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Binary Translation (BT) has been commonly used to migrate application software across Instruction Set
Architectures (ISAs). Some architectures, such as X86, allow Misaligned Data Accesses (MDAs), while most
modern architectures require natural data alignments. In a binary translation system, where the source ISA
allows MDA and the target ISA does not, memory operations must be carefully translated. Naive translation
may cause frequent misaligned data access traps to occur at runtime on the target machine and severely
slow down the migrated application.

This article evaluates different approaches in handling MDA in a binary translation system including how
to identify MDA candidates and how to translate such memory instructions. This article also proposes some
new mechanisms to more effectively deal with MDAs. Extensive measurements based on SPEC CPU2000
and CPU2006 benchmarks show that the proposed approaches are more effective than existing methods and
getting close to the performance upper bound of MDA handling.
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1. INTRODUCTION
Binary Translation (BT) [Sites et al. 1993] is a technique commonly used to migrate

application binaries from one ISA to another [Chernoff et al. 1998; Baraz et al. 2003;
Bellard 2005; Ebcioglu and Altman 1997; Scott et al. 2003; Transitive Technologies
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Ltd. 2001]. When the target ISA is the same as the source ISA, BT can also be applied
to implement dynamic optimization [Bala et al. 2000; ke Chen et al. 2000; Bruening
et al. 2003; Duesterwald 2005], dynamic speculation and parallelization [Packirisamy
et al. 2006], dynamic instrumentation [Nethercote and Seward 2007; Bungale and Luk
2007], and dynamic software security enforcement [Qin et al. 2006]. Some architectures
do not have alignment restrictions where data operands must start at addresses that
are multiples of the data’s natural size [Hennessy and Patterson 2006]. For example,
X86 allows Misaligned Data Accesses (MDA). The implementation of such architectures
may provide hardware support to generate multiple memory operations in completing
the misaligned memory access. Alternatively, the implementation may choose to gen-
erate a misaligned access trap and let software handle the required memory accesses.
For architectures that disallow MDA, such as MIPS, ALPHA, IA-64, and most modern
RISCs, misaligned data accesses using regular memory operations will always gen-
erate misaligned access traps. Since the cost of misalignment exception is very high,
frequent MDAs will severely slow down the execution of the application. Misaligned
traps usually would not occur because the compilers for modern RISCs ensure data
are properly allocated to fulfill the alignment requirements. The compiler-managed
data allocation would preclude MDA from happening at runtime. However, in binary
translation systems, if the source architecture allows MDA so that the data in the
original binary were not properly aligned, the directly translated memory operations
may generate an MDA trap. Therefore, in a binary translation system, when the source
architecture allows MDA, memory operations must be translated carefully to minimize
the performance impact from frequent misalignment traps.

Existing binary translation systems have been dealing with MDA using different
mechanisms. For example, the Transmeta code morphing system relies on hardware
support [Dehnert et al. 2003; Coon et al. 2006]. QEMU [Bellard 2005] directly translates
the source memory operations into a sequence of safe target memory operations. The
FX!32 [Chernoff et al. 1998; Hookway and Herdeg 1997] uses static profiling to identify
source memory operations that are likely to incur MDA and translates only such can-
didates into a code sequence free of misalignment traps. The IA-32 EL system [Baraz
et al. 2003] exploits dynamic profiling to collect candidate memory operations for opti-
mization during the hot code optimization phase. The direct translation method used
in QEMU is simple but incurs significant overhead for every source memory operation
that references more than one byte. A profiling-based approach is an effective way
to selectively translate problematic MDA memory instructions so that other memory
operations do not need to pay such overhead. Static profiling is simpler than dynamic
profiling, but is less adaptive. If the MDA behavior changes from a profiled run to the
actual runs, MDAs not identified by static profiling will pay a high cost. Dynamic pro-
filing is more adaptive. However, the current implementation of dynamic profiling is
often based on interpretation and instrumentation which prevent it from a full-blown
implementation. Existing systems often take a compromised approach and implement
“one shot” dynamic profiling, where dynamic profiling is done once instead of being
continuous. This would leave MDA instructions which are not detected from the first
shot of dynamic profiling unhandled and later cause significant performance drops
from frequent misalignment traps.

This article evaluates different methods for MDA handling in existing binary transla-
tion systems and proposes a few new mechanisms to more effectively translate memory
instructions. It makes the following contributions:

—a comprehensive study on efficient handling of MDA in BT systems for the X86
architecture;
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—a thorough analysis of existing mechanisms which handle MDA, including a direct
method, a static profiling method, and a dynamic profiling method,;

—a few new mechanisms, such as an exception handler-based method, a combination of
dynamic profiling, and exception handler-based method, and a continuous profiling
method, are proposed. These new mechanisms can adaptively handle MDA according
to behavior changes of the program. For some applications, the performance gain can
be greater than 10% when compared with existing mechanisms.

The rest of this article is organized as follows: Section 2 gives a brief overview of MDA
in a BT system and Section 3 introduces basic MDA translation strategies. Section 4
discusses how to identify MDA candidates and their associated attributes including
static profiling, dynamic profiling, and continuous profiling. It also proposes a more
adaptive mechanism to handle MDA based on the use of a misalignment exception
handler. Section 5 describes some additional optimizations for MDA code generation.
Section 6 provides the experimental framework in which the misalignment handling
mechanisms are evaluated and discusses performance results. Section 7 discusses re-
lated work. Section 8 summarizes and concludes this work.

2. MDA IN A BT SYSTEM

How often do MDASs occur in a BT system if the source ISA has no alignment restric-
tions? A basic understanding of the behavior of misaligned memory operations could
help us in designing more effective handling methods. We have collected data from a
binary translation system where the source ISA is X86 and the target ISA is Alpha.
Table I lists the number of MDAs encountered by the SPEC CPU2000 and SPEC
CPU2006 benchmarks (with ref input set) which were compiled for X86 by the path-
scale2.4 compiler on an X86/Linux system. In the table, NMI stands for the number of
misaligned instructions. Those instructions have incurred misaligned data accesses at
runtime. NMI is a static measurement. Ratio is the number of dynamic MDA instances
divided by the total number of memory accesses. Table I shows that some programs have
very frequent MDAs (e.g., 188.ammp with 43.12% of all memory operations are MDAs,
and 179.art, 38.33%) and some programs have essentially no MDAs (e.g., 462.libquan-
tum and 473.astar). On average, a program may incur 9.5 billion MDAs. If each MDA is
handled by the misaligned access trap handler, which may cost nearly 1K cycles [Baraz
et al. 2003; Drongowski et al. 1999], then the average overhead could be as high as 9.5K
seconds on a 1 GHz machine. However, as Table I shows, the majority of the bench-
marks have very low ratios of MDAs, so any MDA handling method that significantly
burdens normal memory operations should not be considered. Furthermore, the NMI of
those programs with a high ratio of MDAs is from a few hundred to a couple thousand.
Comparing the NMI to the total number of memory instructions in SPEC benchmarks,
MDA instructions are still a small portion which means the binary translator should
not indiscriminately treat all memory operations as MDA candidates.

