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A fuzzy approach to collision avoidance for automated guided vehicle (AGV) navigation 
is proposed. Static obstacles with no a priori position information as well as moving 
obstacles with unknown trajectories are considered in this study. Intuitive and subjec- 
tive human ideas of collision avoidance are modeled into fuzzy rules. Fuzzy logic is 
applied in the inference procedure for AGV navigation, such that the AGV is guided 
from the starting point toward the target without colliding with obstacles. Furthermore, 
the proposed method can also be used for the navigation of multiple AGVs, where 
each AGV must avoid other AGVs as well as obstacles in the environment. Simulation 
results are presented to show the feasibility of the proposed fuzzy approach. 0 1994 
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1. INTRODUCTION 

Current research and development of automated 
guided vehicles (AGVs) have attracted the attention 
of researchers in the areas of engineering, computer 
science, biology, psychology, locomotion, and oth- 
ers. This is due to the great application potential of 
AGVs. Possible applications include automatic free- 
way driving,l guidance of the blind and disabledr2 
security guarding, tourist guiding for sight seeing, 
exploration of dangerous regions, document trans- 
fer, etc. 

For vehicles to navigate automatically in an envi- 
ronment, an important factor is to prevent the vehi- 
cle from colliding with obstacles. Planning a colli- 
sion-free path among obstacles is one of the 
fundamental requirements for AGV navigation. 
Many previous works are concerned with methods 
for generating a path in a known en~ironment .~-~ 
Some of these algorithms have the ability to find an 
optimal path among many feasible paths. However, 
to provide more flexibility and autonomy to the AGV 
system, motion planning in the presence of un- 
known static obstacles is needed. Although in such 
a case it is difficult to find an optimal path, it is more 
desirable because of its suitability in a real situation. 

One approach to motion planning among un- 
known static obstacles is the virtual force field 
method.1° This method uses a two-dimensional 
Cartesian histogram grid as a world model, which 
is updated continuously with range data sampled 
by on-board range sensors. The virtual repulsion 
forces generated from the obstacles and the virtual 
attractive force generated from the target are ob- 
tained according to the histogram grid. The AGV is 
pushed away from the obstacles by the repulsion 
forces, and pulled toward the target by the attractive 
force. Another approach to generating motions 
among unknown static obstacles is based on the edge 
detection method." First, two vertical visible edges 
of the obstacles are determined from the sensor data. 
The horizontal line connecting two vertical edges is 
considered to be one of the boundaries of the obsta- 
cle. An AGV is then steered around either side of 
the visible edges. A drawback of this method is its 
sensitivity to sensor accuracy. Frequent misreading 
of ultrasonic sensors makes the performance unsta- 
ble. The third approach is the wall-following 
method.12 If the AGV encounters an obstacle while 
navigating, it follows the obstacle's countour until 
the AGV has passed by the obstacle. 

The above approaches only deal with unknown 
static obstacles. However, obstacles are not always 

stationary. Some studies deal with motion planning 
among moving obstacles that move along known 
traje~t0ries.l~ In a real situation, an AGV may face 
unexpected moving obstacles such as human beings. 
Failure to consider possible intrusion of previously 
unknown moving obstacles prohibits flexible AGV 
navigation. 

There exist few techniques for motion planning 
in the presence of unknown moving obstacles. Ty- 
chonievich et al.I4 extended the maneuvering board 
method commonly used for nautical navigation to 
find a collision-free path through a field of moving 
obstacles, from a starting point to a goal point, where 
the goal point can itself be in motion. It is assumed 
that the instantaneous velocities and positions of the 
obstacles are known in advance but may be un- 
certain. 

Kehtarnavaz and LiI5 introduced an estimation 
approach to predict the positions of moving obstacles 
using an autoregressive model. For each obstacle, a 
collision region around the obstacle path from its 
current position to the predicted position is defined. 
By drawing tangent lines between these regions, the 
shortest collision-free path between the current and 
a desired location of the vehicle can be obtained. 

Steele and Starr16 decomposed the path planning 
process of an AGV into two supporting processes: 
(1) using a graph search method to plan a path for 
avoiding all known static obstacles, and (2) using a 
field potential approach to control the motion of the 
AGV when unexpected obstacles are encountered. 

