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This study proposes a method of in-network aggregate query processing to reduce the number
of messages incurred in a wireless sensor network. When aggregate queries are issued to the
resource-constrained wireless sensor network, it is important to efficiently perform these
queries. Given a set of multiple aggregate queries, the proposed approach shares intermediate
results among queries to reduce the number of messages. When the sink receives multiple
queries, it should be propagated these queries to a wireless sensor network via existing routing
protocols. The sink could obtain the corresponding topology of queries and views each query as
a query tree. With a set of query trees collected at the sink, it is necessary to determine a set of
backbones that share intermediate results with other query trees (called non-backbones). First,
it is necessary to formulate the objective cost function for backbones and non-backbones. Using
this objective cost function, it is possible to derive a reduction graph that reveals possible cases
of sharing intermediate results among query trees. Using the reduction graph, this study first
proposes a heuristic algorithm BM (standing for Backbone Mapping). This study also develops
algorithm OOB (standing for Obtaining Optimal Backbones) that exploits a branch-and-bound
strategy to obtain the optimal solution efficiently. This study tests the performance of these
algorithms on both synthesis and real datasets. Experimental results show that by sharing the
intermediate results, the BM and OOB algorithms significantly reduce the total number of
messages incurred by multiple aggregate queries, thereby extending the lifetime of sensor
networks.

© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Recent advances in wireless and embedded technologies have increased the deployment of small and inexpensive wireless
sensor nodes in various applications, including field data collection, remote monitoring and control, smart homes, factory
automation, and security. In a wireless sensor network, sensor nodes are deployed in amonitored region. Sensor nodes are capable
of collecting, processing, and storing environmental information. An access point (i.e., sink) serves as a network interface, issuing
queries and collecting readings from sensor nodes. Each node sends its readings to the sink via multi-hop communications at
specified sampling periods. Since sensor nodes are usually powered by batteries, energy saving is a vital design issue in wireless
sensor networks [16] [1] [41] [14]. For a sensor node, the energy consumption of communication is larger than that of computing
and sensing. Thus, minimizing the number of transmitted messages can increase sensor lifetime.

To acquire data from a sensor network, many sensor database management systems, such as MaD-WiSe [2], MauveDB [9], and
ADAE [5], support declarative queries. The following example gives a declarative query to obtain the sum of light readings from a
set of sensors (S1,S2,…, and S5) every two seconds (i.e., the sampling period is 2 seconds).
d, Hsinchu 300, Taiwan. Tel.: +886 3 5731478.
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(a) (b)
Fig. 1. In-network aggregate queries. (a) Without sharing intermediate results and (b) with sharing intermediate results.

1 Note that we only share intermediate results of sensor nodes, not the data sources. For example, the data sources of sensor S6 is the intermediate results o
sensor S1 and sensor S4. Due to the storage constraint of sensors, it is hard to keep all readings of data sources. Thus, we only keep the intermediate result o
sensor S6 (i.e., 9).
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Example 1. A declarative query example:

SELECT SUM(light)
FROM S1,S2,S3,S4,S5
SAMPLE PERIOD 2s

Upon receiving these queries, the sink injects them into thewireless sensor network. Routing trees are themost commonmethod of
propagating queries and collecting query results from sensor networks, andmany routingprotocols in various sensor operating systems
adopt this approach: theDHVprotocol in TinyOS [8], ContikiRPL protocol in Contiki [37], SAMPLprotocol inNano-RK [26], and LiteOS [4].
A routing tree can be viewed as a query tree whose the nodes are sensor nodes that participate in the query processing. The edges
between nodes represent the routing paths determined by existing routing protocols. Previous studies propose in-network aggregate
query processing, inwhich sensor nodesuse aggregate operators to reduce the number ofmessages, thereby conserving energy [28][29]
[43]. When multiple aggregate queries are submitted to wireless sensor networks, it is possible to generate the intermediate results of
these queries. Sharing these intermediate results of queries can further reduce the number of messages involved for these queries. The
following examples provide some scenarios in which concurrent queries could share some intermediate results:

Example 2. Many recent research projects have deployed sensors in forests to monitor forest environments. To prevent forest
fires, forest management units can submit queries to this sensor network to obtain readings of average temperature and relative
humidity in the forest. Forest scientists can also use this sensor network to obtain similar readings to analyze environment effects
on tree growth. These concurrent queries could share some intermediate results.

Example 3. In a cyber-physical system, there are many sensors deployed in our living environments. Consider a traffic monitoring
sensor network application in which sensors are deployed to monitor the average speed of roads. Drivers may query the sensor
network to determine road traffic conditions and find the best route. Traffic officers may also query average speeds of some roads
to monitor traffic status. Bus corporations utilize these information to predict the time that the next buses will arrive at a station
for bus passengers. In this scenario, since users may query traffic speed for the same roads, the system could improve its
responsiveness by generating some intermediate results to be shared by all.

Example 4. A recent article reports that U.S. forces deployed sensors in Iraq to protect troops and bring security to towns. Since
this sensor network could constantly watch designated areas day and night, many army units may submit long-running queries to
detect approaching enemies of the same area. When some enemy armies intrude, sensors in the same area raise alarms such that
queries submitted in this area may have common intermediate results. Sharing these intermediate results could deal with queries
from many army units efficiently.

To demonstrate the concept of sharing intermediate results, consider the two query trees in Fig. 1, where Q1 and Q2 are
represented as solid and dashed line, respectively. The data sources of Q1 (respectively, Q2) are S1, S2, and S3 (respectively, S2 and
S3), and sensors nodes S4, S5, S6, and S7 are relay nodes for these two queries. Assume that the relay nodes perform aggregate
operation SUM. In Fig. 1, the number associated with a sensor is the intermediate result at that sensor. For example, the
intermediate result on sensor S4 is five (i.e., the sum of intermediate results at S2 and S3). In Fig. 1(a), two queries do not share
intermediate results. Queries Q1 and Q2 have 5 and 4messages, respectively. Therefore, the total number of messages in Fig. 1(a) is
9. On the other hand, in Fig. 1(b), if Q1 shares the intermediate result of S4 with Q2, sensor S7 of Q2 could directly obtain the
intermediate result of S4 without accessing readings at S2 and S3 .1 The total number of messages in Fig. 1(b) is thus 7 (i.e., 5+2).
f
f
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Compared to the number ofmessages incurred in Fig. 1(a) (i.e., 9), the reduced number ofmessages is 2 (i.e., 9−7=2). Given a set
of query trees, it is possible to further investigate how to share intermediate results among queries. In the example in Fig. 1(b), Q1

is a backbone and Q2 is a non-backbone. This figure shows that the backbone is performed as usual and non-backbonesmust adjust
their query trees to access the intermediate results of backbones. Clearly, sharing intermediate results among query trees reduces
the number of messages involved in multiple queries.

Given a set of query trees with the same aggregate operation, the proposed approach attempts to determine the sets of
backbones and non-backbones, and for each non-backbone, derive the set of backbones that share their intermediate results.
Several challenge issues must be overcome to achieve this goal:

(1) Determine the benefit of sharing intermediate results between query trees.
Since there are many possible cases of sharing intermediate results between query trees, it is necessary to determine the
benefits of sharing intermediate results. This formulation of benefits should consider the possible sensor nodes for sharing
intermediate results and the sampling period of query trees.

(2) Select backbones from a set of query trees.
Given a set of query trees with possible sharing of intermediate results, it is necessary to determine sets of backbones and
non-backbones to minimize the number of messages involved. One challenge here is how to determine which query tree
should be in the set of backbones. As indicated above, backbones are performed as usual. Thus, the selection of backbones
should consider their own query trees and their benefits to other non-backbones. The tree size and sampling period are both
important factors in determining the set of backbones.

(3) Determine the set of backbones for each non-backbone.
A non-backbone has many ways to access intermediate results from backbones. Since accessing different intermediate
results may reduce the number of messages differently, the set of backbones should be carefully determined for each non-
backbone to reduce the maximal number of messages.

(4) Deal with dynamic query workload.
Since queries may join or leave dynamically, it is necessary to develop a mechanism to handle dynamic query workloads.