Conventional wisdom has it that even in computers that allow misaligned data
access, programs compiled with data aligned would still run faster [Hennessy and Pat-
terson 2006]. Therefore, it seems that Independent Software Vendors (ISV) may prefer
to release their X86 binaries with compiler optimization to enforce aligned memory
accesses. It is true that many compilers for the X86 architecture do support optimiza-
tions that enforce data alignments, such as the Intel CC, the Pathscale, and the GCC
compiler. However, this optimization is usually not turned on by default. In addition,
such alignment optimizations were not used for released SPEC benchmark numbers on
the X86 architecture. We have tested the performance impact of data alignment on X86
machines using the benchmarks which have a high frequency of MDAs (ratio>0.1%).
Figure 1 shows the performance with alignment optimization (using the Pathscale and
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Table I. MDAs in SPEC CPU2000 and CPU2006
Benchmarks | NMI | Num of MDAs | Ratio Benchmarks NMI | Num of MDASs Ratio
164.gzip 80 406,431,686 | 0.52% | 400.perlbench 77 1,469,188,415 | 0.26%
175.vpr 134 2,762,730 | 0.01% | 401.bzip2 45 82,641,256 | 0.01%
176.gcc 154 37,894,632 | 0.06% | 403.gcc 53 32,624 | 0.00%
181.mcf 16 1,649,912 | 0.02% 429.mcf 10 883,518 0.00%
186.crafty 20 4,950 | 0.00% | 445.gobmk 76 1,741,956 | 0.00%
197.parser 16 291,054 | 0.00% | 456.hmmer 127 13,757,509 | 0.00%
252.eon 3096 8,523,707,162 | 9.63% | 458.sjeng 9 1,303 | 0.00%
253.perlbmk 270 148,689,820 | 0.23% | 462.libquantum 9 435 | 0.00%
254 .gap 14 1,128,048 | 0.00% 464.h264ref 96 138,883,221 0.01%
255.vortex 90 12,361,950 | 0.03% | 471.omnetpp 394 6,303,605,195 | 3.37%
256.bzip2 44 25,233,188 | 0.04% | 473.astar 32 758 | 0.00%
300.twolf 98 441,176,894 | 0.92% | 483.xalancbmk 53 5,749,815,279 | 1.60%
168.wupwise 132 9,682 | 0.00% | 410.bwaves 602 | 99,916,961,773 | 12.67%
171.swim 284 49,605,944 | 0.03% | 416.gamess 424 13,073,700 | 0.00%
172.mgrid 78 1,772,430 | 0.00% | 433.milc 3825 | 67,272,361,837 | 12.09%
173.applu 306 2,243,041,896 | 1.60% | 434.zeusmp 3484 | 87,873,451,026 | 4.14%
177.mesa 54 9,370 | 0.00% | 435.gromacs 197 123,577,765 | 0.01%
178.galgel 5282 492,949,052 | 0.27% | 436.cactusADM 48 1,745,161 | 0.00%
179.art 1024 | 21,244,446,764 | 38.33% | 437.leslie3d 205 | 23,645,192,624 | 2.54%
183.equake 30 524 | 0.00% | 444.namd 103 10,516,106 | 0.00%
187.facerec 112 6,240,872 | 0.01% | 450.soplex 538 | 13,446,836,143 | 5.71%
188.ammp 1134 | 73,194,953,020 | 43.12% | 453.povray 918 | 36,294,822,277 | 8.30%
189.1ucas 64 17,383,280 | 0.02% | 454.calculix 139 478,592,675 | 0.02%
191.fma3d 398 5,383,029,436 | 3.36% | 459.GemsFDTD | 3304 31,740,862 | 0.00%
200.sixtrack | 1324 8,673,947,498 | 4.21% | 465.tonto 1748 | 38,717,125,228 | 3.80%
301.apsi 356 1,5668,299,486 | 0.86% | 470.1bm 8 7,124,766,678 | 1.14%
481.wrf 92 49,694,156 | 0.00% | 482.sphinx3 115 3,118,790,131 | 0.31%
Average 597 9,5625,126,313 | 1.44%
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Fig. 1.

Performance with alignment optimization flags for Pathscale and Intel CC.

the Intel CC compilers) on X86 machines. There were no significant performance ad-
vantages with data alignment (1% for Pathscale and 1.8% for Intel CC, on average). The
performance gains from aligned data accesses could be outweighed by the increased
data working set size. This may explain why many released X86 binaries were not
compiled with data aligned.

We have

observed frequent MDAs in the X86 shared libraries, such as libc.s0.6

and libgfortran.so.6. We have noticed that more than 90% of MDAs that occurred in
164.gzip, 400.perlbench, and 483.xalancbmk (100% for 164.gzip, 99% for 400.perlbench
and 91% for 483.xalancbmk) are actually from shared libraries. Even if some ISVs
release their binaries with data alignment enforced, as long as the application uses
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Fig. 2. MDA code sequence on Alpha.

the shared libraries, frequent MDAs may still occur at runtime. Therefore, it is critical
that a BT system handles MDA efficiently if the source ISA allows misaligned data
accesses.

3. TRANSLATION OF MEMORY INSTRUCTIONS

For any data access that is greater than a single byte, misaligned data accesses could
potentially occur and would cause a misaligned access trap at runtime on machines
with alignment requirements. Some architectures with no hardware support to handle
MDASs usually provide a code sequence (we call it MDA code sequence in this article)
to access misalignment data without triggering misalignment exceptions. In fact, the
same MDA code sequence can be used by the misalignment exception handler to access
the misaligned data. On the Alpha architecture, there are some special instructions to
support the handling of misaligned data accesses, such as the ldq_u (Load Quadword
Unaligned), extll (Extract Longword Low), and extlh (Extract Longword High) instruc-
tions. On MIPS and Itanium architectures, there are also several special instructions
to support MDAs such as 1dl/ldr on MIPS and shrp on Itanium. Figure 2 gives an ex-
ample of translating an X86 instruction to the MDA code sequence on Alpha! [Compaq
2002; Intel 2009].