The concept of fuzzy theory was first introduced 
in 1965 by Zadeh.17 Henceforth, researchers have 
found numerous ways to utilize this theory to gener- 
alize existing techniques and to develop new algo- 
rithms in many research and application fields. Re- 
cently, fuzzy theory has been getting more and more 
important in the field of control, artificial intelli- 
gence, pattern recognition, robotics, etc. The success 
of many applications of the fuzzy set theory have 
been completely established. 

Fuzzy control is one of the most successful appli- 
cations of fuzzy theory. Several collision-avoidance 
approaches based on fuzzy logic have been used 
to control AGVs in stationary environments.18-21 In 
these methods, many parameters are required as the 
input of the fuzzy inference procedures, such as the 
wall distance, the wall angle, the heading angle of 
the AGV, the width of the road, the road shape, etc. 
These methods only deal with static obstacles, and 
thus are not practical for real navigation environ- 
ments. 

To be suitable for time-varying environments, 
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static obstacles with no a priori position information 
as well as moving obstacles with unknown trajecto- 
ries are considered in this study for AGV navigation. 
Fuzzy logic control is applied for the guidance of an 
AGV from a starting point toward the target without 
colliding with any obstacle. Intuitive motions of hu- 
man beings are modeled into fuzzy rules such that 
the AGV has the capability, like human beings, of 
avoiding the obstacles. These fuzzy rules can be dy- 
namically weighted according to the nearness degree 
of the found obstacles. Furthermore, the proposed 
approach can also be used for the navigation of multi- 
ple AGVs, with few modification to the original algo- 
rithm. 

In the remainder of this article, brief concepts of 
the fuzzy set theory and fuzzy inference method are 
introduced in section 2. The computational frame- 
work of the proposed approach and detailed descrip- 
tion of each control module are described in sections 
3 and 4, respectively. Some simulation results are 
shown in section 5, and conclusions appear in the 
last section. 

2. FUZZYTHEORY 

In this section we give a brief note on fuzzy theory 
and its principal ideas.” 

2.1. Fuzzy Set 

A classical (or crisp) set is a collection of elements. 
For a universal set X, each single element x E X can 
either belong to or not belong to a set A, where A 
X. A way of defining set A is to use the characteristic 
function pA,  in which 1 indicates membership and 
0 nonmembership. 

For a fuzzy set, the characteristic function allows 
various degrees of membership for each element. 
Let X be a universal set, then a fuzzy set A in X is 
a set of ordered pairs: 

where p ~ ( x )  is called the membership function of x 
in A. The height of A is defined as the supremum 
of p&) over X. 

2.2. Fuzzy Set Operations 

Most crisp set operations, such as union, intersection, 
and complement, have analogs in the fuzzy set theory. 
For any two fuzzy sets A and B defined in X, with 

membership functions being p ~ ( x )  and p&), respec- 
tively, the membership function p&) of their inter- 
section C = A n B is pointwise defined by 

Similarly, the membership function p&) of the 
union = A U B is pointwise defined by 

And the membership function p c ~ ( x )  of the comple- 
ment of a fuzzy set A is defined by 

pcA(x) = 1 - FA(X), x E x. 

2.3. Fuzzy Inference 

The correlation-minimum inference method pro- 
posed by MamdaniZ3 is applied in this study for fuzzy 
inference. Fuzzy inference is a reasoning method 
using fuzzy theory, whereby human knowledge is 
expressed using linguistic rules, for example, IF A 
THEN 6 (or A .$ B), where A and B are fuzzy vari- 
ables defined in two universal sets X and Y, respec- 
tively. Assume that A’ is the input fuzzy variable. 
Then Mamdani’s inference procedure can be illus- 
trated by Figure 1. First, the intersection A’ n A of 
the input fuzzy set A’ and antecedent fuzzy set A is 
computed. Then the height h of A’ n A is used to 
clip the top of the consequent fuzzy set B, and the 
resultant fuzzy set B’ is the inference output. 

If the input variable is a nonfuzzy value x ’ ,  it can 
be regarded as a fuzzy set A’ with the membership 
function = 1 if x = x ’ ,  and 0 otherwise. So 
the inference process is identical to the above proce- 
dure. This is illustrated in Figure 2. 