To address the issues above, this studyfirst formulates a benefit functionbetweenquery trees basedon the samplingperiodof query
trees and possible number ofmessages reduced. The benefit functionmakes it possible tomodel possible cases of sharing intermediate
results among query trees as a reduction graph, where each vertex is a query tree and the weight between query trees represents the
benefit achieved by sharing intermediate results. Based on the devised reduction graph, the determination of backbones and non-
backbones is formulated as aMax-Cut problem, inwhich a cut between two sets (i.e., backbone set and non-backbone set) is derived to
maximize the sum of edge weights. Maximizing the sum of edge weights maximizes the number of messages reduced by sharing
intermediate results. SinceaMax-Cut problem is aNP-hardproblem, this studydevelops agreedyalgorithmBM(standing forBackbone
Mapping), a heuristic algorithm, to identify the sets of backbones and non-backbones. Since BM may not always obtain the optimal
solution, this study further proposes the algorithm OOB (standing for Obtaining Optimal Backbones) to derive the optimal sets of
backbones and non-backbones. Note that the OOB algorithm can also evaluate the solution quality derived by the BM algorithm. The
OOB algorithm adopts the branch-and-bound strategy. This strategy views the procedure of determining the optimal solution as a
search procedure in a state-space tree, where each tree node represents a possible solution for the sets of backbones and non-
backbones. This study alsodevelops abounding function toguide the searchprocedure to reach the treenodewith theoptimal solution.
A maintenance mechanism incrementally adjusts the set of backbones to handle the dynamic query workloads. This study
comparatively analyzes the performance of these algorithms and conducts a sensitivity analysis of several parameters, including the
number of queries and the distribution of data sources for queries. Experimental results show that by sharing intermediate results
among queries, the BM andOOB algorithms can significantly reduce the number ofmessages, thereby saving a considerable amount of
energy. Furthermore, the solutionobtainedby theBMalgorithmis very close to theoptimalonederivedby theOOBalgorithm, verifying
thegood solution quality of the BMalgorithm. This study also implements a brute-force scheme to derive theoptimal solution to justify
the design of the bounding function in theOOB algorithm. Comparedwith the brute-force algorithm, the OOB algorithmcanderive the
optimal solution with greater efficiency when the number of queries increases.

The remainder of this paper is organized as follows. Section 2 describes related works, while Section 3 presents the
preliminaries. Section 4 develops the BM and the OOB algorithms to determine sets of backbones and non-backbones, and their
mapping relation. This section also proposes a maintenance mechanism. Section 5 presents performance studies, while Section 6
provides discussions. Section 7 concludes this paper.

2. Related works

Since sensor nodes areusually poweredbybatteries, energy is a veryprecious resource for each sensor node. Therefore,minimizing
energy consumption is always themost critical issuewhile the requirements of applications inwireless sensor networks are satisfied.
Generally speaking, energy saving could be achieved from several approaches. The first approach is to schedule waking up time and
sleeping time in MAC layer [3,21,32]. This approach is usually used in event detection where events are rarely generated. In this case,
spending time in the idle periodmay increase energy consumption of sensors such that sensors would be better in sleepmode as long
as possible. The second approach is to design a coding mechanism for reducing the packet size [10,20]. This approach is usually used
when the sink is required to receive all the original packets from sensors. The core idea of network coding is to use some operations,
such as an XOR or a linear combination, tomix data at intermediate network nodes. Encoding packets at intermediate nodes and then
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sending only coded packet instead of individual packets reduces the traffic without increasing delay. Therefore, energy consumption
can be reduced by reducing the amount of data transmission. The third approach is to execute in-network processing. The simplest
way is in-network aggregation which combines data from different sources by aggregation operations. Based on the fact that the
transmission cost ismuch higher than the computational cost, in-network aggregation can efficiently reduce the number ofmessages
incurred in awireless sensor network. Themain themeof this paper is to explore intermediate results of in-network aggregate queries
for further reduce the number of message incurred. Thus, our paper belongs to this category.

The idea of in-network aggregation in sensor networks is first proposed in [28]. The authors of this paper proposed Tiny
AGgregation (TAG) for in-network aggregation. Moreover, there are several extensions about in-network aggregation with
precision constrained [35,40]. These works dealt with the tradeoff between data quality and energy consumption for long-running
query processing. Recently, query optimization for multiple query processing in wireless sensor networks has been addressed.
Given a set of query sensors with the same sampling period, the previous work of [36] organized all queried sensors as a
dissemination tree and these sensors only report their readings if the readings of these sensors are changed, where the authors in
[36] utilized the proposed linear-algebra approach to detect the change of sensor readings. Moreover, the authors in [18] proposed
several strategies to pre-compute and store commonly used aggregation results in wireless sensor networks and these results are
accessible for multiple queries. The authors in [30] proposed two-tier multiple query optimization in which a cost model is
developed in the sink for generating an optimal set of queries and then in-network query optimization is performed. However,
queries considered in [30] are not in-network aggregate queries.

Another related research works of this paper discusses query processing and sensor database management systems. Prior
works [43] established the concept that a wireless sensor network could be viewed as a database. Then, a SQL-like language is
developed for collecting data from wireless sensor networks [29]. Currently, this idea is still widely used for users to submit
queries to sensor networks in current sensor database management systems, such as Tailor-made DBMS [25], MaD-WiSe [2],
MauveDB [9], and ADAE [5]. Some spatial queries are also developed. For example, K Nearest Neighbor (KNN) query processing are
studied in [33,39]. Since sensors may fail or be disrupted by the environment, some papers also focus on detecting or filtering the
error readings to guarantee the accuracy of queries [34,42]. Some data collection mechanisms have been studied in literatures
[6,15,19]. In wireless ad-hoc network, a multicast tree is proposed tominimize the transmission cost from a given source to a set of
receiver [23,27,31]. Amulticast tree is similar to the routing tree in wireless sensor networks if the sender is viewed as the sink and
the query sensors are viewed as the receiver. Generally, the solution of finding multicast trees are based on finding Steiner trees,
shortest path tree, and so on. However, different from this paper, most studies of multicast trees concentrate on how to construct a
multicast tree with the minimum communication cost or minimum data-overhead. In this paper, we study how to share the
intermediate results among multiple query trees.

In this paper, we not only consider the sampling period of aggregate queries but also the dynamic workloads of wireless sensor
networks into the problem formulation. Our heuristic algorithm BMnot only determines the sets of backbones and non-backbones
but also derives mapping relationships between backbones and non-backbones. To obtain the optimal solution, we further
propose algorithm OOB. Furthermore, we develop a maintenance mechanism to deal with the dynamic workload in wireless
sensor networks. Furthermore, an extensive performance study is conducted in both synthetic and real datasets, and sensitivity
analysis is investigated. To the best of our knowledge, no previous study has exploited the query optimization for in-network
aggregate queries, let alone devising algorithms to determine the backbone set and the non-backbone set for sharing intermediate
results. These features distinguish this paper from others.

3. Preliminaries

Section 3.1 presents some notations and the problem formulation. Then, Section 3.2 develops a reduction graph, which is used
to determine benefits of sharing intermediate results among queries.

3.1. Problem formulation

After receiving queries, the sink propagates them via existing routing protocols and collects the corresponding query trees.
Using this set of query trees, the goal of the proposed approach is to share intermediate results among query trees to minimize the
number of messages. To facilitate the presentation of our paper, some notations are defined (Table 1). Each query is represented as
a query tree, expressed by Ti, where i is the identification of queries. As indicated above, each query Ti is periodically performed
every E(Ti) time units, where E(Ti) is the sampling period for query Ti. When performing query Ti each time, the number of
messages incurred is expressed asN(Ti), the number of edges in Ti. Given a set of queries, denoted as Q, the goal is to determine sets
of backbones and non-backbones, where each non-backbone is able to access intermediate results from backbones to reduce the
total number of messages incurred. The set of backbones (respectively, non-backbones) is represented as B (respectively, NB).
Note that a non-backbone is able to access intermediate results from multiple backbones. Thus, the set of backbones that share
intermediate results for non-backbone Ti is defined as B(Ti). Given a non-backbone Ti and its backbone Tj, suppose that a sensor
Sm∈Ti accesses the intermediate results from Sn∈Tj. The number of messages reduced under the scenario in which Sm obtains the
intermediate results of Sn is expressed as Ri, j(Sm,Sn). Note that (Sm,Sn) is called a sharing pair of Ti and Tj. There are many possible
ways for a non-backbone to access the intermediate results of its backbone. The sections below we will discuss how to derive the
sharing pairs that can maximize the number of messages reduced.
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(e)
Fig. 2. Five query trees with the aggregate operation SUM and their sampling periods.

Table 1
Description of notations.

