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Abstract 
In a mobile telephone network, users may move around the service area during 
conversations, which can significantly affect the efficiency of radio resource (i.e., 
radio channels) allocation in the network. The author describes a simple analytic 
model to stud the effect of user mobility on the performance of a mobile tele- 
phone networl. Throughout the derivation of the model, the intuition behind the 
equations is  provided to explain how user behavior affects network erformance. 

types of users with different mobility patterns. 
This model can be used to study different handoff schemes with sing P e and mixed 

n a mobile telephone network, a 
service area is populated with a 
large number of base stations, each 
providing coverage in its vicinity. 

e radio coverage of a base station is 
called a cell (Fig. 1). We consider a 
fixed or quasi-static channel assign- 
ment [l] where a group of channels 
(time slots, frequencies, spreading 
codes, or a combination of these) 
are assigned to each base station. 

When the network attempts to 
deliver a call to a handset or  the  
handset attempts to originate a call, 
the call is connected if a channel is 
available. Otherwise, the call is 
blocked (referred to as the new call 
blocking). When a handset moves 
from one cell to another during a 
call, in order to maintain call contin- 
uation the channel in the old cell is 
released (see link a in Fig. 1), and a 

W Figure 1. Cells, base stations, and hand08 

channel is required in the new cell (see link b in Fig. 1). This 
process is called hand-off. If no channel is available in the new 
base station, then the hand-off call is force-terminated. The 
forced termination of an ongoing call is considered less desir- 
able than blocking a new call. Several models [Z-91 have been 
proposed to study various hand-off schemes for mobile tele- 
phone networks. These models provide important insight into 
understanding the performance of the hand-off schemes 
under different handset mobility patterns. This article propos- 
es a model to generalize the previous proposed models [2-91 
by accommodating handsets with arbitrary mobility patterns 

(i.e., with arbitrary residence time 
distributions). Our model can be 
used in wireless network planning as 
follows. In the process of establishing 
a wireless network, after the base 
stations are installed, there will be a 
field trial to test the radio signals of 
base stations, and the cell residence 
times can be measured by either the 
handsets or the base stations. 

The cell residence time data can 
be approximated by a general distri- 
bution. Call traffic volumes are esti- 
mated for cells during the network 
planning phase. The call completion 
probability is also determined, as 
the performance goal of the  net- 
work, at network planning. Then our 
model can be applied to find the 
number of radio channels to be 
assigned at the cells. We note that 
measurement of cell residence times 

is not a trivial task, and no measured data have been obtained 
from any large-scale field trial. 

Based on the model described in this article, we have 
extended our analysis to accommodate handsets with general 
call holding time distributions [lo]. The derivation in [lo] 
involved nonintuitive mathematical operations that are diffi- 
cult to understand. Similarly, this article will include many 
mathematical derivations. However, we will try to provide 
intuitive descriptions for the equations derived in this article. 

Before we investigate the mobile network handoff modeling 
problem, we should discuss the distribution of a handset resi- 

IEEE Network NovemberDecember 1997 0890-8044/97/$10.00 0 1997 IEEE 63 



H Figure 2. The timing diagram. 

dence time in a cell (the time a handset spends in a cell). 
Many studies have assumed exponential handset residence 
time distributions. However, handset residence times depend 
on the user mobility pattern, size of a cell, radio propagation 
environment, and so on. In particular, propagation plays an 
interesting role in handoff and makes precise definition of 
residence time complicated. For example, there are no hard 
cell boundaries which clearly separate cells. Shadow fading 
can make these cell boundaries very irregular. What really 
counts is what the handset perceives based on its measure- 
ments of the signals from surrounding base stations These 
measurements are never really direct measurements of the 
local mean signal but are subject to effects of Rayleigh fading. 
We consider a general distribution function of the residence 
time which is flexible enough to accommodate these effects. 
Candidates for general distributions can be log normal, 
Gamma, or Weibull [ll], which have the desirable property of 
approximating an extensive class of distributions by setting 
appropriate parameters. Note that this article does not intend 
to study "what is a reasonable residence time distribution." 
Our experience indicates that residence time distributions are 
highly dependent on the specific networks under study, and it 
is difficult to make general characterizations of user move- 
ment patterns; instead, moving patterns should be studied 
case by case. 