In this example, register %eax and %ebx in X86 are mapped to register R1 and R2
in the Alpha binary respectively and register 21-30 of Alpha are used as temporal
registers in BT. We assume the address stored in R2 is 4-byte aligned. The right side of
Figure 2 illustrates how the MDA code sequence works. The first two ldq_u instructions
are used to retrieve the data into two temporal registers, then the designated data are
merged into the destination register, R1, and an addl instruction is used to sign-extend
the longword to quadword. Note that in Alpha, R31 means value zero.

Both Alpha and MIPS have provided MDA code sequences with special instructions
such as 1dq_u and extll. For architectures with no such ISA support, a simple sequence

!In the example, both X86 and Alpha are running in little-endian mode. If the endianness of the host and
guest architecture are different, the MDA sequence should be changed. However, the endianness would not
affect the handling of MDAs; it only affects how to translate the memory reference instructions.
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of load byte instructions combined with some logic operations could serve the same
purpose but at a higher cost [Smith and Nair 2005].

While the MDA code sequence is much longer than a simple load word instruction, it
avoids the possible misalignment traps. Therefore, if a memory operation is likely to be
an MDA, it should be translated into the MDA code sequence. If it is unlikely to be an
MDA, it might be better to allow it to remain as a regular memory operation and leave
the rare misaligned access to exception handling [Adams and Agesen 2006]. This is the
basic idea of MDA handling. The challenging issues here are: (a) how to determine the
probability of the memory operation being an MDA, (b) determining if the behavior of
the MDA operation is stable, and (c) if the behavior tends to change, to determine if it is
changing in a predictable pattern. In the following section, we give several alternatives
in translating nonbyte memory instructions into MDA code sequence.

3.1. Direct Method

As Table I shows, failing to translate nonbyte memory instructions into MDA code
sequence could possibly lead to numerous misaligned traps. A simple approach is to
indiscriminately translate all nonbyte memory instructions into MDA code sequence.
We call this the direct method. The direct method can be expensive since a single
memory operation after translation would take several instructions (and many more
cycles) to execute. Since some applications have almost no MDA, direct translation will
significantly slow down such programs.

3.2. Selective Translation

One variation to direct translation is to first identify those memory instructions that
would never cause misaligned accesses and bypass generating MDA code sequence
for them. Techniques to discover and predict such candidates can often be guided by
misalignment profiles. Different profiling approaches will be discussed in the next
sections.

3.3. Multiversion Code Generation

For many nonbyte memory instructions, even if they cause misaligned data access,
the frequency could be relatively low. For example, one memory instruction may be
executed one billion times but incur MDA only one million times. For such a memory
instruction, translating it into MDA sequence would incur overhead 999 million times.
On the other hand, not translating them into MDA sequences would pay for one million
expensive trap handlings. To solve this problem, the binary translator could generate
two versions of native code: one version of the MDA code sequence and the other version
remaining as a single memory operation. At runtime, the version to execute would be
selected according to the actual memory address referenced. Intuitively, multiversion
code would work better except for the cases where the memory instructions were
extremely biased toward misaligned accesses. In fact, the extreme cases occur quite
often in SPEC benchmarks, as shown in Table I.

3.4. Adaptive Code Generation for Phased Behavior

While many memory instructions are biased towards aligned or misaligned accesses,
they may be biased towards one type over a significant period of time then switch to
another type. For example, one instruction may have all aligned memory accesses dur-
ing the first half of the run and then start to turn into MDAs. For this phased behavior,
even multiversion code is undesirable because for the first half, the multiversion code
must pay for the extra address checks and the increased code size.

In a typical binary translation system, once the source architecture instructions are
translated into native binary, the translated code stays in the code cache and remains
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unchanged. However, in order to adapt to the aforementioned phased behavior, a BT
system may need to adopt an adaptive code generation policy.

A full-fledged adaptive code generation requires continuous monitoring of the access
patterns and switch to different code generation dynamically. The cost of instrumenta-
tion to monitor the access patterns can be prohibitive. However, a simplified adaptive
code generation can be cost-effectively implemented. For example, a BT system could
initially assume memory instructions are referencing aligned addresses. Once MDA is
detected for this instruction, the translator can then change it to MDA code sequence
or multiversion code. In this simplified approach, it catches only one type of phase
change: initially aligned and then misaligned. This simple approach has been shown
very effective.

4. IDENTIFY MDA CANDIDATES
The best translation of a memory instruction depends on its behavior listed as follows.

—If it never has any misaligned operand addresses, the preferred translation would
be a respective native load/store instruction.

—If it has frequent misaligned operand addresses, the preferred translation would be
the MDA code sequence.

—If it swings between aligned and misaligned operand addresses, the preferred trans-
lation would be two-version code.

—Ifit exhibits phased behavior, for example, it has aligned operand addresses for a long
period of time, and then switches to misaligned addresses, the preferred translation
should be adaptive code.

The binary translator needs information about the behavior of each memory instruc-
tion to determine the preferred translation. Usually, such information may be collected
either by interpretation or binary instrumentation, and the information feedback could
be static (collect profile using a training input and feedback to the static translation),
dynamic (collect profile as the program runs and feedback to the dynamic translator),
or continuous (using accumulated profile collected from previous runs to feedback to
the next translation). We have also included the exception handler in the process of
collecting misaligned profile.

4.1. Static Profiling-Based Method

Some BT systems rely on static profiling to identify MDA candidates. A profiling run
with training input set collects information on MDA (e.g., addresses of MDA instruc-
tions). Guided by this profile, the binary translator generates the MDA code sequence
for the memory instructions with high MDA probability [Chernoff et al. 1998]. Figure 3
depicts the mechanism of the static profiling-based method.

This mechanism is effective if the training input is representative and can reflect the
real execution behavior of the program. However, this is not always true. Furthermore,
many programs allocate data dynamically, and it is difficult to predict the likelihood of
alignment for dynamically allocated data references. Therefore, with static profiling,
MDASs may still occur frequently. If a MDA is not identified by static profiling but
actually happens in a hot loop, the performance penalty could be very high.

4.2. Dynamic Profiling-Based Method

In order to overcome the limitation of static profiling, many dynamic binary translation
systems adopt a two-phase translation approach. The first phase is for profile collec-
tion. In this phase, the binary is either interpreted or translated with instrumentation
to collect profile information. The second phase is the actual translation phase. In
this phase, hot regions identified from the first phase are retranslated and optimized.
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Fig. 4. Dynamic profiling and exception handling mechanisms in MDA handling.

Consider TA-32 EL, for example, is a two-phase dynamic binary translator. Its first
phase, called cold code translation phase, is designed to be simple with minimal opti-
mizations and uses instrumentation to collect execution profiles and identify hotspots.
Its second phase, called hot code translation phase, retranslates and further optimizes
those hotspots [Baraz et al. 2003].