Description Symbol

Query tree of Qi Ti
Number of messages associated with Ti N(Ti)
Sampling period of Ti E(Ti)
Backbone set B
Non-backbone set NB
The set of backbones tree of Ti B(Ti)
Number of messages reduced under the scenario that Sm∈Ti accesses intermediate results of Sn in Tj∈B(Ti) Ri, j(Sm,Sn)
Probability that Ti can access the intermediate results from Tj∈B(Ti) P(Ti,Tj)
Weight of an edge (vi,vj) in a reduction graph w(vi,vj)
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Example 5. Assume that in Fig. 2, T1 is a backbone and T2 is a non-backbone. Fig. 3(a) shows that by accessing the intermediate
result at S11 in T1, R2, 1(S12,S11)=4. As Fig. 3(a) shows, to access intermediate results at S11 in T1, query tree T2 must adjust its
corresponding tree. An alternative way to access the intermediate results of T1 is to obtain the intermediate results at S9, as Fig. 3
(b) shows. Compared to the case in Fig. 3(a), the value of R2, 1(S10,S9) (i.e., 1) is not maximum. Therefore, the sharing pair (S12,S11)
would be better than (S10,S9) in terms of reducing the number of messages.

As indicated above, each query has its own sampling period. Clearly, non-backbones can only access intermediate results of
backbones when backbones are performed at their sampling time periods. Given one non-backbone Ti and one backbone Tj, for Ti,



Fig. 4. Query execution schedule.

(a) (b)
Fig. 3. Adjusting the query tree T2 for the intermediate results of T1 at black sensors with circles.
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derive the probability of accessing intermediate results of Tj, denoted as P(Ti,Tj). Both Ti and Tj are performed every lcm(E(Ti),E(Tj))
time units, where lcm(⋅) is the largest commonmultiplier of E(Ti) and E(Tj). For every E(Ti), non-backbone Ti is executed. Based on
this observation, the value of P(Ti,Tj) is P Ti; Tj

� �
= E Tið Þ

lcm E Tið Þ;E Tjð Þð Þ.

Example 6. Consider the query trees in Fig. 2. Fig. 4 shows their execution schedule according to their sampling time periods.
Suppose that T4 is a backbone for non-backbone T2. Note that T2 only could access intermediate results of T4 at the 24th time unit.
For other time slots, T2 must still perform its own query tree as usual. Therefore, the probability of non-backbone T2 accessing
intermediate results of T4 is 6

lcm 6;8ð Þ = 1
4.

Similar to [30], queries are submitted or left dynamically. In this dynamic environment, a cost model is used to estimate the
total number of messages incurred. The cost model derived is the average number of messages incurred per time unit, denoted as
AvgCost. Assume that the number of queries, their execution time, and the maximal time monitor length are given. The total
number of messages incurred is proportional to the value of AvgCost. To derive AvgCost, consider the average number of messages
incurred in sets of backbones and non-backbones. Denote AvgCostB(Tj) as the average number of messages per time unit for
backbone Tj, and AvgCostNB(Ti,Tj) as the average number of messages per time unit for non-backbone Ti by accessing the
intermediate results of backbone Tj. A set of queries Q with the sets of backbone B and non-backbone NB leads to following
formula:
AvgCost Qð Þ = ∑
Tj∈B

AvgCostB Tj
� �

+ ∑
Ti∈NB

∑
Tj∈B Tið Þ

AvgCostNB Ti; Tj
� �

: ð1Þ
For a backbone Tj, the number ofmessages incurred isN(Tj) and the time period for executing Tj is every E(Tj) time units. Thus, the
average number of messages incurred by Tj is AvgCostB Tj

� �
=

N Tjð Þ
E Tjð Þ. Next, derive the average number of messages incurred by Sm∈Ti

using the share of intermediate results of Sn∈Tj. As indicated above, both backbone and non-backbone are periodically executed
according to their sampling timeperiods. Fornon-backbone Ti, the probability of accessing intermediate results of Tj is P(Ti,Tj). Assume
that Ti accesses its backbone Tj via a sharing pair (Sm,Sn). Thus, the number of messages incurred is P(Ti,Tj)×(N(Ti)−Ri, j(Sm,Sn)). On
the other hand, the probability of performing Ti is (1−P(Ti,Tj)). When Ti cannot access its backbone Tj, the corresponding number of
messages is as (1−P(Ti,Tj))×N(Ti). If the set of sharing pairs of Ti and Tj is χi, j, then AvgCostNB(Ti,Tj) can be formulated as
follows:
AvgCostNB Ti; Tj
� �

= ∑
Sm ;Snð Þ∈χi;j

1−P Ti; Tj
� �� �

× N Tið Þ + P Ti; Tj
� �

× N Tið Þ−Ri; j Sm; Snð Þ
� �

E Tj
� � : ð2Þ
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The formula for AvgCost(Q) leads to the following derivations:
AvgCost Qð Þ
= ∑

Tj∈B
AvgCostB Tj

� �
+ ∑

Ti∈NB
∑

Tj∈B Tið Þ
AvgCostNB Ti; Tj

� �

= ∑
Tj∈B

N Tj
� �

E Tj
� � + ∑

Ti∈NB
∑

Tj∈B Tið Þ
∑

Sm ;Snð Þ∈χi; j

1−P Ti; Tj
� �� �

× N Tið Þ + P Ti; Tj
� �

× N Tið Þ−Ri; j Sm; Snð Þ
� �

E Tið Þ

= ∑
Tj∈B

N Tj
� �

E Tj
� � + ∑

Ti∈NB
∑

Tj∈B Tið Þ
∑

Sm ;Snð Þ∈χi; j

N Tið Þ−P Ti; Tj
� �

× Ri; j Sm; Snð Þ
E Tið Þ

=
�
∑
Tj∈B

N Tj
� �

E Tj
� � + ∑

Ti∈NB

N Tið Þ
E Tið Þ

�
− ∑

Ti∈NB
∑

Tj∈B Tið Þ
∑

Sm ;Snð Þ∈χi; j

P Ti; Tj
� �

× Ri; j Sm; Snð Þ
E Tið Þ

= ∑
Tk∈ B∪NBð Þ

N Tkð Þ
E Tkð Þ − ∑

Ti∈NB
∑

Tj∈B Tið Þ
∑

Sm ;Snð Þ∈χi; j

E Tið Þ
lcm E Tið Þ; E Tj

� �� � × Ri; j Sm; Snð Þ

E Tið Þ

= ∑
Tk∈ B∪NBð Þ

N Tkð Þ
E Tkð Þ − ∑

Ti∈NB
∑

Tj∈B Tið Þ
∑

Sm ;Snð Þ∈χi; j

Ri; j Sm; Snð Þ
lcm E Tið Þ; E Tj

� �� � :
Consequently,
AvgCost Qð Þ = ∑
Tk∈ B∪NBð Þ

N Tkð Þ
E Tkð Þ − ∑

Ti∈NB
∑

Tj∈B Tið Þ
∑

Sm ;Snð Þ∈χi; j

Ri; j Sm; Snð Þ
lcm E Tið Þ; E Tj

� �� � : ð3Þ
With the above derivations, it is possible to minimize AvgCost(Q) by maximizing the sum of ∑
Sm ;Snð Þ∈χi; j

Ri;j Sm; Snð Þ
lcm E Tið Þ; E Tj

� �� �, where

Tj∈B(Ti). Since
Ri; j Sm; Snð Þ

lcm E Tið Þ; E Tj
� �� � represents the number of messages reduced by a sharing pair (Sm,Sn), the benefit of a sharing pair

(Sm,Sn) can be defined as benefiti; j Sm; Snð Þ = Ri; j Sm ;Snð Þ
lcm E Tið Þ;E Tjð Þð Þ. Accordingly, the problem addressed in this paper is formally described as

follows:

Problem. Given a set of query trees Q, determine: 1) sets of backbones B and non-backbones NB, and 2) the corresponding set of
backbones for each non-backbone. The objective of this problem is to maximize the sum of benefits of sharing the intermediate
results of backbones.

The benefit formula derived above can judiciously determine the set of backbones and the sharing pairs. Clearly, the backbones
selected should maximize the number of message reduced for non-backbones. On the other hand, the sampling periods of queries
should be taken into account in selecting backbones. If the sampling period of backbones are too large, non-backbones will have
greater difficulty obtaining the intermediate results of backbones. However, a smaller sampling period of backbones will increase
the number of messages incurred during the execution of backbones. Thus, backbone selectionmust strike a compromise between
the number of messages reduced and the sampling period of queries. Once the set of backbones is determined, it is possible to
determine a set of backbones and the sharing pairs for each non-backbone.

