectures
have dominated from high-end servers to personal
computers. The shared-memory Symmetric Multi-processor
(SMP) is one of the main architectures that have been widely
used. However, data sharing among multiple cores in a SMP
introduces cache coherence issues [1]. In order to maintain a
coherent memory system, a multi-core system needs to
update or invalidate the shared data whenever one of its
owners writes a new value to this data location. As depicted
in Fig. 1, Core 1 and Core 3 share the same data (4 = 5).
When Core 1 performs a write operation to its copy of the
shared data (4 = 7), a coherent system updates the shared
copy in Core 3 with the latest result or otherwise invalidates
it.

A snoopy coherence protocol [1] is one of the popular
methods to enable the cache coherence. When a data
operation (read/write) is performed, the snoopy protocol
forces all the caches in a multi-core system to check the data
operation emerged on the shared interconnection. By
invalidating each conflicting data, the protocol preserves data
coherence. However, the snoopy coherence protocol adopts a
broadcast scheme and every processor in the system needs to
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perform a search in its associated local cache whenever it
sees a broadcast message. From the point of view of a
parallel application, the snoopy coherence protocol is
invoked whenever two or more processors need to exchange
data. In general, the data sharing behavior is usually
happened within a certain number of parallel tasks. The
number of these affined tasks is typically much smaller than
the size of the overall multi-core system. Therefore, if the
snooping broadcast happens too frequently, a huge number
of needless searches would be performed by the local cache
which does not have the data specified by the broadcast
message. For example, assume that there is a datum owned
by only one processor. When this particular datum is written,
the snoopy protocol would broadcast an invalidation
message and invoke searches at all the caches while none of
these searches are actually needed. This broadcast behavior
of the snoopy protocol would unnecessarily put a cache in a
busy mode that could increase the energy consumption as
well as degrade the system performance.

This paper proposes a novel architecture of Double-Layer
Counting Bloom Filter (DLCBF), and applies the DLCBF to
filter out the unnecessary data communication and cache
searches in a SMP system. A Bloom filter [2] is a classic unit
used in database management. It uses hash functions to
maintain the data mapping structure and provides an
effective method to perform membership querying. However,
due to the limited size of the filter, it suffers from rapid array
saturation problem [3]. If the dataset of an application is too
large, the data mapping structure would saturate and make
the filtering mechanism ineffective. The DLCBF proposed
by this paper implements an extra layer of hash function and
the counting feature at each filter entry. By using the
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Figure 1. A coherence mechanism when multiple cores share the
same data. The colored cache blocks are shared among different cores.
They should be either updated or invalidated while this particular
block is being written.
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hierarchical structure of the hash function, DLCBF can
effectively increase the successful filter rates while requiring
a smaller memory usage than the conventional Bloom filters.
The counting feature of DLCBF further enhances the ability
to handle the array saturation issue.

This paper implements the DLCBF on two system
modules of a SMP system to reduce unnecessary data
processing of snoopy coherence protocol. The first module is
the local cache of each processor. By connecting a Bloom
filter between a cache and system interconnection, the filter
mechanism can be used to screen out the unnecessary
snooping messages that would be otherwise handled by each
processor. The second module is the shared system bus. A
bloom filter is embedded in the system interconnection to
reduce the costly system-wide data broadcast. When
compared with conventional bloom filters, the DLCBF can
manage larger data set with fast data accesses while
requiring smaller memory area. By deploying the DLCBF in
a SMP system, a substantial amount of redundant memory
operations and data transmission can be eliminated. In our
experiment, the DLCBF can reduce up to 65.8% of
unnecessary snoops to local caches with 18.75% less
memory usage. Simulation results also show that the DLCBF
outperforms conventional filters by 58% for local
transmissions and 1.86X for remote transmissions.