The dynamic profiling method is based on the two-phase binary translation ap-
proach. As depicted in the left side of Figure 4, all memory reference instructions are
interpreted or translated with light instrumentation in the first phase. When an MDA
occurs at runtime, the detailed misalignment information is recorded, including the
address of the MDA instruction, the type of misalignment (e.g., the current address
is aligned to what type of boundaries: byte, halfword, word, or double word), and the
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access pattern of this MDA instruction (e.g., always misaligned, alternate patterns,
or mixed patterns). Then during the hot code translation phase (i.e., the 2nd phase),
the recorded information guides the code selector to determine whether MDA code
sequences should be generated. In the experiments which we show in Section 6, we
generate MDA code sequence for a memory access instruction if the instruction has
performed MDA once during the profiling stage. In contrast to static profiling, dynamic
profiling responds better to behavior changes with different inputs, and it does not
require a separate profiling process. However, if the behavior change occurs after the
translation of MDA code, the performance would suffer (either from MDA traps or from
unnecessary MDA code sequence). Our experiments show that increasing the hot code
threshold can effectively reduce the MDAs by more accurately capturing those MDA
candidates. However, to eliminate a majority of MDAs in some applications, the thresh-
old must be set so high that profiling overhead becomes excessive. For example, the
threshold for 410.bwaves must be as high as 266K if we want to eliminate most MDAs.
This threshold setting is application dependent, and we could imagine some applica-
tions would require an extended profiling phase. Therefore, this brute-force approach
is not acceptable.

4.3. Exception Handling-Based Method

A major drawback of the dynamic profiling method is that its profiling phase must
be relatively short because the longer the profiling phase, the greater the overhead.
Therefore, if the MDA of an instruction does not show up during the profiling phase,
it may not have a chance to get translated into MDA code sequence. To remedy this
weakness, we have introduced an exception handler-based method as illustrated in
the right side of Figure 4. In the initial translation, we assume all memory references
are naturally aligned and translate them into normal memory instructions. Once a
misalignment exception is raised in the translated code, the OS calls the misalignment
exception handler registered by the binary translation system. In the misalignment
exception handler, the following steps will be taken.

—Obtain and analyze the instruction that incurs misalignment exception with the
context information of the exception point.

—Generate the MDA code sequence for that offending memory instruction.

—Allocate memory (usually called code cache by BT systems) to store the code sequence.

—Patch the offending memory operation to a branch instruction jump to the MDA code
sequence stored in code cache, and insert a branch instruction back into the block at
the end of the MDA code sequence.

To minimize the impact of MDA, the instruction that incurs MDA was patched the first
time an MDA exception occurred in the translated code.

The left side of Figure 5 shows the translated native code on Alpha when a 4-byte
load incurs misalignment exception at runtime [Compaq 2002]. The code modified
by the misalignment exception handler is given in the right side of Figure 5. In
the figure, pcl represents the address of the offending memory operation, and pc2 is
the start address of the MDA code sequence. After the exception handler deals with
it, the original instruction in pcl is replaced with a branch instruction which jumps
to pc2, and at the end of the MDA code sequence, a branch instruction is inserted to
direct the execution back to the next instruction of pcl.

With this method, instructions with MDA showing up late in execution can be caught.
In fact, the exception handler-based method implements a simplified adaptive code gen-
eration; it assumes all memory instructions were accessing aligned addresses to start
with. When a misaligned trap is taken, the translator assumes this instruction will
have more MDA for the remainder of the execution, so it translates this instruction into
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Translated Native Code on Code fragment 1
ALPHA

pcl: br pc2

Code fragment 2
Code fragment 1 g

pc2: Idg_u R1, 2(R2)

pcl: Idl R1, 2(R2) icepton ldg_u  R21,5(R2)
L= Ida R22, 2(R2)
| extll R1, R22, R1
Code fragment 2 || Misalignment extlh R21, R22, R21
7Exception or R21, R1, R1
addl R31, R1, R1
br pcl+d

Fig. 5. Example code sequence of the exception handling-based method.

MDA code sequence. Ideally, a more adaptive code generation would insert instrumen-
tation code to continuously monitor whether the behavior of the memory instruction
has changed over time. However, the cost of this approach is too high to be profitable.
A full-fledged adaptive code generation may require hardware support.

The exception handler-based method works better when it combines with either static
profiling or dynamic profiling. Intuitively, this exception handler-based approach only
pays one trap handling cost for each MDA candidate. As Table I indicates, most MDA-
intensive SPEC programs have several hundred to a few thousand MDA instructions.
Intuitively, the overhead for handling this many exceptions is acceptable. However,
each trap handling will involve calling the binary translator and patching the code. This
is a relatively expensive context switch that a dynamic translation system attempts
to avoid. It could incur cache cold misses (the need to reload instructions from the
translator and native code, for example). If this method is combined with profiling,
then many of the MDA candidates can be handled together in one shot and leave those
hard-to-catch, late-coming MDA to the exception handler. This combination drastically
reduces the overhead of switching back and forth between the native execution and the
binary translation. It also allows the binary translator to better organize the translated
code, further improving the code locality.

4.4. Continuous Profiling Method

Static profiling can be more effective if profiles from multiple input sets can be merged
or accumulated. For example, in FX!32, the binary translation benefit from continuous
profiling is used to discover new hot spots not covered by previous runs. Our exception
handler-based method can collect information on new MDA candidates not covered
by previous profiling. This information could provide feedback to subsequent runs. It
avoids the need to have a separate profiling process. This mechanism of continuous
profiling is illustrated in Figure 6.

This approach uses our new exception handler to conduct continuous profiling
essentially for free. It significantly reduces profiling overhead and can benefit from
continuous accumulating profiles from previous runs. This can have a greater coverage
on MDA instructions. One downside of this approach is it tends to generate MDA code
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Fig. 6. Continuous profiling handling mechanism.

sequence too early. As discussed in Section 4, some MDA instructions may initially
have all aligned accesses for a while and then start to incur misaligned accesses.
Generating MDA code sequence too early may induce unnecessary overhead. To avoid
this drawback, when we profile the MDA instructions, we also record one additional
attribute which indicates whether this MDA is considered early arrival or late arrival.
Early or late is determined by how much code has been generated in the code cache.
With this early/late attribute, the translator will only translate those MDA candidates
as early arrivals. For late arrivals, the translator will leave them untouched and let
the exception handler catch the first MDA trap if there is one.

5. ADDITIONAL TRANSLATION OPTIMIZATIONS

Other than the basic MDA translation mechanisms (Section 3) and the MDA identifi-
cation methods (Section 4), some variations on related optimizations are discussed in
this section.