3.2. Determination of benefits among query trees

Given a set of query trees, this section derives a reduction graph that captures the amount of benefits between query trees. The
reduction graph is defined as follows:

Definition 1. Reduction Graph: Given a set of query trees Q, a reduction graph is a weighted directed graph G=(V,E). A vertex
vi∈V represents a query tree Ti∈Q. For each sharing pair (Sm,Sn) of Ti and Tj, there is an edge (vi,vj)∈E with its label as the data
source of (Sm,Sn) and its weight as max{0,benefiti, j(Sm,Sn)}.

One challenge to building a reduction graph is to determine the labels and weights of edges. As Section 3.1 indicates, given a

sharing pair (Sm,Sn) of two query trees Ti and Tj, benefiti, j(Sm,Sn) is modeled as
Ri;j Sm; Snð Þ

lcm E Tið Þ; E Tj
� �� �. The value of lcm(E(Ti),E(Tj)) is

straightforwardly determined according to the sampling periods of query trees. The weights of edges should be as large as possible to
maximize the sumofbenefits. Therefore, it isnecessary toderive thesharingpairs (Sm,Sn) thatmaximize thenumberofmessages reduced.

The value of Ri, j(Sm,Sn) is related to the sharing pair (Sm,Sn) of Ti and Tj. In otherwords, Sm of Ti gets the intermediate result from
Sn of Tj. Clearly, we could save the number of messages required for Sm of Ti, denoted as Ni(m). However, an extra admission cost is



624 C.-C. Hung, W.-C. Peng / Data & Knowledge Engineering 70 (2011) 617–641
required to access the intermediate result at Sn from Sm. Denote as dS(m,n), this cost is estimated as the minimum hop counts
between Sm and Sn. Therefore, the number of messages reduced is Ni(m)−dS(m,n).

The scenario above shows an example case in which Sm of Ti accesses the intermediate result at Sn of Tj. In reality, there are
many possible sharing pairs between two query trees. For ease of presentation, each case uses the sharing pair as its identification.
To explore possible cases of sharing pairs, it is necessary to check the data sources of all sensors in these two query trees. Given two
query trees Ti and Tj, if the data sources for one sensor in Ti are the same as those for another sensor in Tj, these two sensors form a
sharing pair. It is possible to further determine the number of messages reduced by this sharing pair (i.e., Ri, j(Sm,Sn)). However,
many sharing pairs may be generated if their data sources are the same. Note that since query trees are hierarchical, sharing
intermediate results at higher level sensor nodes can eliminate more messages. Thus, it is not necessary to enumerate all sharing
pairs. Sharing pairs with the maximal set of data sources between query trees should be generated. Consider T1 and T2 as an
example, where T2 intends to access intermediate results of T1. Fig. 2 shows that S9∈T1 and S10∈T2 have the same intermediate
results because they have the same set of data sources (i.e., {S1,S2}). However, the sharing pair (S9,S10) is not the sharing pair with
the maximal set of data sources because the sharing pair (S11,S12) has the data sources {S1,S2,S3}, which contain the set of data
sources of the sharing pair (S9,S10). The value of Ri, j(Sm,Sn) is the maximum number of messages reduced among the set of sharing
pairs that have the maximal set of data sources.

Example 7. Table 2 shows the corresponding numbers of messages reduced for the query trees in Fig. 2. Fig. 5 depicts the
reduction graph for these query trees. For example, the first row of the first block in Table 2 shows that the data source of the
sharing pair (S11,S12) of T1 and T2 is {S1,S2,S3}, and R1, 2(S11,S12)=3. Therefore, the edge (v1,v2) is labeled as {S1,S2,S3}, and the
weight of this edge is benefit1;2 = S11; S12ð Þ = R1;2 S11 ;S12ð Þ

lcm E T1ð Þ;E T2ð Þð Þ = 3
6 = 1

2. Consider another example of the sharing pair (S18,S15) of T2
and T4. The second row of the second block in Table 2 shows that the data source of this pair is {S7,S8,S9} and R2, 4(S18,S15)=5.
Therefore, the edge (v2,v4) is labeled {S7,S8,S9} and the weight of (v2,v4) is benefit2;4 S18; S15ð Þ = R2;4 S18 ;S15ð Þ

lcm E T2ð Þ;E T4ð Þð Þ = 5
24.

4. Query optimization by selecting backbone trees

This section develops two algorithms to determine the set of backbones and the mapping between the backbone set and the
non-backbone set. Section 1 develops a heuristic algorithm BM (standing for Backbone Mapping). To obtain the optimal solution,
Section 4.2 develops algorithm OOB (standing for Obtaining Optimal Backbones), which is based on a branch-and-bound strategy.
Since queries may join or leave dynamically, Section 4.3 proposes a maintenance mechanism.

4.1. Algorithm BM

Using the reduction graph, the BM algorithm determines the set of backbones and mapping relationships among
backbones and non-backbones. the BM algorithm consists of two phases: the partition phase and the mapping phase. The
partition phase determines sets of backbones and non-backbones with the purpose of maximizing the sum of benefits
between the backbone set and the non-backbone set. The mapping phase obtains the corresponding set of backbones for each
non-backbone.
Table 2
The sharing pairs of query trees.

Data source Value

R1, 2(S11,S12) {S1,S2,S3} 3
R1, 3(S13,S13) {S4,S5} 2
R1, 4(S13,S14) {S4,S5} 1
R1, 5(S9,S10) {S1,S2} 1
R1, 5(S14,S13) {S4,S5} 1
R2, 1(S12,S11) {S1,S2,S3} 4
R2, 4(S18,S15) {S7,S8,S9} 5
R2, 5(S10,S10) {S1,S2} 2
R3, 1(S13,S13) {S4,S5} 2
R3, 4(S13,S14) {S4,S5} 1
R3, 5(S13,S14) {S4,S5} 1
R4, 1(S14,S13) {S4,S5} 1
R4, 2(S15,S19) {S7,S8,S9} 3
R4, 3(S14,S13) {S4,S5} 1
R4, 5(S14,S14) {S4,S5} 2
R5, 1(S10,S9) {S1,S2} 1
R5, 1(S14,S13) {S4,S5} 1
R5, 2(S10,S10) {S1,S2} 2
R5, 3(S14,S13) {S4,S5} 1
R5, 4(S14,S14) {S4,S5} 2



Table 3
An execution scenario in the partition phase of the BM algorithm.

Selection
iteration

Backbone and
non-backbone set

Backbone gain

v1 v2 v3 v4 v5

1 B={},NB={v1,v2,v3,v4,v5} 35
24*

19
24

13
24

11
24

1
2

2 B={v1},NB={v2,v3,v4,v5} – − 3
8 − 7

24
7
24*

1
6

3 B={v1,v4},NB={v2,v3,v5} – 3
4

11
12 – 35

24*
4 B={v1,v5,v4},NB={v2,v3} – − 11

12 − 5
12 – –
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Fig. 5. The reduction graph for five query trees, where each edge is associated with its label and weight marked as label:weight.
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4.1.1. Partition phase
Given a reduction graph, it is possible to determine the backbone set and the non-backbone set that maximize the sum of edge

weights both backbone and non-backbone sets. Clearly, maximizing the sum of edge weights among the backbone set and the
non-backbone set couldmaximize the number of messages reduced via the intermediate results of backbones. The problem can be
modeled as a Max-Cut problem. The input of a Max-Cut problem is a graph G=(V,E), where V is the set of vertices and E is the set
of edges with correspondingweights. AMax-Cut problem divides the vertices into two sets with the goal of maximizing the sum of
edge weights between these two sets. Given a reduction graph, a maximum cut is a sum of edge weights in which the two vertices
of each edge belong to two sets (e.g., B and NB), such that B∪NB=V, B∩NB=ϕ and the sum of edge weights is maximized. Since a
Max-Cut problem is a NP-hard problem, this study proposes a heuristic problem to determine aMax-Cut from the reduction graph.
Note that the backbone set and the non-backbone set are determined after a maximum cut is derived.

Same as in most papers for solving a Max-Cut problem, a vertex moves from one set to the other set if the movement can bring
some benefits. The benefit here indicates how much reduction a tree can achieve when it becomes a backbone. Following this
concept, set the backbone set as empty and the non-backbone set as the set of all vertices. For a vertex in the non-backbone set,
determine the corresponding backbone gain and use the gain to estimate the benefit when this vertex is selected as a backbone.