The rest of the paper is organized as follows. In section I,
we introduce the basic architecture of a Bloom filter (BF).
Two modified versions, Counting Bloom Filter (CBF) and
Banked Bloom Filter (BBF), are also discussed. Section III
shows the proposed filter structure, Double Layer Counting
Bloom Filter (DLCBF). The detail functionality and
implementation concerns are also discussed. Section IV
covers our evaluation methodology and demonstrates the
cycle accurate simulation results. Finally, we conclude this
paper in section V.

II.  PREVIOUS WORK ON BLOOM FILTER DESIGNS

To give a general background on membership querying
techniques, this section will first introduce a simple hash-
based method. Then three types of Bloom filters will be
discussed, including classic Bloom filter (BF), counting
Bloom filter (CBF), and banked Bloom filter (BBF). These
three bloom filters are widely used designs and provide
different advantages. The proposed DLCBF is a novel
architecture which combines the features of these three filter
types and benefits from all of them.

A. Simple Hash-based Technique

A membership querying function returns a value of true
or false to identify the existence of a given input query. A
straightforward way to implement a membership query
function is to give an entry to each individual member.
However, the total number of the members is usually much
larger than the limitation of the memory size in a design. A
hash function is a basic yet efficient solution for membership
querying. An input query will be sent to a hash function, and
a hashed value is returned to index the corresponding entry
of the query. However, the single-index hash table is prone
to returning many false positives for different queries. For
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Figure 2. (a) Hash collision. (b) Hash reports a false positive for
element B.

example, a computer system with n-bit memory addresses
will introduce 2" distinct memory locations. In an ideal case,
a hash function needs 2" bits to distinguish each data location.
But due to the storage limitation in real systems, the hash
function is forced to map the 2" memory space to a mapping
table with only m bits, where m is much smaller than 2”. The
parameter m may vary according to accuracy requirements
and available resources. Thus, 2" - m datum could be hashed
to a bit that has already been used by another data (Fig. 2(a)).
This is referred as a "collision". The collision problem could
make the single-index hash function to report a false positive
of membership querying. As an example shown in Fig. 2(b),
there exists an element A4 belonging to a set S. The single-
indexed hash unit provides 4 with a particular bit slot in the
mapping table and sets this bit to 1. The value 1 indicates
that 4 is in set S. But another element B that does not belong
to S might also be hashed to the same slot. This conflicting
scenario pollutes the meaning of the returned value and
creates the situation of a false positive. From this returned
value, users cannot tell if the element B has really been
assigned to the slot or not.

B. Classic Bloom Filter (BF)

A Bloom filter is a space-efficient data structure
proposed by Bloom in the 1970s [2]. Bloom filter uses
multiple hash units for each element and sets several bits
(depends on k, the number of hash functions) for each
element. Fig. 3 shows how BF maps a single data to the
mapping table with £ = 3. A specific data C is considered in
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Figure 3. The mapping mechanism of a Bloom filter (k = 3)



a particular set 7 only when all the corresponding hashed
slots are set. Fig. 3 also shows another element D, which
does not belong to set 7, and the corresponding hashed slots.
Two of the slots collide with two of C’s slots (colored).
However, there is another slot of D that is not set, so the
Bloom filter correctly reports D as not in the set 7. The
Bloom filter has less possibility that reports a false positive
than a simple hash function because collision must happen in
all of the & hash functions.

C. Counting Bloom Filter (CBF)

Classic Bloom filter provides a memory-effective way of
reducing hash collisions by using multiple hashes. However,
a classic Bloom filter suffers from two problems. First, as the
number of hash function increases, its mapping slot is
"polluted" or "saturated" faster since the Bloom filter
requires setting k bits for each element. Second, the classic
Bloom filter does not support "deleting" or "resetting" the
mapping slots. In other words, once a bit is set, the classic
Bloom filter has no mechanism to reset it. Eventually, the
classic Bloom filter will be filled up with 1’s and loses its
filtering functionality.