The illustrative examples in this article will consider the 
Gamma handset residence time distribution. A Gamma densi- 
ty function is 

f ( t )  = 
pYtY-l,-bt 

(1) 

where p is called the scale parameter (which controls the mean 
and variance of the distribution), and y is called the shape 
parameter (which controls the shape of the distribution curve). 
Depending on the values of the parameters, it can be shaped 
to represent many distributions as well as measured data. For 
example, an exponential distribution is a Gamma distribution 
with y = 1, a Chi-squared distribution is a Gamma distribu- 
tion with p = 0.5 and y = vi2 (where v is the degrees of free- 
dom), and an Erlang distribution is a Gamma distribution 
with a nonnegative integer yvalue. One may also measure 
the handset residence times in a real mobile telephone net- 
work, and the measured data can be approximated by a 
Gamma distribution as the input to our mobile network 
handoff model. Let 

be the Laplace transform of the handset residence time distri- 
bution. The Laplace transformfz(s) will appear in most equa- 
tions derived in this article. Many Laplace transform pairs are 
already available in the literature [12]. For example, a Gamma 
distribution with the shape parameter y and the mean l lq  
(i.e., the scale parameter p = m) has the Laplace transform 

(3 )  

We first describe the assumptions of our model, and derive 

ferent mobility patterns. The notation used 
in this article is listed in Appendix A. 

Assumptions and Some Results 
is section describes the assumptions and some important r results to be used in our mobile network handoff model. 

We assume that the call arrivals to a handset form a Pois- 
son process (i.e., the intercall arrival times are exponentially 
distributed). The Poisson call arrivals have been observed in 
most telecommunication networks, and the assumption is JUS- 

tified [13]. 
In Fig. 2, t, is the call holding time of a handset, which is 

assumed to be exponentially distributed with the density function 

f C ( Q  = w-Pc 

where the mean call holding time is E[t,] = 111.1. The resi- 
dence time of a handset at a cell i (the time interval that a 
handset stays in cell z) is tm,L For all I ,  tm,c are assumed to be 
independent, identical random variables with a general distri- 
bution with the density function fm(tm,L), and the mean value 

Suppose that a call arrives when a handset is in cell 0. Let 
T,,O be the period between the arrival of the call and when 
the handset (the user) moves out of cell 0. Note that T ~ , O  5 
tm,o as shown in Fig. 2. 

Suppose that a call successfully hands over i times. Let tc,z 
be the period between the time when the handset moves into 
cell i and the time when the call is completed. The period tc,L 
is called the excess life oft,. Let Pr[tc > tm, ] (Pr [t,,, > tm,L]) 
be the probability that a new (handoff) calf at the cell is not 
completed before the handset moves out of the cell. In 
Appendix B, Eq .  24, we find that Pr[t,,, > tm,,] can be 
expressed by the Laplace transformfd(s) of the residence 
time distribution (the definition of the Laplace transform is 
given in Eq. 2) with s = p: 

E[tm,zl = 1/17. 

Pr[tc,, > f,,Ll = fm*(P> 
This simple result is derived directly from the definition of 

the Laplace transform. For gamma cell residence times, we have 

(4) 
In Eq. 4, when q >> p, the probability approaches 1, and 

when p >> q, the probability approaches 0. This result is con- 
sistent with our intuition. 

Similarly, the probability Pr[tc > t,,~] is derived in Appendix 
B (see Eq. 23) as 

If the cell residence times are approximated by a gamma 
distribution, we have 

r ,  

For illustration purposes, consider the cases when y = 2 
and 112. For y = 2 , the above equation is rewritten as 

(5) 
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In Eq. 5, when q >> p, the probability approaches 1 and 
when p >> q, the probability approaches qlp. For y = 112, 

Similar to Eq. 5, when q >> p, the probability in Eq. 6 
approaches 1, and when 1-1 >> q, the probability approaches 0. 

When a channel is assigned to a new call, the channel is 
released if the call completes or the handset moves out of the 
cell. Let tdo be the channel occupation time of a new call. Then 

td, = min(tc, .c,,o> 
In Fig. 2, tdo = z,,~. The expected channel occupation time 

of a new call is derived in Eq. 28 in Appendix B: 

(7) 

(8) 
1 

P 
= -Pr[t, < T , , ~ ]  

Equation 8 implies that the longer the call holding time 
(Up), the longer the new call channel occupation time at a 
cell. However, the channel occupation time is also determined 
by user mobility (i.e., the term Pr[t, < z~ ,o ] ) .  For a very slow 
mover, we have limTmo+- Pr[tc < 2,,0] = 1 and E[tdo] = l / p  
= E[t,]. For a fast mover, lim,,,,+o Pr[t, < 7?,0] = 0 and 
E[tdo] is much shorter than the expected call holding time. 

Let t& be the channel occupation time of a handoff call. If 
a call successfully hands over i times, then at cell i, 

tdh = min(tc,i, tm,i) 
In Fig. 2, tdh = tm,f-l for cell i - 1, and tdh = tc,L for cell i. 