Definition 2. Backbone Gain: Given a reduction graph, the backbone gain achieved by selecting vi as a backbone, denoted by
δ(vi), is
δ við Þ = ∑
vj∈NB− vif g

∑
vk∈B∪ vif g

w vj; vk
� �

− ∑
vj∈NB

∑
vk∈B

w vj; vk
� �

: ð4Þ
For each vertex in the non-backbone set, the corresponding backbone should be calculated. The vertex with the maximal
backbone gain is then selected in the backbone set. After selecting one query tree as a backbone, the backbone gains for query trees
in the non-backbone set are updated. Similarly, according to the backbone gains of query trees in the non-backbone set, the one



Fig. 7. Snapshot of the state space tree. Black nodes represent nodes that do not needed to expand. Nodes with X notation represent pruned nodes.

Fig. 6. The mapping between NB and B.
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with the maximal backbone gain is selected as a backbone. The BM algorithm moves query trees from the non-backbone set into
the backbone set iteratively until query trees in the non-backbone set have backbone gains smaller than zero. This process divides
a set of query trees into backbone and non-backbone sets, andmaximizes the cut between the backbone set and the non-backbone
set, which results in the maximal sum of benefits.

Example 8. Consider the five query trees in Fig. 2, whose the corresponding reduction graph appears in Fig. 5. Table 3 lists the
execution scenario of the partition phase in the BM algorithm. The backbone gains of these query trees are initially calculated. For
example, δ v2ð Þ = w v1; v2ð Þ + w v3; v2ð Þ + w v4; v2ð Þ + w v5; v2ð Þ−w v1;ϕð Þ−w v2;ϕð Þ−w v3;ϕð Þ−w v4;ϕð Þ−w v5;ϕð Þ = 1

2 + 0 +
1
8 + 1

6−0−0−0−0−0 = 19
24 N 0. Note that the maximal backbone gain is marked with an asterisk. In the first iteration, v1 is

selected into the backbone set since v1 brings themaximal benefit to other query trees in the non-backbone set. The backbone gains of
non-backbone query trees are then updated. In the second iteration, v4 is included in the backbone set, and all vertices in the non-
backbone set update their corresponding backbonegains. Similarly, v5 is selected into the backbone set. Finally, since all vertices in the
non-backbone set have backbone gains smaller than zero, the BM algorithm terminates. This results in the backbone set B={v1,v4,v5}
and the non-backbone set NB={v2,v3}. Fig. 6 shows that this produces a maximum cut as 2

3 + 1
2 + 5

24 + 1
8 + 1

6 + 1
12 = 7

4. The
maximum cut in the example above indicates the maximum value of benefits can be achieved if non-backbones can access the
intermediate results of backbones.
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4.1.2. Mapping phase
The partition phase maximizes the sum of edge weights between sets of backbones and non-backbones. Next, the mapping

phase selects the backbones for each non-backbone. This process can be viewed as mapping relationships from a non-backbone to
a set of backbones. A set of backbones for each non-backbone should be carefully selected since the benefit will be over-estimated
if a non-backbone selects backbones with overlapping sources. For example, Fig. 6 shows that a non-backbone v2 has three edges
that are linked to all backbones. Among these three edges, the label set of edge (v2,v1) and edge (v2,v5) have some common
sources (i.e., s1 and s2). Clearly, if non-backbone v2 selects v1 as its backbone (i.e., edge (v2,v1) is selected), there is no need to select
v5 since the edge (v2,v1) includes the intermediate result from sensors s1 and s2. Therefore, a non-backbone should select
backbones with disjoint sensors to maximize the sum of benefits.

The problem in this phase is to select a set of edges from the non-backbone set to the backbone set into a mapping set M such
that the maximal sum of edge weights inM and the labels of edges inM for each non-backbone are disjoint. To maximize the sum
of edge weights inM, select an edge with larger weight, and specifically, an edge whose label set contains more sensors. Note that
we should include more sensors that are not in the union set of labels of edges inM for the constraint of disjoint. Given a maximal
cut in the reduction graph, the edges between the backbone set and the non-backbone set are assigned to their corresponding
scores.

Definition 3. Scoring Function: Assume that vi is a non-backbone and the set of selected edges isMi. Let the label of an edge (vi,vj)
be L(vi,vj) and the weight of an edge (vi,vj) be w(vi,vj). The scoring function of an edge (vi,vj) is
s vi; vj
� �

= w vi; vj
� �

× jL vi; vj
� �

− ∪
vi ;vkð Þ∈Mi

L vi; vkð Þ j : ð5Þ
The philosophy of this scoring function is to evaluate how many weights a mapping relation can obtain if the edge (vi,vj) is
selected. Since theweight of an edge represents the benefit a non-backbone can obtain by accessing the intermediate results from a
backbone, the edge with a larger weight should be added to a mapping relation to maximize its weight. This factor reflects on the
first term of the scoring function. On the other hand, a non-backbone is likely to reduce more messages if it can share more
intermediate results from different backbones. Thus, a non-backbone should select data sources that do not overlap with the data
sources of the current mapping relation. The second term of the scoring function reflects this requirement. The scoring function
above associates the set of edges from vi in the non-backbone set to backbones with a score. One should select the edge with the
maximal score and its label set not containing any common sensors in the union set of label sets of edges in Mi. Once an edge is
selected inMi, update the scores of other edges incident to vi. If the label set of a edge overlapswith the union of label sets inMi, this
edgewill be discarded. Repeat the operations above until no edge can be selected. In this case,Mi is amapping for a non-backbone vi
such that the label set of edges in Mi are disjoint.

Example 9. Consider the example in Fig. 5, where v2∈NB, the scores of all incident edges are s v2; v1ð Þ = 2
3 × 3 = 2,

s v2; v4ð Þ = 5
24 × 3 = 5

8, and s v2; v5ð Þ = 1
6 × 2 = 1

3. In the beginning, the edge (v2,v1) is selected into M2. The scores of the edges
are updated accordingly. Thus, s v2; v4ð Þ = 5

24 × 3 = 5
8, and s v2; v5ð Þ = 1

6 × 0 = 0 because L(v2,v5)={S1,S2}. Therefore, the edge
(v2,v4) is selected into M2. Since there is no edge incident to v2 with the label set disjoint to {S1,S2,S3,S7,S8,S9}, we do not select
other edges into M2. Following the same operations, derive the mapping set M3={(v3,v1)}. Fig. 6 depicts this mapping
relationships, where the bold lines are the edges selected for each non-backbone. Finally, M2={(v2,v1),(v2,v4)} and M3={(v3,
v1)}. Consequently, the set of backbones for T2 (respectively, T3) is {T2,T4} (respectively, {T1}). The sum of the edges for the
mapping relation is 11

8 .

Algorithm 1. BM: Backbone Mapping
Input: A reduction graph G=(V,E)
Output: Mapping relation M

1: /* Partition Phase */
2: NB←V;
3: B←ϕ;
4: while it exists some query tree whose backbone gain is larger than zero do
5: Select vi as backbone whose backbone gain is maximal among all query trees in NB;
6: B←B∪{vi};
7: NB←NB−{vi};
8: /* Mapping Phase */
9: M←ϕ;

10: for each ui∈NB do
11: while there exists an edge (ui,vk) such that L ui; vkð Þ∩ ∪

ui ;vjð Þ∈M
L ui; vj
� �

≠ϕdo

12: vj← the vertex in B with the maximum s(ui,vj);
13: add (ui,vj) into M;



Fig. 8. An illustrative example of generating a sharing region.
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Analysis. The time complexity of algorithm BM is analyzed. The backbone gains of all non-backbones should be updated for each
iterationof backbone selection. For each iteration in thepartitionphase, eachnon-backbonequery tree Tj should compute δ(Tj). Suppose
that there are i vertices in NB and |V|− i vertices in B in one iteration. Thus, computing δ(Tj) for a vertex requires at most (|V|− i)
iterations to summarize the edge weights from the reduction graph. Therefore, in the worst case, the time complexity in the partition
phase is∑ i=1

|V| (|V|− i)=O(|V|2). In themapping phase, the time complexity for each vertex in NB to pick the vertexwhich induces the
edge with maximum score is at most O(|V|). Therefore, O(|V|2) is an asymptotic upper bound of this phase. Hence, the BM algorithm
needs at most O(|V|2).