The output B‘ of the inference procedure is a 
fuzzy set. In practical control applications, a non- 
fuzzy output value is desirable, so defuzzification of 
the fuzzy set B’ is necessary. Common defuzzifica- 
tion strategies include the maximum criterion 
method, the mean of maximum methods, and the 
center of area method.24 The center of area method is 
used in this study because it usually yields superior 
results.25 In this method, the centroid b of the fuzzy 
set B’ is chosen as the real-valued output: 

If a fuzzy rule is multiantecedent, for example, 



746 Journal of Robotic Systems-1994 

1 

Figure 1. A fuzzy inference example. 

IF A AND 6 THEN 6 

or 

IF A OR B THEN C’,  

the output fuzzy set 6’ is obtained by clipping 6 
according to the minimum or maximum value of two 
height values h, and h,, as shown in Figures 3 and 
4, respectively. 

When there is more than one fuzzy rule, super- 
imposing these fuzzy rules is needed to produce the 
inference result. Assume that there are m rules A, 
j B,, A, j Bz, . . . , A, j B,, and the input A 
activates all the rules in parallel. When the fuzzy 
rules have unequal importance, or the reliability of 
these fuzzy rules is not identical, a reasonable 
method is to give each fuzzy rule a different weight. 
The weight wi(O 5 wi < l), associated with the ith 
fuzzy rule, is to indicate the importance of the rule. 

As shown in Figure 5, the output B of these rn rules 
is thus 

The larger the weight value, the more contribution 
the corresponding fuzzy rule gives to the output. 

3. FUZZY APPROACH TO OBSTACLE 
AVOIDANCE 

Fuzzy inference and some intuitive fuzzy rules are 
applied in this study for the guidance of an AGV. 
The AGV moves among unknown obstacles and is 
expected to reach a specified target. The unknown 
obstacles may be stationary or moving in arbitrary 
directions and at different speeds. Collision-free mo- 
tions are generated cycle by cycle according to the 
inference result. 

Figure 2. A fuzzy inference example with input being a nonfuzzy value. 
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Figure 3. Fuzzy inference for a multiantecedent rule: IF A AND B THEN 6. Minimum 
of h, and hB is used to clip C. 

I 

Figure 4. Fuzzy inference for a multiantecedent rules: IF A OR B THEN 6. Maximum 
of h, and hB is used to clip C. 

I 
I I  / I 

Figure 5. Superimposition of multiple fuzzy rules. 
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distance 

Figure 6. The AGV configuration. 

detenning-fm-near 
module 

Shown in Figure 6 is the simulated AGV config- 
uration. Three ultrasonic sensors are mounted at the 
front of the AGV to detect obstacles to the left front, 
right front, and direct front locations, respectively. 
The proposed navigation algorithm is composed of 
six fuzzy control modules: determining-far-near mod- 
ule, controlling-speed module, directing-toward-target 
module, avoiding-s ta tic-obs tacle module, avoiding-mov- 
ing-obstacle module, and handling-trap-state module, as 
shown in Figure 7. 

initialize 

arameters 

avoiding-static-obstacle avoiding-moving-obstde 

\L 
controll ing-speed - module 

No i b r m  handling-trapstate 

Figure 7. The computational framework of a navigation cycle for collision avoidance. 
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Before the navigation sessions, some parameters 
should be initialized in advance-the effective dis- 
tances of ultrasonic sensors, and the maximum 
speed and acceleration of the AGV, for example. At 
the beginning of each navigation cycle, the AGV first 
scans the environment to see whether there exist 
obstacles in front. If there exist moving obstacles, 
the avoiding-moving-obstacle module is executed, which 
is used to avoid the AGV from colliding with moving 
obstacles by changing the speed of the AGV. The 
orientation of the AGV is not changed in this 
module. 

On the other hand, if static obstacles are found, 
the determining-far-near module is executed to deter- 
mine whether they are near to the AGV. The com- 
puted nearness-degree value w and the far-degree 
value (1-w) are then taken as the weights of the 
avoiding-static-obstacle module and the directing-toward- 
target module, respectively. So if a larger nearness- 
degree value is obtained, a larger weight value is 
assigned to the avoiding-static-obstacle module. Other- 
wise, a larger weight value is assigned to the direct- 
ing-toward-target module. That is, if the found static 
obstacles are near to the AGV, it is more urgent to 
avoid these obstacles than to direct the AGV toward 
the target. But when the static obstacles are distant 
or no static obstacle is found, it is more reasonable 
for the AGV to steer toward the target. In addition, 
the distances between the static obstacles and the 
AGV are passed to the avoiding-static-obstacle module, 
the directing-toward-target module, and the controlling- 
speed module as the input of their fuzzy control rules. 