5.1. Granularity for Multiversion Code

What granularity should the binary translator use to generate multiversion code? A
simple approach is to generate two-version code for each memory instruction. This ap-
proach checks the operand address for alignment and executes the MDA code sequence
only when it is actually needed. Consider a basic block with multiple memory instruc-
tions. This code generation requires one check for each instruction. After analyzing the
applications, we observed that most of MDAs occurred in hot loops and the addresses
of MDAs usually followed the same pattern. In this case we can generate multiversion
code based on the basic block granularity. For example, a loop is translated into two
versions: one version with all regular loads and another one always using MDA code
sequence. The memory reference address of the first MDA instruction is checked to de-
termine which version to execute. At basic block granularity, fewer checks are executed.
However, this works effectively for programs with regular behavior. For programs with
irregular behavior, generating multiversion code for each instruction may work better.

5.2. Full-Fledged Adaptation

So far, we focus more on how to turn a memory operation into the MDA code sequence.
What if after we generate the MDA code sequence, the original memory operation no
longer has MDA? Should we convert the MDA code sequence back to normal memory
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Multi-version Code Adaptive Code
and Raddr, #3, Rtemp and Raddr, #3, Rtemp1
bne Rtemp, L1 bne Rtemp

p1y-L
Rtemp1, Ad
Rtemp1, Ad
Idl Rtempa, o(Rtemp1)
add Rtemp2, #1, Rtemp2

original memory
reference instruction

br L2 st Rtempz, 0(Rtemp1)

L1: cmple Rtempz, #1000, Rtemp3
MDA sequence beq Rtemps, L1

L2:

original memory reference

instruction
br L3
Instructions to L2:

dah Rtemp1, Ad
Ida  Rtemp1, Ad
Idl o, 0(Rtemps

MDA sequence
L3:

collect runtime
information

Fig. 7. An example of adaptive code method on Alpha architecture.

operation? This method may be more effective than multiversion code method, but
its implementation cost could be prohibitive. Figure 7 compares the multiversion code
method and this truly adaptive method. As we can see in Figure 7, the adaptive method
needs about ten instructions (including 3 memory access instructions and 2 branch
instructions) to collect runtime information which is used to determine if we should
return the MDA code sequence back to original memory operation. Furthermore, even if
we return the MDA code sequence back to original instructions, only two instructions
(one logic instruction and one branch instruction) are saved. Taking all factors we
discussed before into account, we believe this seemingly more adaptive method may
not be worth pursuing.

5.3. Code Rearrangement

One drawback of the exception handling-based method is that the code locality is de-
creased after patching each MDA instruction to a jump. This may lead to increased
instruction cache misses and result in significant performance loss. To overcome this
shortcoming, a method to rearrange the generated code is adopted [Hazelwood and
Smith 2006]. An example of this method is illustrated in the right-hand side of Fig-
ure 8. When working with profiling methods (static, dynamic, or continuous), a majority
of MDA instructions are handled at once so the performance impact of code rearrange-
ment is reduced.

5.4. Retranslation

Dynamic profiling can identify many frequent MDA instructions in a block so that they
can be turned into MDA code sequences at the first translation instead of being handled

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 7, Publication date: July 2011.



Efficient and Effective Misaligned Data Access Handling 7:13

Code fragment 1 Code fragment 1

o
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Fig. 8. Example of code rearrangement method.

one by one through the exception handler. However, for programs that have frequent
behavior changes, the initial translation based on dynamic profiling may likely be
ineffective. When such cases are identified, our BT system can simply invalidate the
translated code for a basic block [Hazelwood and Smith 2006] and restart the dynamic
profiling and translation process for this block. In the exception handler, we record the
number of MDA exceptions that occurred in each block. When the number of MDA
exceptions in a block reaches a threshold, the original translated native code of the
block is invalidated and the process of retranslation is initiated. This is somewhat
similar to the code cache flush policy employed in Dynamo except that Dynamo [Bala
et al. 2000] flushes the entire code cache while our BT invalidates translated code at
block granularity.

This retranslation approach is another simplified adaptive code generation but at a
basic block granularity.

6. PERFORMANCE EVALUATION

In this section we first describe the machine and benchmark sets used in performance
evaluation of different misalignment handling methods. Then we conduct an estima-
tion of the overhead for each misalignment handling method based on the cost of MDA
code sequence and exception handling. In the estimation model, we only consider the
cost of instruction executed. We use the actual occurrence of misaligned accesses and
memory operations as parameters to calculate the estimated cost. We also estimate
the upper bound of performance improvement which is the case that the system pays
the cost of MDA code sequence only if a misaligned access occurs. Since this esti-
mation is not accurate in that the impact of caches, the execution pipeline, and the
interaction between the runtime management system and native execution are not
included, we also conduct actual runs on the Alpha machine to verify the performance
results.
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6.1. Target Machine

Various misalignment handling methods are evaluated on a 1-way Alpha ES40 machine
running CentOS 4.2. The processor’s on-chip cache hierarchy consists of separate 64KB,
2-way set associative L1 instruction and data caches and a unified 2MB direct-mapped
L2 cache. The memory size of the machine is 4GB.

6.2. Experiment Framework

We have adopted the BT framework of DigitalBridge to evaluate all different MDA
handling mechanisms. DigitalBridge, which is developed by us, is a dynamic trans-
lator which migrates X86 binaries to Alpha architecture. Similar to FX!32 [Chernoff
et al. 1998], DigitalBridge supports X86 binary codes to run on Alpha machines. Un-
like FX!32, DigitalBridge uses online instead of offline translation. DigitalBridge also
employs the two-phase translation approach. In the first phase, it executes the source
binary code on a basic block granularity and collects profile data to guide optimizations
in the second phase. DigitalBridge is a fully functioning system. Figure 9 shows the
major components of DigitalBridge. In this article, all examples of MDA handling will
assume X86/Alpha as the guest/host machine model.

In the figure, X86 Binary & SO is the source binary code and the shared libraries
which the source program uses; Static translated code is the translated code of source
program which is generated by the static binary translator; IR is the intermediate
representation of the source binary code, it is generated by the dissembler in our
system; Dynamic translated code is the native binary code generated by the translator
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at runtime; Interpreter interprets the source binary code and collects profile data to
guide optimization in the translation phase; Translator translates the source binary
code and stores the translated code into code cache; Optimizer optimizes the binary
code generated by the translator; Dynamic monitor, which is the runtime monitor of
the binary translation system, manages the components of the BT system, and handles
the exceptions, signals.