4.2. Algorithm OOB: obtaining optimal backbones

To obtain the optimal solution, this study proposes algorithmOOB (standing for obtaining optimal backbones), which exploits the
branch-and-bound strategy [24] to derive the optimal backbone set. After deriving the optimal backbone set, other query trees not in
the optimal backbone set are thus put in the non-backbone set. Then, one could perform the operation in themappingphase of the BM
algorithmtoderive themapping relationshipsbetween thebackboneset and thenon-backbone set.Determiningoptimal backbones is
a search problem on a state space tree, where each node is associated with a state of backbones. Fig. 7 shows part of an example state
space tree that corresponds to the case of selecting backbones among the query trees in Fig. 2. Node P in the state space tree contains a
possible solution that includes the backbone set, denoted as P.B, and the non-backbone set, expressed as P.NB. The goal node contains
the solution of the optimal backbone set that minimizes the expected number of messages in all query trees. The search for the goal
node starts from the root node of the state space tree. Clearly, if one node is in level i of the state space tree, this node has i−1
backbones. Thus, the root node will expand its child nodes to search for possible solutions that have one backbone. This procedure of
discovering child nodes (referring to the branch operation) continues until the goal node is reached.

Note that the challenge here is to branch nodes that are likely to reach the goal node. The branch operation in the OOB algorithm is
controlled by a bounding function f(*) that estimates the upper bound of the sumof benefit in the currentmapping of the node P. The
f(P) consists of two components: (1) the total benefit achieved by the current P.B and P.NB (referring to as g(P)), and (2) the expected
cost of arriving at the goal node from node P (referring to the h(P)). As a result, for each node P, f(P) equals to g(P)+h(P) (i.e., f(P)=g
(P)+h(P)). The value of g(P) is the total benefit between the backbone set P.B and the non-backbone set P.NB, and is determined by
themappingphase of theBMalgorithm.On the other hand, function h(P) is the estimated cost ofmoving fromnode P to the goal node.
Selecting thosequery trees forwhich δ(Tj) is larger thanzero. Thus,h(P) estimates the sumof all non-backboneswhosebackbonegains
are larger than zero to ensure that the goal node is reached. Hence, h(P) is formulated as h Pð Þ = ∑

vj∈P:NB
max δ vj

� �
;0

� �
.

Example 10. Consider the node Z with B={v1,v4,v5} and NB={v2,v3} in Fig. 7. This case is exactly the same as the example in

Fig. 6 and thus, we can have g(Z) as
11
8

with their mapping relationships as {(v2,v1), (v2,v4), (v3,v1)}. Iteration 4 in Table 3 shows

that since the values of δ(v2) and δ(v5) are negative, h(Z)=0.

Algorithm 2. OOB: obtaining optimal backbones
Input: A reduction graph G=(V,E)
Output: Backbone mapping X

1: P.NB←V
2: P.B←ϕ
3: max←0;
4: Construct a heap H according to the values of evaluation function f(⋅);
5: Insert P into H;
6: while heap is not empty do
7: Remove node P from H;
8: Branch P;
9: for each child Q of P do
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10: if g(Q)Nmax then
11: max←g(P);
12: Best _P←P;
13: remove all nodes in H which f less than max;
14: if h(Q)≠0 then
15: Insert Q into H;
16: Return Best _P.M

In light of the functions derived, the OOB algorithm performs the branch-and-bound strategy by selecting the tree node with
the maximum f(⋅) value for branching its child nodes, and uses the maximum g(⋅) as the bound. The maximal value of g(⋅) is
updated according to the search in the state space tree. Therefore, the variable max records the maximum g(⋅) among current
nodes so far. A node i will not be allowed to extend its child nodes for possible solutions if f(i) is smaller than max because it is
impossible that the goal node is in the subtree of node i. Following the above principles, the OOB algorithm iteratively expands
child nodes of those nodes whose f(⋅) is larger thanmax until no any node can be branched. If tree node P has the maximum g(P)
and its h(P) is zero, this tree node is the goal node. Hence, we could have the optimal set of backbones as P.B. Given the backbone
set Z.B and the non-backbone set Z.NB, it is possible to derive the maximum benefit using the same procedure as the mapping
phase of the BM algorithm.

Example 11. Fig. 7 shows a snapshot of deriving the optimal solution by the state space tree based on the five-query reduction
graph in Fig. 5. The number associated with a tree node represents the order to which this node is expanded. In the beginning,
there is only one root node, and this root node is expanded. For all nodes in level 2, since node 2 has the largest f value (i.e., 103/24)
than the other nodes, node 2 are expanded. Since it has the largest f values of all nodes, node 3 is then expanded. Since the h values
of all child nodes of node 3 are 0, these child nodes do not need to be expanded. Among these child nodes, node Z has the largest g
value such thatmax is setting by 31/24. Since the currentmaximum g value is 31/24, each nodewhose f value is smaller than 31/24
will be pruned. Therefore, after expanding node 4, two of its children (marked with X) are pruned since their f values are smaller
than max=31/24.

Analysis. Since the OOB algorithm adopts the branch-and-bound strategy, the efficiency of finding optimal solution is determined
by the design of the bounding function. Experimental results show that the proposed bounding function can efficiently find the
optimal solution than the brute-force approach. However, in the worst case, it is still necessary to search the whole solution space
to get the optimal solution. The size of the whole solution space is ∑ k=1

n C(n,k)=2n−1, where n is the number of query trees
and C(n,k) denotes that k query trees are selected as the backbones. Thus, the time complexity for searching the optimal solution
is O(2n).

4.3. Maintenance mechanism

This section deals with dynamic scenarios in which queries may submit or leave dynamically. The proposed algorithms could
be periodically performed. However, during the time period of the execution of our proposed algorithms, users can still
dynamically issue or cancel queries. Thus, this study proposes a maintenance mechanism. There are two cases to be considered: a
new query being submitted and a query being canceled.

Case 1. When a new query tree arrives

When a new query tree is issued to wireless sensor networks, it is necessary to check how much benefit could be achieved by
the new query tree if this new query tree was put in the backbone set. The benefit of the new query tree Ti should be determined if
query tree Ti is in the backbone set. For each non-backbone tree Tj, check the correspondingmapping setMj. If non-backbone tree Tj
shares some edges with the new query tree Ti, examine these edges and derive the benefit between non-backbone Tj and backbone
Ti. If the label of an edge (vj,vi) does not have any common sensors to the existing edges in Mj, include this edge (vj,vi) in Mj.
However, since adjusting the routing paths of accessing intermediate results requires somemessage overheads, do not include this
edge in Mj. Thus, the total benefit achieved by setting Ti as a backbone is formulated as γB við Þ = ∑

vj∈NB
∑

vj ;við Þ∈Mj

w vj; vi
� �

. On the

other hand, it is necessary to determine how many messages will be reduced if query tree Ti is put in the non-backbone set and
accesses intermediate results of backbones. This benefit, denoted as γNB(vi), can be derived using the sameway as determining the
edge weight between two query trees. Hence, γNB(vi) is formulated as ∑

vk∈B
w vi; vkð Þ. According to γNB(vi) and γB(vi), it is easy to

decide whether query tree Ti should be in the backbone set or not. Explicitly, if γNB(vi)≤γB(vi), query tree Ti should become a
backbone. Otherwise, Ti is a non-backbone.

Case 2. When a query tree leaves

Existing query trees may be stopped by users. In this case, it is necessary to perform the following procedure. If the left query
tree is in the non-backbone set, simply let the query tree stop, as this has no effect on existing queries. On the other hand, if the
query tree left is a backbone, we should compare the reduction benefit of keeping this backbone and the cost reduced by stopping
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this query tree. The total benefit of keeping the query tree is estimated as ∑
vj∈NB

∑
vj ;við Þ∈Mj

w vj; vi
� �

. Moreover, if the query tree Ti is

terminated immediately, the number of averagemessages reduced per time unit is
N Tið Þ
E Tið Þ . Consequently, the query tree Ti should be

kept as a backbone even Ti is terminated, if the following condition is satisfied:
N Tið Þ
E Tið Þ ≤ ∑

vj∈NB
∑

vi ;vjð Þ∈Mj

w vi; vj
� �

: ð6Þ
Note that if query tree Th is stopped, a non-backbone tree must identify the subtrees that is effected by the deletion of query
tree Th. These subtrees should then stop accessing intermediate results of query tree Th.

5. Performance evaluation

This section evaluates the performance of the proposed algorithms and compares them with other methods. All experiments
were conducted using both synthesis and real datasets. Section 5.1 describes the simulationmodel, while Section 5.2 examines the
effects of sharing intermediate results. Section 5.3 compares the performances of the BM and OOB algorithms, and Section 5.4
presents a sensitivity analysis of the BM and OOB algorithms.