Since the multiple hash function is inevitable for Bloom
filters, Fan et al. [4] proposed counting Bloom filter (CBF) to
enable resetting a mapping slot. Counting Bloom filter adds
an additional counter array along with the mapping slots of
the classic Bloom filter. Each /-bit counter is associated with
a mapping slot in a one-to-one fashion. Whenever an
element is inserted to a set, each hashed slot will increment
its corresponding counter by 1 and sets the mapping slot to 1.
Therefore, the counter indicates the number of elements
hashed to it, as depicted in Fig. 4. On the other hand,
whenever an element is removed, each slot will decrement
its corresponding counter. When a counter is decreased to
zero, its corresponding mapping slot will be reset to zero.
With this resetting procedure, CBF achieves a lower false
positive rate and hence reduces the impact of saturation of
the classic Bloom filter.

D. Banked Bloom Filter (BBF)

Both BF and CBF requires & lookups from the mapping
table because of & hash functions. Making these lookups in a
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Figure 4. Different data maps to same slots in mapping array. In (a),
we cannot tell if a slot is mapped multiple times. In (b), we can
decrease the counter to indicate removal of an element.

serial manner is inefficient and difficult to meet the timing
constraint in  hardware implementation. = However,
parallelizing & lookups requires large memory bandwidth, so
each memory in the filter has to implement & read/write ports
for querying and updating elements. Banked Bloom filter
was proposed to address the issue [5]. Similar to the banked
cache access, BBF supports required bandwidth by using
banking instead of adding read/write ports. Assume a
memory with p ports and each port has B banks, it can
provide a maximum of p-B simultaneous access as long as no
more than p operations are accessing the same bank [5].

When applying Bloom filters to the local cache or
interconnection of a SMP system, the filters are usually
accessed at every cycle. Therefore a delay in the filter is
undesirable. However, bank conflicts will stall the accessing
procedure and make the filter to be ineffective. Banked
Bloom filter uses a hard-wired permutation table to prevent
bank conflicts. Fig. 5(a) shows how a banked Bloom filter is
organized. With four hash functions, the BBF is configured
as four banks to provide a memory bandwidth of 1 x 4 =4
accesses simultaneously. Whenever there is a membership
querying to the filter, the permutation table will return a
sequence of bit sets to the multiplexers and guide the hash
functions to the corresponding banks. Fig. 5(b) depicts a
permutation table with four banks (k= 4).

III. DOUBLE LAYER COUNTING BLOOM FILTER

Both the classic Bloom filter and counting Bloom filter
have difficulty of providing the high accessing bandwidth
required by k hash functions. The banked Bloom filter
mitigates this problem by banked memory accesses.
However, all filters still pose significant storage overhead.
The classic Bloom filter implements a 1-bit-per-slot, but
needs a large number of slots to alleviate the array saturation
issue. Although the banked Bloom filter provides large
memory bandwidth, it has the same 1-bit-per-slot structure as
the classic Bloom filter. The counting Bloom filter, on the
other hand, can handle array saturation better than the classic
Bloom filter and banked Bloom filter, but it increases the
storage overhead by using multi-bit counters instead of the
single set bit.

To reduce the storage overhead and further increase
membership querying speed while preserving the
functionality of the Bloom filter, we propose a novel Double
Layer Counting Bloom Filter architecture (DLCBF). The
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Figure 5. (a) Banked Bloom filter with four hash functions. (b) Hard-
wired permutation table of BBF.



DLCBF adopts the idea of two-tier Bloom filter [6]. By
adding a second tier cache Bloom filter, the two-tier Bloom
filter is able to reduce the membership querying time.
Whenever a query is invoked, the two-tier filter will check
both the filter cache and main filter simultaneously. If the
queried element is cached, the faster filter cache will respond
with either a true or a false. Otherwise, the main filter will be
responsible for returning the result of membership querying.