In both the avoiding-static-obstacle module and di- 
recting-toward-target module, only the orientation of 
the AGV is changed. In the former module, the ori- 
entation of the AGV is changed according to the 
locations of the static obstacles. But it is changed 
according to the direction of the target in the latter 
module. After obtaining the orientation of the AGV, 
the speed of the AGV is determined in the controlling- 
speed module based on the distance between the AGV 
and the closest static obstacle. 

Under some circumstances, the AGV may get 
blocked. The handling-trap-state-module is used to 
check whether the AGV is in a trap state and help 
it to leave this state. 

Finally, the orientation and speed computed 
from the above-mentioned inference modules are 
used to steer the AGV. Then, in accordance with the 
location of the AGV, whether the goal is reached is 
determined. If it is not reached, the next navigation 
cycle begins. 

4. CONTROL MODULES 

In this section, detailed specifications of the fuzzy 
rules in each control module are given. These rules 
are derived from human beings’ intuitive motions 
of collision avoidance. 

4.1. Avoiding-Moving-Obstacle Module 

When an AGV is navigating toward the target and 
a moving obstacle is detected, this module is exe- 
cuted to control the AGV such that it will not collide 
with the moving obstacle. Instead of turning its ori- 
entation, the AGV just changes its speed to prevent 
collision, according to the distance between the mov- 
ing obstacle and the AGV. If the distance is short, 
the AGV reduces speed. The output of this module 
is the reduced speed value of the AGV. Computation 
of the distance between a moving obstacle and an 
AGV is not trivial, which will be discussed later. 
The fuzzy rules and the corresponding membership 
functions of this module are shown in Figure 8. 

4.2. Determining-Far-Near Module 

Three ultrasonic sensors mounted at the front of an 
AGV are used to detect obstacles to the left front, 
right front, and direct front locations, respectively. 
The distance readings of these three ultrasonic sen- 
sors are the input of this module. The output of this 
module is the nearness degree of the found static 
obstacles, which is used to determine the weights 
of the directing-toward-target module and the avoiding- 
s ta tic-obs tacle module. 

There are two fuzzy rules to decide the nearness 
degree of the found static obstacles. If one of the 
obstacles detected by the three sensors is close to 
the AGV, there is a high nearness-degree value. 
Otherwise, if all the found obstacles are distant, 
there is a low nearness-degree value. The larger the 
value, the higher the degree of nearness. The fuzzy 
rules and their corresponding membership functions 
are shown in Figure 9. 

4.3. Avoiding-Static-Obstacle Module 

When an AGV is navigating toward the target, if 
one of the three (left, center, and right) ultrasonic 
sensors detects static obstacles, this module is exe- 
cuted to change the orientation of the AGV to avoid 
collision. The vehicle is steered toward the direction 
with more free space according to the locations of 
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1 .o 

Figure 8. Fuzzy rules a n d  membership functions of avoiding-moving-obstacle module. 
Rule 1: IF obstacle-near THEN reduce-speed. 

r\ center-obstacle-near center-oMaclefar 
right-obstacle-neor right_ohstacle-far 

> 

A 
low-nearness_degree hlgh-nearness-degree 

-1 .o -0.5 0 0.5 1.0 1.5 2.0 value 

~~ 

Figure 9. Fuzzy rules and membership functions of determining-far-near module. 
Rule 1: IF left - obstacle - near O R  center-obstacle-near O R  

Rule2: IF left-obstacle - far AND center - obstacle- - far AND 
right-obstacle-near THEN high-nearness degree. 

right-obstacle - far THEN low - nearness-degree. 
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1 .o 

0 

A center-obtacle-far 
M-obstacle-near left obstacle far 
right-ohstode-near ri@ii-&aclE-far 

20 40 distance' 

don't-move-ighi 

'-10" 0" 

0" 0" , O" tun an! 