The expected channel occupation time of a handoff call is 
derived in Appendix B: 

(9)  

(10) 
1 

F 
= -Pr[tc,i < tm,l]  

After tedious derivation in Appendix B, we found that Eq. 10 
has a simple format similar to Eq. 8. Note that E[t&] # E[&,] 
except for the case when fm(t) is an exponential density function. 

If the handset residence times are exponentially distributed, 
then 

The above equation indicates that the expected channel 
occupation time is short for high mobility (a large q) or short 
holding time (a large p). 

Let h, and hh be the new call arrival rate and the handoff 
call arrival rate to a cell, respectively. Letp, andpf be the new 
call blocking probability and the forced termination probability, 
respectively. For the moment, we assumep, andpf are known 
(both probabilities will be derived in the next section). Then the 
handoff call arrival rate can be expressed as a function of h,, 
p,, and pf as follows. Consider a homogeneous system where 
the handoff call arrival rate to a cell is the same as the hand- 
off call departure rate, which is denoted as &. We have 

kh = hh(1 -Pf) Pr[tc,~ > tm,fl + ho(1 -po)Pr[tc > Tm,Ol (11) 
Equation 11 states that a handoff call will overflow from a 

cell i to its neighbors in two cases: 
The call is a handoff call, which is not force-terminated (with 
probability 1 -pf)  at cell i, and the call is not completed before 

the handset leaves cell i (with probability Pr[t,,i > tm$. 
The call is a new call, which is not blocked (with probability 
1 -po) at cell i, and the call is not completed before the 
handset leaves cell i (with probability Pr[tc > T ~ , ~ ] ) .  
After arrangement, Eq. 11 is rewritten as 

Equation 12 provides the following intuitions. A cell experi- 
ences a large handoff traffic if 

po is small (a new call is unlikely to be blocked) 
Pr[t, > 2,,0] is large (a new call is unlikely to be completed 

pf is small (a handoff call is unlikely to be force-terminated) 
Pr[t,,L > tm,J is large (a handoff call is unlikely to be com- 
pleted before the handset leaves the cell). 
From Eq. 13, it is clear that the handoff rate hh and the 

residence time distribution fm are highly correlated. 
Let pnc be the probability that a call is not completed 

(either a blocked new call or a force-terminated handoff call). 
Since an incomplete call may successfully hand over several 
times before it is force-terminated, it is clear that 

before the handset leaves the cell) 

Pnc f Po + Pf 
The probabilityp,, was derived in [17]: 

The formal derivation of Eq. 14 in [17] is lengthy and diffi- 
cult to understand. An intuitive derivation for Eq. 14 is given 
below. In a period At, there are A& new call arrivals to a cell. 
These new calls generate hhAt handoff calls. Among these 
newlhandoff calls, the number of blocked calls ispoh,At + 
pfh& . Thus, pnc is 

Substituting Eq. 13 into Eq. 15, we have Eq. 14 as expected. 

The Iterative Algorithm 
ong and Rappaport [5] proposed an iterative technique H for handoff modeling. This technique has been adopted in 

other handoff models (see [2, 141 and the references therein). 
This section shows how to use the iterative technique to com- 
pute po, pf, and pnc using the equations derived in the previous 
section. We have experimentally shown that the outputs of the 
algorithm converge to the true values, and a special case with 
exponential residence times was shown in [14]. 

The iterative algorithm can be used to model different hand- 
off schemes [5, 141 such as the nonprioritized scheme, where the 
handoff calls and new call attempts are not distinguishable; the 
guard channel scheme, where a number of channels in a base 
station are reserved for handoff calls; the queuingprioritizing 
schemes (if the new base station does not have any free chan- 
nel, the handoff call waits in a queue before the handset 
moves out of the handoff area'); and the subrating scheme (if 

The handoff area is an area where a call can be handled by the base sta- 
tion in either the new or the old cell. 

IEEE Network NovembedDecember 1997 65 



the new base station does not have any 
free channel, an occupied full-rate chan- 
nel is temporarily divided into two chan- 
nels at half the original rate: one to serve 
the existing call and the other to serve 
the handoff request2). We consider J 
types of handsets. Handsets of type j ( 1  
< j < J )  are distinguished by their resi- 
dence time distribution f m j ( t )  and their 
mean call holding times Upj. The algo- 
rithm is described below. 

input farameiers 
The number of channels in a base sta- 
tion is c. For type j handsets (1 5 j 5 J), 
the following parameters are given: h,j 
(the new call arrival rate), pi (the call 
completion rate), and &(t) (the handset 
residence time density €unction). 