The proposed DLCBF differs from the two-tier Bloom
filter in the utilization of the extra "tier" or "layer". The
DLCBF introduces an extra upper layer of hash units upon a
banked Bloom filter (lower layer) to catch the data locality
behavior. In other words, the upper layer is responsible for
the membership querying for a consecutive memory region,
not only for a single element. Besides, the extra hash
function can generate different permutation for lower layer
hash functions. Fig. 6 depicts the memory structure of the
DLCBF.

There are three main benefits enabled by DLCBF. First
DLCBF adopts the banked structure and adds an extra layer
to meet the heavy memory bandwidth requirement [5] and
reduce membership querying time. With multiple access
banks, the DLCBF requires only one lookup for each banked
memory while CBF needs & lookups with & different hash
functions. Second, DLCBF takes the advantage of data
locality. It separates memory space into different regions.
Since data in different regions are less likely to be accessed
in a consecutive way, an extra layer can filter out
unnecessary data operations with higher speed. Third,
DLCBF benefits from the extra permutation array, which
further lowers the probability of data collision.

IV. EVALUATION

This section first shows the experimental setup used in
this paper. Then the performance of DLCBF is analyzed and
compared with other Bloom filters in a SMP system. The
DLCBF will be implemented on two system modules to
reduce unnecessary data processing. The first module is the
local cache of each processor. The DLCBF is used to reduce
the unnecessary cache searches from snoopy coherence
protocol. The second module is on the shared system bus to
filter out the redundant data transmission.
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Figure 6. Architecture of Double Layer Counting Bloom Filter.

A.  Experimental Setup

We use GEMS5 [7], a full-system event-driven simulator,
as our experiment platform. We use a simple in-order
processor model so that we can evaluate the proposed
scheme within a reasonable simulation time. Table I lists the
configuration parameters we used in our simulations. A
single transaction shared bus takes charge of the
communication among processors. The experiments were
executed with 11 representative workloads from PARSEC
benchmark suite [8].

TABLE L PROCESSOR AND CACHE/MEMORY PARAMETERS
Component Parameters
Processor core 2GHz, single-issue in-order
Block size 64bytes

L1 I-caches (Private) 32kB, 2-way, 2-cycle

L1 D-caches (Private) | 64kB, 2-way, 2-cycle

Memory 60-cycle access latency

Bus 1GHz, single transaction,

overhead/transaction

1-cycle

Four types of Bloom filters were implemented and
compared, including the classic Bloom filter (BF), counting
Bloom filter (CBF), banked Bloom filter (BBF), and the
proposed double layer counting Bloom filter (DLCBF). As
depicted in Fig. 7, the Bloom filters were connected in
between of caches and the shared bus. All the filters in the
experiment used four hash functions. The classic Bloom
filter, CBF, and BBF are implemented with 1K bytes of
memory per processor core. The DLCBF uses only 0.8175K
bytes per core, bringing an 18.75% of memory usage
reduction. This difference is from the upper layer of memory
array, which is only 25% of a standard memory array.

B.  Results of Filtering Unnecessary Cache Searches

Fig. 8 shows the filtered snooping rate using classic
Bloom filter, CBF, BBF, and DLCBF for each benchmark.
The filtered rate represents how many snoops are screened
out by the filter. These are the unnecessary snoops that do
not need to be handled by a cache. The experiments were
performed on multi-core systems with two, four, eight, and
sixteen processors. The right most column of Fig. 8
represents the geometric mean of the filtered rates observed
in the benchmarks. We can see that the classic Bloom filter
performs poorly in all benchmarks. The reason is that the
classic Bloom filter faces array saturation problem and does
not support "resetting" a slot whenever an element is
removed from the set. In this context, removal of an element
is considered as cache line invalidation or eviction.
Therefore, its mapping array saturates even when data set
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size is small and the classic Bloom filter loses its filtering
functionality very quickly. Banked Bloom filter suffers from
the same reason, although it supports faster querying access.
On the other hand, because the counting feature enables the
"resetting” ability, CBF reduces the array saturation rate.
With lower saturation rates, CBF achieves better filtering
behavior than the classic and banked Bloom filters. When
compared with a classic Bloom filter, CBF achieves up to
3.57X filtered rate improvement.