5.1. Simulation model

For the synthesis dataset, a simulator for a wireless sensor networkwas built and implemented in Java on a Linux platformwith
a 2.7-GHz AMD Athlon CPU and 2 GB of RAM. In the simulation, 500 sensors were uniformly randomly deployed in a 500×500-m2

region. The sink was located at the left-top corner of the region, and the transmission range of the sensors was 50-m, according to
the specification of micaZ [7]. When a query was submitted to the sink, TAG [28] was used to form a query tree where the root
node is the sink. The query range refers to those sensor nodes whose sensing data represent the data sources of one query tree. In
this experiment, the query range of each query was represented as a rectangle and the locations of query ranges were randomly
determined. Note that this kind of query is called a range query, which is a standard query type supported by TinyDB [38].

Since the proposed algorithms were designed using the concept of sharing the intermediate results among query trees, queries
were generated in a bottom-up fashion to control the amount of intermediate results between queries. To decide a set of sensors
for generating common intermediate results, we randomly selected a sharing region which is a r×r rectangle. Note that there are
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Fig. 9. Total number of messages for TAG, TAG-U, BM, and OOB. (a) The synthesis dataset and (b) the real dataset.
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Fig. 10. Reprogramming cost of messages of TAG, TAG-U, BM, and OOB with the arrival and departure rates varied. (a) The synthesis dataset and (b) the real dataset
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Fig. 11. Total number of messages of TAG, TAG-U, BM, and OOB with the sensing range varied. (a) The synthesis dataset and (b) the real dataset.
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Fig. 12. Total number of messages of TAG, TAG-U, BM and OOB with the sharing degree varied. (a) The synthesis dataset and (b) the real dataset.
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Fig. 13. Total number of messages of TAG, TAG-U, BM and OOB with the overlapping percentage varied. (a) The synthesis dataset and (b) the real dataset.
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Fig. 14. Performances for TAG, TAG-U, BM and OOB with the query range varied. (a) The synthesis dataset and (b) the real dataset.
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many combinations of intermediate results of sensor nodes in a sharing region. Setting r=3, Fig. 8 shows a sharing region with
3×3 sensors. To generate a possible combination, a routing tree was generated for these sensor nodes in a sharing region. In this
routing tree, a spanning tree was generated which leaf nodes are viewed as the source nodes and non-leaf nodes are viewed as
relayed nodes. For example, bold arrows in Fig. 8 are edges of a routing tree where alphabets associated with nodes are the node
identifications and the strings in nodes are the intermediate results. Note that node a, b, c, and h are leaf nodes of this routing tree
so that these four nodes are viewed as the source nodes. For a routing tree, given a sharing degree k, a valid subtree was selected
which contains ⌈k×r2⌉ nodes of this routing tree. A valid subtree satisfies that all intermediate results in all relay nodes in this
subtree should contain the source nodes in this subtree. For example, let k be 60%. The subtree contain ⌈60%×32⌉=6 nodes. Fig. 8
shows that the subtree in the shaded region is a valid subtree with 6 nodes since all intermediate results (i.e., a, ab, and abh) are
from the source nodes (i.e., a, b, and h). Note that it is possible that no valid subtree could be derived from this routing tree. In this
case, we enumerate another routing tree and then find a valid subtree again. If all the routing trees cannot find a valid subtree with
given requirements, another sharing regionwill be found and repeat the same procedure to select a valid subtree. At last, given the
query range and an overlapping percentage op, generate n queries in which op-percent queries contain this valid subtree to
guarantee the intermediates results that could be shared.

The simulation timewas set to be 1000 units. To simulate the dynamic workloads, queries may join or leave every 50 units. The
sampling period of queries were uniformly distributed in [2,14]. The arrival and departure of queries followed the Poisson process
at arrival rate μ and departure rate λ. To ensure the number of query trees in the networkwas stable, the default value of the arrival
rate and the departure rate were μ=3 and λ=3, respectively. Under this setting, given the mean number of query trees, the total
number of query trees in the network remained stable with respect to the mean.

The real dataset used in the following experiments is the public available Intel Lab dataset [22]. The light readings of 54 sensors
are selected from this dataset for the experiments. In this dataset, due to missing readings and asymmetric communication
between two sensor nodes, we fill missing readings by previous readings and consider two sensor nodes to be connected if the
probability of packet loss was less than 50%. The whole map was divided into 100×100 grids. All experimental results are the
average performance from readings of ten days. Note that the synthetic dataset was used to simulate a large-scale sensor
networks, whereas the real dataset was used to evaluate the performance in a real world environment. The default value of the
arrival rate and the departure rate were μ=3 and λ=3, respectively.

For comparison purposes, TAG refers to the scenario in which queries were performed as usual without sharing intermediate
results. On the other hand, TAG-U refers to deriving the union of all queries submitted at the sink first, and then injecting this query
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to the network via TAG. The optimal solution of backbone selection was obtained by a brute-force algorithm, denoted as Brute-
Force. Brute-Force algorithm calculates all possible sharing cases and chooses the case with theminimal number of messages as the
optimal solution. This study uses two performance metrics, total number of messages and execution time, to evaluate experimental
results. The total number of message evaluates the number of messages involving in query processing. The execution time
indicates the time to derive the sets of backbones and non-backbones.

In the following experiments, the default values of the query range were set as 100×100 m2 and 10×10 grids, and that of the
sharing regions were set as 60×60 m2 and 6×6 grids for synthesis and real diastases, respectively. Moreover, the default value of
the sharing degree is set to 60%, the default value of the overlapping percentage is set to 60%, and the default value of mean number
of queries is set to 60.
5.2. The effect of sharing intermediate results

This section first evaluates the total number of messages with themean number of queries varied. Fig. 9(a) shows that the total
numbers of messages for all approaches increase with the mean number of queries. The total number of messages incurred by BM
and OOB are much fewer than in TAG and TAG-U, showing the advantage of sharing intermediate results. Fig. 9(b) shows the
results of the real dataset, which is similar to the one of synthesis dataset.

The section next evaluates the reprogramming cost, which represents the number of messages incurred by reconfiguring
routing trees when a query tree arrives or leaves our system. Note that in the cases when themean number of queries is fewer, the
total number of messages incurred by TAG-U is slightly fewer than BM and OOB. Note that when query trees arrive or depart, TAG-
Umust compute the union from a set of new queries and derive the whole new query trees. Thus, the reprogramming cost of TAG-
U increases as the number of query trees increases. Fig. 10 shows the reprogramming cost of BM and TAG-U with the arrival and
departure rates varied. As mentioned above, the number of query trees arriving or leaving follow a Poisson process; therefore, the
arrival and departure rates here represent the parameters for Poisson process. Different from the results in the synthetic datasets,
reprogramming costs in the real datasets do not differ too much in any case. The reason could be the size of query trees are related
smaller than a large-scale network. Thus, the reprogramming cost of all approaches is likely the same. Overall, when the arrival
and departure rates are small, the reprogramming cost of TAG-U is smaller than BM. With the increasing of arrival and departure
rates, the reprogramming cost of TAG-U increases significantly since it needs to modify the whole trees.
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The following experiments examine the effects of the amount of intermediate results shared among query trees. We first
investigate the effect of the sensing range. Fig. 11(a) and (b) show the experimental results for the synthesis and real dataset. The
total number of messages for TAG-U, BM, and OOB decreases when the sensing ranges become larger, while that of TAG almost
keeps constant. It is worthmentioning that in Fig. 11(b), the total number of messages of TAG-U is slightly larger than BM and OOB
(around 500–700). In a small-scale network, since the selection of intermediate results aremuch fewer than a large-scale network,
the topology of the tree derived by TAG-U does not differ too much than the topology derived by BM and OOB such that TAG-U
could almost reduce as the same amount of messages than BM and OOB. Note that the sensing ranges represent howmany sensors
are used to generate intermediate results. These results indicate that BM and OOB can exploit intermediate results to reduce the
total number of messages efficiently.

Next, the effects of the sharing degree are examined. Fig. 12(a) and (b) show the performance of TAG, TAG-U, BM and OOBwith
the sharing degree varied in the synthesis and real dataset, respectively. The total number of messages in BM and OOB decrease as
the sharing degree increases, which is consistent with the fact that query trees can share more intermediate results when the
sharing degree becomes larger. The effect of BM and OOB outperform TAG-U when the sharing degree is large, which the
advantage of sharing intermediate results in algorithm BM and OOB.

The effect of the overlapping percentage is discussed. Fig. 13 (a) and (b) show that the total number of messages reduces when
the overlapping percentage increases. A larger overlapping percentage increases the possibility of the common data sources
among multiple queries. Therefore, BM and OOB are likely to share intermediate results to reduce the total number of messages.