6.3. Benchmarks

The full suite of SPEC CPU2000 and SPEC CPU2006 benchmarks were used for evalu-
ation in this article. However, the impact of MDA handling in BT systems is determined
by the frequency of MDAs in applications. Therefore, we report performance results
only for the benchmarks that have a significant number of MDAs (the ratio of MDA is
greater than 0.1%) according to Table I. In our final set, 23 benchmarks are included, of
which 11 are from SPEC CPU2000 (164.gzip, 252.eon, 253.perlbmk, 300.twolf, 173.ap-
plu, 178.galgel, 179.art, 188.ammp, 191.fma3d, 200.sixtrack, 301.apsi) and 12 are from
SPEC CPU2006 (400.perlbench, 471.omnetpp, 483.xalancbmk, 410.bwaves, 433.milc,
434.zeusmp, 437.1eslie3d, 450.soplex, 453.povray, 465.tonto, 470.1bm and 482.sphinx3).
The performance is represented as normalized ratios in the figures. We have also re-
ported the geometric mean of the ratios for the 23 benchmark programs.

All benchmarks are compiled using Pathscale 2.4 on an Intel Xeon machine, and the
compiler options are -Ofast -m32 -LNO:simd=0.

6.4. Misalignment Handling Methods

We have evaluated the following MDA handling methods.

Original. This is the method of doing nothing by leaving all MDA at runtime to
exception handling.

Direct Method. This is to translate all nonbyte memory instructions to MDA code
sequence. It is used by the QEMU dynamic binary translator [Bellard 2005].

Static Profiling. This approach takes profiles from the training input set. The dy-
namic translator takes this profile to select MDA candidates.

Dynamic Profiling. This approach used dynamic profiles collected during the profiling
phase to guide the selection of MDA candidates. In the profiling phase, we set the
threshold to 50.

Exception Handling. This approach assumes all memory instructions were aligned.
If a memory instruction incurs an MDA exception, the handler will generate MDA code
sequence for it.

DPEH+MYV. This approach combined exception handling method with dynamic pro-
filing. It uses dynamic profiling to handle all MDA candidates during the translation
phase. In the profiling phase, the misaligned access frequency of each MDA instruction
is collected. Unless an MDA instruction is extremely biased, it will be translated into
multiversion code. In addition, all late-coming MDA instructions will be translated into
multiversion code by the request from the exception handler.

Continuous Profiling+MYV. This approach uses continuous profiling to accumulate
MDA profiles from multiple runs and feedback to the next dynamic translation. It also
combines with the exception handling method in that whenever one memory instruc-
tion incurs an MDA exception, this instruction will be translated into multiversion
code. Similar to DPEH+MYV method, if an MDA instruction has more aligned accesses
according to the accumulated profile, multiversion code will be generated.

Best. This is the best case that may be achieved in practice. We use the best trans-
lation strategy for each MDA instruction according to its real behavior observed from
the actual runs with the ref input. For example, if the memory accesses of one MDA
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instruction are more than 80% misaligned, this MDA instruction is translated into the
MDA code sequence; otherwise, it is translated into two-version code.

Ideal. This is an ideal case that the program pays the cost of MDA code sequence
only when MDA occurs. This gives the upper bound of performance that we can ever
achieve. We use this bound to indicate how close we are to the best we can do and how
much room is left for further improvement.

6.5. Performance Estimation Using a Simple Model

We estimate the overhead of MDA handling with a simple model which only considers
the number of instructions executed. This is because the performance impact of caches,
the stall cycles in pipelines, and the cost of branch mispredictions are much more
difficult to model. We will leave such performance factors to be measured in real runs.

In our simple model, we assume there are X aligned accesses and Y misaligned
accesses for each memory instruction. X1 is the number of aligned accesses after the
1st MDA. Hence the overhead for MDA handling of each method can be formulated as
follows.

NMI

original = Z Y; * TrapCost (1)
i=1
direct method = Number of Non-byte memory operations * MDACost (2)
NMI NMI:
dynamic(static) profiling = Z (X; +Y;) * MDACost + Z Y; * TrapCost 3)
i=1 i=1
NMI NMI
exception handling = Z (X1; +Y;) * MDACost + Z TrapHandlerCost;
i=0 i=0
+ RetranslationCost 4)
NMI NMI2
DPEH(Continuous) = Z (X; +Y;) * MDACost + Z (X1; +Y;) * MDACost
i=1 i=1
NMI2
+ Z TrapHandlerCost; + RetranslationCost 5)
i=1
NMIu NMI12
DPEH(Continuous) + MV = ) (X; +Y;) * MDACost + » _ (X; * MVCost
i=1 i=1
NMI2

+Y; * MDACost + MVCost)) + Z (X1; * MV Cost
i=0
NMI2
+Y; x MDACost + MVCost)) + Z TrapHandlerCost;
i=1
+ RetranslationCost (6)
NMI
best = Y ((4#X1; > Y)AX1; +Y;)
i=0
* MDACost : (X1; +Y;) * MDACost + MVCost)) 7
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Fig. 10. Estimated MDA overhead for different methods.

NMI
ideal = > Y; * MDA cost (8)
i=0

In the preceding formulas, NMI stands for the number of MDA instructions; NMI1
stands for the number of MDA instructions that can be detected by dynamic profiling
method (or static profiling method); NMI2 stands for the number of MDA instructions
that cannot be detected by dynamic profiling method (or static profiling method). In
formula (6), NMI1 is divided into NMI11 and NMI12. NMI11 stands for the number of
MDA instructions which are translated into MDA code; NMIi2 stands for the num-
ber of MDA instructions which are translated into multiversion code.? Continuous is
short for Continuous profiling method; MV is the abbreviation of MultiVersion method;
MV Cost is the cost of multiversion code; MDACost is the overhead incurred by MDA
code sequence; TrapCost is the cost of one misalignment exception while it is handled
by OS; TrapHandlerCost is the overhead of the misalignment trap handler in our run-
time system; RetranslationCost is the cost of retranslation process and we count it
for different applications and MDA handling methods in our BT system. Because the
dynamic profiling overhead is negligible, we do not take it into account in formulas (3),
(5), and (6).

In our system, the MDACost is about 10 instructions, the MVcost is about 3 instruc-
tions, the TrapCost is about 1K instructions, and the TrapHandlerCost is about 3K
instructions. After we put in these parameters, the estimated cost of each benchmark
as well as their upper bound is shown in Figure 10.

On average, our proposed approaches (Exception Handling, DPEH+MYV and Contin-
uous Profiling+MV) outperform existing ones, and have a performance very close to
the upper bound (i.e., the best case) for most of the programs.

6.6. Performance Evaluation on the Real Alpha Machine

This section evaluates different MDA handling methods in actual runs, and the data
we present here is an average time of three identical runs.