Figure 10. Fuzzy rules and membership functions of avoiding-static-obstacle module. 
Rule 1: IF right-obstacle- THEN moue - right. 
Rule 2: IF left-obstacle-far THEN moue - left. 
Rule 3: IF center-obstacle-far THEN moue center. 
Rule4: IF right - obstacle - near THEN don't-moue - - right. 
Rule 5: IF left-obstacle-near THEN don't - move - left. 

obstacles. For example, if the right obstacle is far, the 
AGV could move right. The output of this module is 
the turn angle of the AGV. The fuzzy control rules 
and their corresponding membership functions are 
shown in Figure 10. 

4.4. Directing-Toward-Target Module 

This module is used to guide an AGV from its current 
location toward the target. The input of this module 
is the angle between the moving direction of the 
AGV and the vector from the AGV location to the 
target location; the output is the turn angle of the 

AGV. The fuzzy rules of this module and their corre- 
sponding membership functions are shown in Fig- 
ure 11. 

4.5, Controlling-Speed Module 

In each navigation cycle, if we can dynamically vary 
the speed of the AGV, its flexibility will be increased. 
The purpose of this module is to control the speed 
of the AGV. When the detected static obstacles are 
distant or no obstacle is found, the AGV accelerates. 
Otherwise, it decelerates such that it can take a safe 
turn to avoid the static obstacles. 
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Figure 11, Fuzzy rules and membership functions of directing-toward-target module. 
Rule 1: IF goal-left THEN steer-left. 
Rule 2: IF goal-right THEN steer-right. 

There are two input values in this module, in- 
cluding the speed of the AGV and the distance be- 
tween the AGV and the nearest static obstacle. The 

corresponding membership functions are shown in 
Figure 12. 

4.6. Handling-Trap-State Module 
output of this module is the increased or reduced 
speed value of the AGV. The minimum speed value 
is' zero; that is, the AGV is not allowed ;o back up. 
The fuzzy control rules of this module and their 

The purpose of this module is to help an AGV to 
recover from a trap state. A trap state occurs when- 

reduced speed value 

Figure 12. Fuzzy rules and membership functions of controlling-speed module. 
Rulel: IF obstacle-distance-long AND A G V  - speed - low 

Rule2: IF obstacle-distance-short AND AGV-speed-high 
THEN increase-speed. 

THEN reduce - speed. 
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Figure 13. Fuzzy rules and membership functions of handling-trup-state module. 
Rule 1: IF wait-time-long THEN turn-right. 

ever an AGV is blocked; that is, it neither moves nor 
turns but just keeps waiting endlessly. A common 
trap state is when the distance readings of the left- 
front sensor and the right-front sensor of the AGV 
are equal; the AGV can neither turn right nor left but 
keeps going forward. Because the obstacles detected 
are static, the AGV will eventually reduce its speed 
to zero. Consequently, the AGV is trapped. Another 
common trap state occurs when two AGVs move 
toward each other on a straight line and thus each 
takes the other one for a moving obstacle. To avoid 
collision, the two AGVs reduce speed to let the other 
one to pass by and eventually stop to wait. So these 
two AGVs wait for each other endlessly. 

A trap state may be detected by simply checking 
if the speed of the AGV is zero for a long period of 

time. A simple control rule is applied in this module 
to resolve this problem. When an AGV get trapped, 
we simply turn it right. The longer the wait time, 
the larger the turn angle. The fuzzy rules of this 
module and their corresponding membership func- 
tions are shown in Figure 13. 

4.7. Computation of the Distance of the 
Moving Obstacle 

It is not mentioned in subsection 4.1 how to measure 
the distance between a moving obstacle and the 
AGV. In this study, a collision zonez6 of the moving 
obstacle is constructed to resolve the problem. It is 
assumed that the AGV has the ability to obtain the 
location of a moving obstacle from the input sensors. 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
I 
I 
I 

Figure 14. Two moving obstacles and their collision zones. 
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First, the trajectory of the moving obstacle is pre- 
dicted, and then a collision zone around the obstacle 
path from its current position to the predicted posi- 
tion is formed, as shown in Figure 14. The shortest 
distance between the collision zone and the AGV is 
used as the distance between the moving obstacle 
and the AGV. 

To establish the collision zone for each moving 
obstacle, a path prediction algorithm is required. It 
is desired that the prediction process be as accurate 
as possible without expensive computation. Linear 
prediction models usually give simple but effective 
solutions. In the following, we first briefly introduce 
the real-time least-mean-square error (LMSE) estima- 
tion algorithm,27 and then adapt this algorithm to 
predict the paths of moving obstacles. 