Output Measures 
hhj (the handoff call arrival rate), p O j  
( the  new call blocking probability), 
and pncj  (the call incompletion proba- 
bility). 

Step 7 - For 1 5 j 5 J select an initial 
value for hh j .  

Step 2 -For  1 5  j 5 J compute the 
expected channel occupation times 
E[tdUj] (see Eq. 7) and E [ t d h j ]  (see Eq. 
9) by usingfmj(t) and &. 

Step 3a - Consider the nonprioritized 
handoff scheme where the handoff calls 
and new calls have the same priority to 
access channels (modeling of other hand- 
off schemes will be discussed later), and 
p o  = p f  The system under study is a c- 
server blocking system with general ser- 
vice times (or an M/G/c/c queue). From 
the queuing theory [15], the net traffic to 
a cell is 

Pn = ~ { h , , j ~ [ t d o ,  j ]  + ~ h , j ~ [ t d h ,  j ] ]  
15jS.I  

Step 3b - Since the blocking probabili- 
ty for an MJGlclc queue is the same as 

/. / ' ;  24 
i 

71 

18 

pnc  
?(, 15 

12 

9 

6 

3 

0 

24. ' -.I 
I :  

"1 18 

4 5 6 7 4 5 6 

l o  1 
Pnc? 

06 

I 

an M/M/cJc queue with the same arrival process and the same 
channel number [16], we have 

where B(p,J is the Erlang loss equation [16]. 

step 4 - For 1 5 j 5 J ,  h ~ ~ ~ , ~ i d  t hhj: This step saves the ?Lhj 
values computed in the previous iteration. 

step 5 - For 1 5 j 5 J compute new h h j  values by using Eq. 
13: 

2 If a chatinel is released, two subrated channels are switched back to full- 
rate channels. 

qj ( I - P ~  ) ~ - . C , j ( ~ t j ) ~ x o , j  

h h 3 j  = p j u -  (1 - P0)f2,j(LLj )I 
Step 6 - If there exists j such that I hl,j - hhj,old I > 6 h h j ,  
then go to Step 2. Otherwise, go to Step 7. This step com- 
pares the ?Lhj values in the previous iteration with the values 
computed in the current iteration. If the difference of the 
both values is within 6, the algorithm is considered as con- 
verge. 

step 7 -The values for hhj andp, converge. Computep,,j 
using Eq. 14: 
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To model priority schemes for handoff, Steps 3a and 3b 
should be modified. For the exponential residence time distri- 
bution, po andpf can be derived by analytic models for the 
guard channel scheme, the first-in first-out (FIFO) queuing 
priority scheme with exponential handoff times [17], and the 
subrating scheme [20]. For a nonexponential residence time 
distribution, the channel occupation times are not exponen- 
tial, and it is better to compute po and pf by simulation 
approaches. A detailed simulation procedure was described in 
[17, 18, 201. 

To illustrate the usage of our analytic model, numerical 
results are given in Fig. 3 to show the effect of mixed-type 
handsets on the blocking probabilities. The experiments con- 
sider two types of handsets. Type 1 handsets have a Gamma 
residence time distribution with mobility q1 and variance Vuq, 
new call arrival rate ho,1, and call completion rate p1 = p. 
Type 2 handsets have a Gamma residence time distribution 
with mobility qz and variance Vurz, new call arrival rate 
and call completion rate pz = p. The ratio 

%,l 

Xo,l + ko,2 
a =  

is the portion of type 1 handsets in the system. Figures 3a 
and b (where both types 1 and 2 residence time distributions 
are exponential) indicate that although the new call blocking 
probabilities for both types of handsets are the same, the call 
incompletion probability for a slow handset is lower than 
that for a fast handset. Figures 3c and d illustrate the effects 
of the variance of the  residence time distribution. The  
results indicate that probability pnc is a decreasing function 
of the variance of the residence time. The figures also indi- 
cate that the effect of the variance is more significant on the 
fast handsets than on the slow ones. From a system point of 
view, the results indicate that it is necessary to consider dif- 
ferent types of users (car drivers and pedestrians) and to 
predict the performance of each traffic type for network 
planning. 