6.6.1. Original Code. Figure 11 shows the performance loss without MDA handling.
The slowdown is normalized to the exception handler-based method. Without MDA
handling, the programs will run extremely slow, hence we are only able to obtain the
performance data of SPEC CPU benchmarks with the ¢rain input set. Using the test
input set, the runtime could be shorter, but using the #rain input set would allow the
program to behave more like the reference input set. As shown in the figure, without
MDA handling method, some benchmarks suffer significant MDA overhead (3096X for

2NMI, NMI1, NMI2, NMI11, and NMI12 are all static measurements.
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Fig. 11. Performance loss without MDA handling (using train input set) (baseline is the runtime of exception
handling method).

Table II. The Number of Misaligned and Aligned Accesses of the MDA Instructions (train input set)

Benchmarks Misaligned Aligned | Benchmarks Misaligned Aligned
164.gzip 27938792 | 3.48E+08 | 471.omnetpp 2.89E4+09 | 97174184
252.eon 4.75E+08 20232 | 483.xalanchmk 7.81E4+08 | 2.09E+08
253.perlbmk 7977553 1420 | 410.bwaves 6.99E4+09 | 89911986
300.twolf 6512382 445 | 433.milc 2.37TE+09 | 2.41E4+09
173.applu 45425463 3891 | 434.zeusmp 4.91E+09 3824
191.fma3d 2.77TE+09 307309 | 437.leslie3d 3E+09 3825
301.apsi 29926808 8735 | 450.soplex 2.14E+08 | 1.98E+08
178.galgel 43366894 | 4.49E+09 | 453.povray 1.16E+09 | 4.19E+08
179.art 1.11E+09 6.4E+08 | 465.tonto 1.48E+10 | 29178451
188.ammp 9.65E+09 | 5.54E+08 | 470.Jbm 5.04E+08 32
200.sixtrack 2.15E+09 3238284 482.sphinx3 30246134 14654661
400.perlbench 88099763 | 2.65E+08

188.ammp, 731X for 410.bwaves, 889X for 433.milc, and 502X for 434.zeusmp). On
average the performance degradation is about 12.08X.

We have said that the cost of an MDA is about 1000 cycles in Section 2, so the
slowdown should be no more than 1000 times. However, the data shows that 188.ammp
is slowed down by 3096X. Our investigation reveals that the program runs relatively
slower while the number of MDAs is over one billion. This is because the MDA exception
handler of the OS writes a message to the system’s log file, and too many messages
will cause additional I/O issues. Luckily, there is a syscall in Linux which can disable
message writing from the MDA handler. Figure 11 also shows the slowdown with such
an option (i.e., NOPRINT). As the data shows, even with the NOPRINT option there
is still a significant slowdown for some benchmarks (22.3X for 188.ammp, 11.9X for
410.bwaves, and 10.7X for 433.milc).

Table II shows the number of misaligned and aligned accesses of the MDA instruc-
tions (with ¢rain input set). As the table shows, the programs which have significant
performance degradation are exactly the ones which have a large number of MDAs.

6.6.2. Direct Method. This method translates all memory instructions to MDA code
sequence. However, Table I shows many programs have almost no misaligned memory
accesses for the entire execution. For simplicity, translating all memory instructions
into two-version code, one is MDA code sequence and the other is a single memory
operation, may significantly reduce the overhead of this direct method. Figure 12 shows
the performance gain/loss while generating two versions of code instead of MDA code
sequence only. As the figure shows, most benchmarks benefit significantly from two-
version code here. The average gain is about 18% with some benchmarks gaining
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Fig. 13. Performance of static profiling with different input sizes of profiling (baseline is the runtime while
profiling with test input set).

as high as 80%. However, 252.eon shows a drop in performance. This is because the
multiversion method would lead to significant code inflation and incur more I-cache
misses. For 252.eon, the performance loss caused by extra I-cache misses overwhelms
the performance gains from multiversion method.

6.6.3. Static Profiling. For the static profiling method, we have followed the profiling
process with different input sets (one of test, train and ref input sets in SPEC) and
evaluate the performance with all ref input sets. The result is shown in Figure 13.

For most benchmarks, profiling with smaller input sets yields lower performance,
especially for 164.gzip and 179.art. We may expect better performance with profiles
generated from with the ref input sets. However, one anomaly to report is that 450.so-
plex has its best performance with profiles from the test input set. The 450.soplex
benchmark has multiple input datasets. We selected one of the ref sets for the profiling
run. However, this profile is probably less representative than the test profile. Although
we could combine multiple ref sets in the profiling process to eliminate this anomaly,
this may miss the point that the effectiveness of static profiling is very much dependent
on the quality of profiles. A larger input set does not guarantee a more representative
profile, unless the input for profiling is exactly the input for actual execution.

Table III summarizes the number of MDAs which are not detected while profiling
with different input sets. As we can see in Table III, when profiling with a larger
input dataset, the number of unidentified MDA would reduce except for 252.eon and
450.soplex.
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Table Ill. The Number of Unidentified MDAs while Profiling
with Different Input Sets (only one set is selected if multiple
datasets exist)

Benchmarks Test Train Ref

164.gzip 46 46 0

252.eon 3.22E+09 | 3.22E+09 | 3.22E+09

253.perlbmk 74230241 75776 75776

300.twolf 2 0 0

173.applu 0 12 0

178.galgel 4504104 4930086 0

179.art 3.6E+09 3.6E+09 0

188.ammp 0 0 0

191.fma3d 2.63E+09 368432 0

200.sixtrack 0 0 0

301.apsi 2.94E+08 | 2.94E+08 0

400.perlbench 7166508 1244769 0

471.omnetpp 1.84E+08 | 48638638 0

483.xalancbmk 4 12761 0

410.bwaves 2.74E+08 0 0

433.milc 2592000 6 0

434.zeusmp 1.13E+09 644100 0

437 leslie3d 1 21168 0

450.soplex 24669824 | 4.03E+09 | 4.03E+09

453.povray 518 0 0

465.tonto 1.51E+09 262 0

470.Ibm 0 0 0

482.sphinx3 162 0 0
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Fig. 14. Performance of dynamic profiling with different thresholds (baseline is the runtime while TH = 10).

6.6.4. Dynamic Profiling. An appropriate heating threshold (i.e., a threshold to deter-
mine if a block is hot or not) in a two-phase binary translation system is critical to
obtain a good overall performance. As discussed in Section 4.2, a high heating thresh-
old can profile deeper into execution and uncover more potential MDAs, but at the
cost of a much greater profiling overhead. To show the impact of different heating
thresholds, we vary the value of thresholds from 10 up to 5000 (the threshold is a
simple cumulative count over the whole execution). As shown in Figure 14, a threshold
around 50 can strike a better balance and yield the best overall performance. Figure 15
gives the percentage of MDAs that can be detected by the dynamic profiling method
with different thresholds. For most benchmarks, a threshold around 10 can detect most
of MDAs in the application. However, for some benchmarks a threshold smaller than 50
is insufficient to uncover major MDA instructions, and hence will pay later when mis-
aligned traps are encountered. For example, the 400.perlbench benchmark definitely
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Fig. 16. Performance gain/loss with code rearrangement in exception handling method.

needs a threshold greater than 10. In general, a threshold greater than 500 offers no
benefit.