Let x be a variable related linearly to a time vari- 
able t, that is, let 

x = a t + b  (1) 

where a and b are two unknown constant parameters 
to be estimated by a sequence of rn observations xi 
on x at in different time instants ti, i = 1, 2, . . . , 
rn. The rn observation data provide the following set 
of rn linear equations: 

x i = a t i + b  i = l , 2 , .  . .,m, 

which can be arranged into a simple form 

X, = T,A, 

where 

T ,  = [ 11, 
t m  

Define an error vector En, = (el, e2, 
for each inexact solution A,, such that 

Em = X, - T,A,,. 

4 A-small ?-.-large 

01 0.4 

. . . , 

Figure 15. Fuzzy rules and membership functions of A control module. 
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In the real-time LMSE estimation algorithm, the opti- 
mal solution, A,,, is defined as the one such that the 
error function 

m 

i = l  
Im = A”’-’e?, 0 < A  < 1, 

is minimized. The squared errors coming from more 
recent data are given larger weights than those from 
earlier ones. The smaller the A value, the heavier the 
weights assigned to more recent data. Such a type 
of data emphasis is appropriate for the locality prop- 
erty of collision-free motion planning. Define Pm- as 

where 

The ”real-time” means that when fresh experi- 
mental data x ,  are supplied, the estimation am can 
be obtained (from Eq. (2)) by simply using this new 
information and the previous estimation Am_,, in- 
stead of all the data x l ,  x2, . . . , and xn1. 

To apply the above estimation algorithm to local 
obstacle trajector prediction, assume that a sequence 
of rn observations on the position of an obstacle have 
been made at rn different time instants. By the follow- 
ing two sets of linear equations 

x i = a t i + b  i = l , 2 , .  . . , m  
y i = c t , + d  i = l , 2 , .  . . , m  (3) 

where ( x i ,  yi) denote coordinates of the position of 
the obstacle at time instant t i ,  we can use the formu- 
las in Eq. (2) to estimate and update parameters a, 
b, c, and d using the fresh observation on the position 
of the obstacle obtained in each navigation cycle. 

Figure 16. An AGV navigates among static obstacles. 

Then we can predict the positions of the obstacle in 
the next cycles using these estimated parameters and 
the equations in Eq. (3). 

In the real-time LMSE estimation algorithm, the 
weight A is fixed. However, it is not reasonable to 
fix this value in all the navigation sessions. We adjust 
the weight dynamically according to the prediction 
error, so that the predicted path is as accurate as 
possible. If the prediction error is large and A is large, 
we reduce the value of A to place more emphasis on 
the recent data. But if the prediction error is large 
and A is small, we increase the value of A to place 
more emphasis on previous data. The prediction er- 
ror is defined as follows: 

Figure 17. An AGV navigates among cluttered static ob- 
stacles. 
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(a) An AGV wishes to go to target T from 

starting point S. 

(c) The AGV waits for the beetle to pass by. 

(b) The AGV is approaching a moving beetle. 

(d) The AGV steers toward the target. 

1 

(e) The AGV is approaching a walking man. (0 The walking man has passed by. 

(g) The AGV steers toward the target. (h) The AGV reaches the target. 

Figure 18. Simulation of an AGV navigating among moving obstacles in a street. 
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I 

(a) AGVl wants to go to target T1 from S1 

and AGV2 to target T2 from S2. 
I 

(c) Both AGVs detect each other and 

reduce speed. 

s1 c1 

(b) Both AGVs steer toward their targets. 

(d) Both AGVs detect a trap state and turn 

right to leave this state. 

s1 

(e) Both AGVs have avoided collision 

with each other. 

(f) Both AGVs steer toward their targets. 

(g) Both AGVs reach their targets. 

Figure 19. Simulation of two AGVs steering toward each other. 
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(a) AGVl wants to reach target TI from S1 

and AGV2 to T2 from S2. 

(c) Both AGVs continue to move. 

(e) AGV2 has avoided collision with 

the static obstacle. 

(b) Both AGVs detect moving obstacles and 

reduce speed to let the obstacles pass by. 

(d) AGV2 is turning its orientation to keep 

away from a static obstacle. 

(0 Both AGVs steer toward their targets. 