With an additional hash function and hard-wired
permutation table, DLCBF divides and maps the whole
memory space to several storage arrays. This design avoids
the data in different memory spaces colliding with each other.
Inside each storage array, DLCBF utilizes multiple hash
functions to prevent collision. In addition, the counting
feature enables a much lower probability of collision and the
ability to reset an element more effectively. Therefore,
DLCBEF further improves the filtered rate and significantly
outperforms the classic Bloom filter, CBF, and BBF. The
average improvement of filtered rate is 4.05X and 72.31%

when compared to classic Bloom filter and CBF respectively.

Another observation from Fig. 8 shows that the filtered
rate increases with the number of processors for all four
filters. This is because that when the number of processors
increases, each processor is responsible for a smaller size of
data set. For example, assume the total data set is IMB; each
processor in a 2-core multi-processor system would deal
with 512kB of data. And in a 4-processor system, each core
will be responsible for only 256kB of data. The effective
data set size allocated to each individual core decreases with
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Filtered rate of classic Bloom filter (BF), counting Bloom filter (CBF), banked Bloom filter (BBF), and double layer counting Bloom filter

the increasing number of processors in a system. The smaller
effective data set size lowers the memory space that needs to
be handled by each filter. Therefore, the characteristics of
each filter are improved with more processors in a system.

C. Results of Filtering Unnecessary Data Transmission on
A Shared Segmented Bus

The segmented bus is proposed as an energy-efficient,
bus-based on-chip interconnection [9]. It separates a long bus
into several shorter buses and organizes them in a
hierarchical manner. Fig. 9 depicts a 16-core processor with
the segmented bus and filters. As we know, not every
coherence transaction is expected to be broadcasted to every
processor. A segmented bus implements two filters, In-filter
and Out-filter, at each sub-bus to maintain some knowledge
of cache contents in the local and remote segments and
screens out unnecessary transactions. The In-filter keeps
track of cache lines that are currently in the segment. When a
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Segmented bus architecture for 16-core processor.
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broadcast is invoked, every segment will first look up at its
local In-filter. And a broadcast to local processors will be
performed if the In-filter allows. The Out-filter keeps track
of cache lines that is sent out to remote segments. If a
specific cache line has never been sent out before, the local
segment does not broadcast it to the remote segments. Each
segmented bus filter contains two arrays of 8192 entries, one
array for In-filter and the other for Out-filter. Every entry is
consisted of a 10-bit counter. In all, each filter requires 20K
bytes of storage overhead.

In this experiment, we apply the DLCBF to a segmented
bus. We simulated a 16-processor system with a segmented
bus. We compared two filter schemes. The first scheme is
the Bloom filter design (HPCA10) used in [9], and the
second scheme adopts the proposed DLCBF. The HPCA10
is implemented with 20kB of memory, while the DLCBEF is
13kB in size. Fig. 10 shows the simulation results, DLCBF
and HPCA10 [9] are compared. Basically, the HPCA10 filter
is a counting Bloom filter with big counters and a large
storage. The outperforming filtered rate of DLCBF confirms
that the additional hash is helpful even when compared to a
large CBF. The average improvement of filtered rate is 58%
for In-filter and 1.86X for Out-filter in comparison to
HPCA10.

V.

In this paper, we propose an area efficient double layer
architecture of Bloom filter, DLCBF. By adding extra
filtering layer, DLCBF can use 18.75% smaller memory to
achieve 4.05X and 72.31% better filtered rate when
compared with a classic Bloom filter and CBF respectively.
When applying on segmented bus, DLCBF outperforms
HPCA10 filter by 58% for In-filter and 1.86X for Out-filter.

CONCLUSION
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