Conclusion 
e effect of handoff in a mobile telephone network has 

have assumed that the handset residence time distribution is 
exponential. Other models [ 2 ,  4, 51 with specific residence 
time distributions (other than exponential) have assumed that 
both the new calls and the handoff calls have the same chan- 
nel occupation time distribution. We derived the expected 
new call channel occupation time and the expected handoff 
call channel occupation time and proved that they are not 
equal in general. Based on the derivations of the expected 
channel occupation times, as well as the derivation of the 
handoff traffic for an arbitrary handset residence time distri- 
bution, we proposed a general yet simple mobile network 
handoff model which applies to different handset residence 
time distributions. Numerical experiments are given to illus- 
trate the impact of the variance of handset residence times on 
the blocking probabilities of the mobile telephone network. 
Our analysis suggests that performance of a personal commu- 
nications services network is sensitive to the cell residence 
time distribution, and it would be a good idea to develop 
methods and means to measure residence times in real PCS 
networks. Although the author believes the new methodolo- 
gies here can be used to improve network provisioning, an 
analysis of the specific contribution based on commercial field 
trials has not been done. An assessment of the specific contri- 
bution will be possible only after sufficient experience in the 
field is gained. 

T” been intensively studied. Some handoff models [6-8, 171 
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Appendix A: Notation 
This appendix lists the notation used in this article. 

l/q = E[tm,J - mean handset residence time. 
*fc(tc) - exponential density function of a call holding time tc. 
*fc,,(tc,L) - density function of tc,,. 
*fm(tm,J - density function of tm,+. 
* f i ( s )  - Laplace transform offm(tm,J. 
*Fm(tm,,) - distribution of tm,z. 
*l/p = E[tc] - mean call holding time. 
*hh - handoff call arrival rate to a cell. 
*Lo - new call arrival rate to a cell. 
*pf - forced termination probability. 
*pnc - probability that a call is not completed (either blocked 

or force-terminated). 
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*po - new call blocking probability. 
mR,(~,,o) - distribution of %,,o. 
*rm(Tm,O - density function ol T,,o. 
*Y;(S) - Laplace transform of T , ( T , , ~ ) .  
* T ~ ~ ~ , ~  - Suppose that a call arrives when a handset is in cell 

0. z,,o is the time between the arrival of the call and when 
the handset moves out of coverage area 0. 

e t c  - call holding time of a handset. 
*tc,l - Suppose that a call successfully hands over i cells. tc,l is 

the pcriod during which the handset moves into cell 1. tc,2 is 
called the excess l$e of tc. 

*t& - channel occupation time of a handoff call. 
' t d o  - channel occupation time of a new call. When a chan- 

nel is assigned to a new call, the channel is released if the 
call completes or the handset moves out of the cell. 
- residence time of a handset at cell i. 

Appendix 13: Derivations of  the Expected 
Channei Occupafion Times 
This appendix derives the expected channel occupation times. 
Consider Fig. 2. Assume that the random variable z,,~ has a 
distribution function R,(z,,o), density function T,(T,,o), and 
Laplace transform r;(s). The function r,(t) can be derived 
using f m ( t ) .  Suppose that f m ( t )  is n ~ n l a t t i c e . ~  Since the call 
arrivals to a handset form a Poisson process, a call arrival is a 
random observer of the time interval t,,~. From Eq. 16 we 
have 

r , ( t ) = ~ S ~ ~ c f , ( 2 ) d % = r [ l - F , ( t ) ]  (16) 
and from Eq. 2, the Laplace transform of I;n(t) is 

r:(s) = jtIoq[l - ~, ( t ) ]e- '~dt  

=+KO eKstdt - j r ~ o F ( t ) e - " d t ]  (17) 

=-[I- ll j:("] (18) 
S 

where Eq. 18 is derived from Eq. 17 and the following identity 
[121 

(19) 

3 A  nonnegative random variable is said to be lattice if it only takes on 
integral multiples of some nonnegative number. 

Note that Eq. 21 is derived from Eqs. 20 and 19, and Eq. 
23 is derived from Eqs. 18 and 22. Note that Eqs. 18 and 23 
were derived in 1201. We include the derivations for the read- 
er's benefit. 

From the memoryless property of the exponential distribu- 
tion, the density function of is j&(t) = p-p, and 

= f X P >  
The expected values E[tdo] and E[tdh]  are derived as fol- 

lows. Let CDFs of tdo, t,, and %,,o be Frdo, FtC, and R,, respec- 
tively. Since 

tdo = min(tc, %z,o) 

we have 

Ftd0(7> = Ftc(z) + R m ( W  - Ftc(T)l (25) 

(26) 

Since tdo is a nonnegative random variable, we have 

E[ t ,  1 = jp - Ftd0 (z)ldz 

Since t, is exponentially distributed with parameter 1-1, Eq. 
27 is rewritten as 

From the memoryless property of the exponential distribu- 
tion,f,,,(t,,,) = pe-Ftc2z, and for i > 0, similar to the derivation 
for E[tdo] we have 
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