Figure 20. Simulation of two AGVs moving in streets with two moving obstacles and 
several static obstacles. 

where ( x i ,  yi) are the coordinates of the current posi- 
tion of the moving obstacle, and (x,, y,) are the coor- 
dinates of the predicted position of the moving obsta- 
cle computed in the previous cycle. The fuzzy rules 
used to adjust the weight A and their corresponding 
membership functions are shown in Figure 15. 

5. EXPERIMENTAL RESULTS 

The proposed approach has been implemented in 
the C language on a 33 Mhz 486-PC with Windows 

3.1 environment. The computation is rather fast. To 
demonstrate the feasibility of the proposed ap- 
proach, some examples are shown in Figures 16-20. 
In these examples, the maximum acceleration of 
AGVs is 0.9 pixel/cycle*, and the maximum velocity 
is not limited. Figure 16 shows the collision-free mo- 
tions among static obstacles for an AGV moving from 
a starting point S to the target T. The positions and 
shapes of these obstacles are not known in advance. 
Figure 17 shows the trajectory of an AGV navigating 
in a cluttered environment. The experimental results 
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(g) AGVl detects AGV2. (h) AGVl reduces speed to let AGV2 pass by. 

(i) Both AGVs steer toward their targets. 0 )  Both AGVs turn their orientations to keep 

away from the static obstacles. 

(k) Both AGVs reach their targets. 

Figure 20. (continued) Simulation of two AVGs moving in streets with two moving 
obstacles and several static obstacles. 

indicate that the path planned by the proposed fuzzy 
approach is feasible and near optimal. The average 
ratio of the path length obtained from the proposed 
approach to the distance between the start and target 
positions is about 1.15. This is acceptable for AGVs 
navigating among cluttered environments. 

Figure 18 shows several snapshots of the vehicle 
at different positions in the environment with two 
moving obstacles, denoted as a beetle icon and a 
man icon, respectively. The closer the positions of 

the vehicle icons, the lower the speed value of the 
AGV. The trajectories of the moving obstacles are 
not known in advance. Figures 19 and 20 show two 
cases that two AGVs encounter in the environment. 
Figure 19 shows the simulated snapshots of two 
AGVs navigating toward each other on a straight 
line. In Figure 20, two AGVs navigate in the streets 
with static and moving obstacles. Experiment results 
show that the proposed approach is also feasible for 
the navigation of multiple AGVs in an environment. 
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6. CONCLUSION 

In this article, we have proposed a fuzzy control 
approach for the guidance of an AGV to the target 
among unknown static and moving obstacles. 
Weighted fuzzy rules have been designed for infer- 
ence in the navigation sessions. Simulation results 
have been performed to show the feasibility of the 
proposed approach. A small number of parameters 
are needed in the inference procedure, and the com- 
putation is fast. Experimental results have shown 
that the proposed approach can be applied to the 
navigation of multiple AGVs in the environment, 
with few modifications to the original algorithm. 

Further research may be directed to practically 
implementing the proposed approach on an experi- 
mental autonomous vehicle. Hence some important 
issues concerning navigation of the AGV will be 
studied, such as the sensor modeling. In addition, 
exploration of complex trap problems, walking in a 
maze, for example, is also a suggestion for further re- 
search. 

This work was supported by National Science Coun- 
cil, Republic of China under Grant NSC82-0401-E- 
007-046. 

1. L. L. Wang and W. H. Tsai, “Car safety driving aided 
by 3-D image analysis techniques,” Proc. Microelectron- 
ics and Information Science and Technology Workshop, 
Hsinchu, Taiwan, R.O.C., 1986, pp. 687-701. 

2. R. L. Madarasz, L. C. Heing, R. F. Crimp, and N. M. 
Mazur, “The design of an autonomous vehicle for the 
disabled,“ IEEE J. Rob. Autom., RA-2, 117-126, 1986. 

3. 0. Takahashi and R. J. Schilling, “Motion planning 
in a plane using generalized Voronoi diagrams,” lEEE 
Trans. Rob. Autom., 5(2), 143-150, 1989. 

4. R. C. Arkin, “Navigational path planning for a vision- 
based mobile robot,” Robotica, 7, 49-63, 1989. 

5. G. T. Wilfong, “Motion planning for an autonomous 
vehicle,” Proc. ZEEE Znt. Conf. Rob. Autom., Philadel- 
phia, PA, 1988. 