This study also investigates the performances of TAG, TAG-U, BM and OOB for various query ranges. Fig. 14(a) shows that both
BM and OOB outperform TAG and TAG-U in the synthesis dataset. Fig. 14(b) shows the similar results in the real dataset. The
difference between TAG-U and the proposed methods is not prominent with the query range varied. This indicates that a larger
query range leads to a larger query tree. Compared with the experimental results above, this suggests that the reduction of the
total number of messages is primarily decided by the amount of the common intermediate results among query trees.

5.3. Performance comparison of algorithms BM and OOB

The results of the above experiments demonstrate that BM and OOB can significantly reduce the total number of messages. This
section evaluates the efficiency of the BM and OOB algorithms in terms of execution time. Moreover, to assess the optimality of
OOB, this study implements the Brute-Force algorithm to obtain the optimal set of backbone trees and the best mapping between
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non-backbone and backbone trees.Wewill evaluate the optimality in terms of the total number of messages. On the other hand, to
evaluate the effectiveness of the bounding function of OOB, we also implement a naive bounding strategy, denoted as DFS. In DFS,
nodes are expanded in depth-search-first order. As same as OOB, DFS keeps the maximum f value inmax and never expands nodes
which g values are smaller than max.

First, since BM and OOB exploit a cost function to estimate the total number of messages incurred, it is necessary to examine the
validation of the cost function. This experiment considers the fixed set of query trees since the average cost changes when a query
tree enters or leaves the system. Fig. 15 shows that the total number of messages is proportional to the average cost in all cases,
which implies that the average cost reflects the total number of messages whenwe consider the fixed set of query trees.2 Since the
whole monitoring duration can be decomposed into small sub-durations in which the set of query trees are fixed, thus the average
cost can be effectively used to reduce the total number of messages.

This study also investigates how the execution times of Brute-Force, BM, OOB, and DFS methods vary with the mean number of
queries. Fig. 16(a) shows the execution times of these algorithms in the synthesis dataset, which increase exponentially with the
number of queries in OOB and Brute-Force. In contrast, due to the greedy nature of BM, its execution time increases linearly,
thereby demonstrating its scalability. On the other hand, it can be seen that DFS needsmore time than OOB. Note that OOB uses the
bounding function to lead the procedure of node expansion.Without the proposed bounding function, DFS needs longer execution
time to find the optimal solution than OOB does. Fig. 16(b) shows the total number of messages for Brute-Force, BM and OOB.3

They exhibit very similar numbers of messages while BM incurs slightly more messages than the optimal solution. This implies
that BM can also provide the solution closer to the optimal one. In the real dataset, Fig. 17(a) shows that the execution time of BM,
OOB, and DFS are faster than that of Brute-Force even in a small network, while Fig. 17(b) demonstrates the optimality of OOB.

We next conducted an experiment in which the query range was varied. Fig. 18(a) shows that the execution times of Brute-
Force, BM, OOB, and DFS in the synthesis dataset. This figure indicates that the execution times of OOB, DFS, and Brute-Force
increase much more than that of BM. Similar to the results above, Fig. 18(b) shows that the messages incurred by these four
approaches are similar. This implies that our proposed approaches could achieve optimality efficiently. In the real dataset, Fig. 19
shows the execution time of Brute-Force also increases with the increasing of mean number of queries. The execution time of BM
and OOB just increase slightly. However, the execution time of DFS may possibly be longer than OOB when the mean number of
2 The values of AvgCost and BM in Fig. 15 are scaled for ease to presentation.
3 The number of messages is decided by the members of and the mapping of non-backbones and backbones. Since DFS and OOB derive the same solution, only

the results of OOB are presented here.
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queries increases. This supports that the proposed bounding function works well in OOB. To sum up, in a smaller network, the BM
and OOB algorithms could be adopted to reduce the total number of messages efficiently.

Fig. 20 shows the effects of overlapping. The execution times of BM, OOB, and DFS are much shorter than that of Brute-Force.
This is because the number of common data resources increases as the sharing degree increases. As such, the total number of
messages of these approaches decreases significantly. In addition, BM and OOB could have the optimal solution. As the same as the
previous experimental results, DFS needs more time than OOB slightly. In the real dataset, Fig. 21 shows that with a larger sharing
degree, a longer execution time is required to identify the sharing relation among query trees. Note that both BM and OOB can still
derive optimal solutions in a more efficient manner than the Brute-Force method.

6. Discussion

This paper focuses on the problem of sharing intermediate results among multiple queries to reduce the number of messages
involved. This study proposes the BM and OOB algorithms to first find non-backbones and backbones, and then derive the
mapping relation. Experimental results show that BM and OOB could take advantage of sharing intermediate results to reduce the
number of messages. The performance of these algorithms in different size of networks may vary. Small-scale networks caused
small-sized query trees, allowing the BM and OOB algorithms to reach almost the same performance. On the other hand, query
trees in large-scaled networks could have various kinds of possible combinations of backbones and non-backbones. In this case,
the OOB algorithm could lead to slightly fewer number of messages (less than 10%) than the BM algorithm; however, the BM
algorithm requires less execution time than the OOB algorithm. These results show the good solution quality and the good
scalability of algorithm BM.

Some limitations of this paper should be discussed here. First, the methodology limitation is discussed. In backbonemapping, a
non-backbone can only access intermediate results of one backbone for the same data source. A possible extension is that a non-
backbone could access the same data source from more than one backbone in different time slots. This extension could further
reduce the total number of messages since a non-backbone could share intermediate results from several backbones. The other
extension is the design of the bounding function used in the OOB algorithm. Although experimental results show that using this
bounding function can outperform a naive DFS approach, the execution time still is much longer than BM. Therefore, another
extension is to derive a more sophisticated bounding function to reduce the execution time significantly. Finally, some nodes in a
backbone may carry more communications that other nodes since they need to transmit their intermediate results. Currently, this
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f

problem could be solved by periodically re-submitting all queries in the proposed system. Energy-aware routing algorithms could
be used to construct query trees with energy-sufficient nodes [17,44]. Using these re-constructed query trees, the BM and OOB
algorithms could be executed to select new backbones to balance such overhead of energy consumption.

Second, this section also discusses the experimental limitations. The experiments in this study adopted the total number of
messages as a metric, which is also widely used to approximate the energy consumption [8,11–13]. The MicaZ specification [7]
indicates that the energy consumption of a sensor node is mainly affected by radio transmission and reception. Therefore, this
metric could reflect the most dominate part of energy consumption. Moreover, when there are multiple queries in a sensor
network, most network traffic consists query results to the sink. Thus, this metric could be a reasonable metric to evaluate the
performance of the proposed approaches. However, to concentrate on evaluating the effects of sharing multiple queries, the
proposed model ignores some minor energy consumptions activities, such as sensing, maintaining and detecting neighboring
sensors, dealing with packet collision, and so on. Future research should further consider these factors by implementing the
proposed approaches on networking simulators such as TAG simulator or NS-2. To test the effects of sharing intermediate results
among queries, the proposed simulation model uses sharing ranges and sharing degrees to control the overlap of data sources. In
reality, the number of intermediate results depends on the number of common data sources of queries. There could be other
possibilities for sharing data sources. It is also possible that only few intermediate results could be shared. The experimental results
in this paper may differ those in the real system. The effects of these possibilities should be further investigated by field tests.

7. Conclusions

This paper presents a method of sharing intermediate results among multiple aggregate queries to reduce the number of
messages in a wireless sensor network. Given a set of query trees, sharing intermediate results among queries makes it possible to
determine sets of backbones and non-backbones that minimize the number of messages incurred. This study first formulates the
objective cost function for this problem. In light of the objective cost function, this study derives a reduction graph that reflects
possible cases of sharing intermediate results among query trees and their associated benefits. Along with the reduction graph,
this study proposes a heuristic BM algorithm. Further, the OOB algorithm uses branch-and-bound strategy to obtain the optimal
solution. Comprehensive experiments were conducted on both the synthesis dataset and the real dataset. Experimental results
show that by sharing intermediate results among queries, the BM and OOB algorithms are able to significantly reduce the number
of messages, thereby saving a considerable amount of energy. Furthermore, the solution obtained by BM algorithm is very close to
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the optimal one derived by the OOB algorithm, confirming the solution quality of the BM algorithm. In addition, with the design of
the bounding function, the OOB algorithm is able to derive the optimal solution more efficiently than the brute-force approach as
the number of queries increases.
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