6. S. Kambhampati and L. S. Davis, ”Multiresolution 
path planning for mobile robots,” ZEEE J. Rob. Autom., 
2(3), 135-145, 1986. 

7. D. T. Kuan, J. C. Zamiska, andR. A. Brooks, ”Natural 
decomposition of free space for path planning,” Proc. 
IEEE Int. Conf. Rob. Autom., St. Louis, MO, 1985, 
pp. 168-173. 

8. R. A. Brooks, “Solving the find-path problem by good 
representation of free space,” l E E E  Trans. Syst. Man 
Cybern., 13(3), 190-197, 1983. 

9. Y. K. Hwang, N. Ahuja, ”Gross motion planning-A 
survey,” ACM Comput. Surv., 24(3), 219-290, 1992. 

10. J. Borenstein and Y.’Koren, ”Real time obstacle avoid- 
ance for fast mobile robots,” ZEEE Trans. Syst. Man 
Cybern., 19(5), 1179-1187, 1989. 

11. I. Borenstein and Y. Koren, ”Obstacle avoidance with 
ultrasonic sensors,” ZEEE 1. Rob. Autom., RA-4(2), 

12. G. Bauzil, M. Briot, and P. Ribes, “A navigation sub- 
system using ultrasonic sensors for the mobile robot 
Hilare,” Proc. 1st Znt. Conf. Robot Vision and Sensory 
Controls, Standford-upon-Avon, UK, 1981, pp. 47-58. 

13. K. Fujimura, and H. Samet, “A herarchical strategy for 
path planning among moving obstacles,” lEEE Trans. 
Rob. Autom., 5(1), 61-69, 1989. 

14. L. Tychonievich, et al., “A maneuvering-board ap- 
proach to path planning with moving obstacles,“ Porc. 
11th Znt. Joint Conf. Artifical Intelligence, Detroit, MI, 
1989. 

15. N. Kehtarnavaz and S. Li, “A collision-free navigation 
scheme in the presence of moving obstacles,” Proc. 
ZEEE lnt. Conf. Computer Vision and Pattern Recognition, 
Ann Arbor, MI, 1988, pp. 1017-1021. 

16. J. P. H. Steele and G. P. Starr, ”Mobile robot path 
planning in dynamic environments,” Proc. ZEEE Znt. 
Conf. Syst. Man Cybern., Beijing and Shenyang, 
China, 1988. 

17. L. A. Zadeh, “Fuzzy sets,“ Information Control, 8, 

18. M. Maeda, Y. Maeda, and S. Murakami, “Fuzzy drive 
control of an autonomous mobile robot,” Fuzzy Sets 
and Systems, 39, 195-204, 1991. 

19. Y. Nagai and N. Enomoto, “Fuzzy control of a mobile 
robot for obstacle avoidance,” J. lnf .  Sci., 45(2), 

20. M. Sugeo and M. Nishida, ”Fuzzy control of model 
car,” Fuzzy Sets Syst., 16, 103-113, 1985. 

21. J. Gasos, M. C. Carcia-Alegre, and R. Garcia, ”Fuzzy 
strategies for the navigation of automous mobile ro- 
bots,” Proc. Z.F.E.S., 1991, pp. 1024-1034. 

22. H. J. Zimmermann, Fuzzy Set Theory and its Applica- 
tions, Kluwer Academic Publishers, Boston, 1991, 

23. E. H. Mamdani, “Application of fuzzy logic to approxi- 
mate reasoning using linguistic synthesis,” ZEEE 
Trans. Cornput., C-26(12), 1182-1191, 1977. 

24. C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic 
controller,” ZEEE Trans. Syst. Man Cybern., 20(2), 

25. M. Braae and D. A. Rutherford, “Fuzzy relations in 
a control setting,” Kybernets, 7(3), 185-188, 1978. 

26. N. Kehtarnavaz and N. Griswold, “Establishing colli- 
sion zones for obstacles moving with uncertainty,” 
Computer Vision, Graphics, and Image Processing, 49, 

27. T. C. Shia, System Identification: Least-Squares Methods, 

213-218, 1988. 

338-353, 1965. 

231-248, 1988. 

404-435, 1990. 

95-103, 1990. 

Lexington Books, Lexington, MA, 1977. 