Several programs, such as 164.gzip, 253.perlbmk, and 178.galgel, suffer the exces-
sive profiling overhead with essentially no performance gain from the reduction of
misalignment exceptions. We can also observe that the impact of this threshold for
SPEC CPU2000 benchmarks is more significant than for SPEC CPU2006 benchmarks.
This is because the input set size of SPEC CPU2000 is smaller than SPEC CPU2006,
and a larger threshold could yield more profiling overhead for SPEC2000.

As shown in Figure 15, there are still a large amount of MDAs that cannot be detected
with a threshold around 5000 in 483.xalancbmk and 410.bwaves.

6.6.5. Exception Handling. The exception handler-based method can be enhanced by
code rearrangement optimization. Since misaligned traps will trigger the generation of
MDA code sequence, multiple patches to the same basic block decreases code locality.
If we can reposition the newly generated MDA code, some programs can be sped up.
As shown in Figure 16, code rearrangement can speed up 253.perlbmk, 178.galgel,
188.ammp and 301.apsi by 4-5%. However, the overall performance gain from reposi-
tioning the MDA code has only marginal performance impact (1.4% gain on average).

6.6.6. DPEH Method. When the initial dynamic profiling failed to catch frequent MDAsS,
or when the program incurred behavior changes, the translated code could be inef-
fective. Although our exception handler-based dynamic translation will continuously
capture new MDAs undetected by the initial profiling and translate them into MDA
code sequences, the cost of exception handling and later code repositioning could be a
burden. When such cases are detected, simply discarding the translated code of a block
and retranslating it may work better. Figure 17 (the baseline is DPEH method) shows
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Fig. 18. Performance gain/loss with multiversion code in DPEH method (baseline is the runtime of DPEH
method).

the results of retranslating a basic block if four misalignment exceptions are raised
in the translated code of the block at runtime. The data shows that some benchmarks
benefit significantly from retranslation while some other benchmarks degrade slightly.
Overall, the benefit of retranslation is not substantial.

6.6.7. Multiversion Code. In Section 6.6.2, we discussed the performance benefit of mul-
tiversion code on the direct method. In this section, we will discuss the performance
impact of generating multiversion code for identified MDA instructions.

To evaluate the benefits of multiversion code method, we first implement this
optimization based on the DPEH method. We generate multiversion code according to
the profile information which we collected in dynamic profiling stage; and for MDAs
that occurred in exception handling stage we consider the memory access instruction
is likely to have behavior changes, so we also generate the multiversion code for
that instruction. For programs with changing memory reference behavior, generating
multiversion code might work best. However, it would be interesting to know which
granularity to generate multiversion code would work best.

Figure 18 compares the execution time while generating multiversion code on in-
struction granularity, block granularity, and mixed granularity. With block granularity,
we do not generate multiversion code for a single MDA instruction. When on mixed
granularity, we generate multiversion code for MDA instructions that follow the same
address pattern on block granularity and generate multiversion code for other MDA
instructions on instruction granularity.

The data shows that multiversion code method provides little improvement on av-
erage for the DPEH method. This is because the data addresses of MDA instructions
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Fig. 20. The data access patterns of 3 MDA instructions in the same basic block of 433.milc.

in the benchmark suite are biased toward misalignment most of the time. In such a
case, as long as we can efficiently identify MDA candidates and generate MDA code
sequences for them, the performance should be good. Figure 19 gives the percentage of
MDA instructions that are always misaligned, frequently misaligned, and frequently
aligned. As we can see in the figure, only about 5% MDA instructions are frequently
aligned. Besides, the multiversion method incurs overhead at runtime since the align-
ment checking instructions also consume cycles.

In Section 5.1, we discussed that generating multiversion code on basic block granu-
larity can decrease runtime overhead. Nevertheless, as Figure 18 shows, multiversion
code on block granularity adds very little benefit. Figure 20 shows the data access
patterns of 3 different MDA instructions in the same basic block. As the figure shows,
the data access behavior of some MDA instructions frequently changes, and different
MDA instructions in the same basic block may exhibit different data access behaviors.
We can also observe that the efficiency of generating multiversion code on basic block
granularity is closely related to the profiling threshold. As the figure shows, if the pro-
filing threshold is less than 10, we may incorrectly assume the three MDA instructions
follow the same data access pattern.

Figure 21 shows the performance gain/loss from generating multiversion code based
on the static profiling method. As the figure shows, the performance is similar to the
DPEH method; the overall performance gain is miniscule (about 1.2%), except for a few
cases where 5—8% of performance may be gained.
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6.7. Overall Comparison

Now that we have explored the design and parameter space for the direct method,
static profiling, dynamic profiling, exception handling, DPEH, and continuous Pro-
filing method, we can compare them to see which one is more effective on handling
MDAs. For this evaluation, we compare the execution time of the benchmarks with
different MDA handling mechanisms. Each mechanism is configured to achieve the
best performance (for static profiling method, we get the profile data with train input
set; and for dynamic profiling method, we set the heating threshold to 50). The result
is shown in Figure 22. As shown in the figure, exception handling method has already
achieved higher performance than other MDA handling mechanisms: 17% better than
dynamic profiling, 13% better than static profiling, and 44% better than direct method
on average. However, DPEH and continuous profiling methods outperform exception
handling method by 2.8% and 1%, respectively.

Comparing Figure 22 to Figure 10, we can see that the measured runtime perfor-
mance tracks our estimated MDA overhead very well. For example, the significant
slowdown of dynamic profiling on 483.xalancbmk and 410.waves and static profiling
on 450.soplex in Figure 26 is due to MDA overhead which was already reflected in
Figure 12. Although some individual programs may still have a large room for im-
provement (such as 164.gzip and 178.galgel), our approaches can be most effective for
the remaining programs in the benchmark suite.

The continuous profiling method is a variation of the exception handling method. It
uses the exception handler to collect MDA profiles instead of using interpretation or
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Table IV. The Number of MDAs that Cannot be Detected by the Dynamic

Profiling Mechanism (heating threshold = 50)

Benchmarks Num of MDAs | Benchmarks Num of MDAs
164.gzip 1.56E+08 | 471.omnetpp 38979
252.eon 24630 | 483.xalancbmk 8.32E+09
253.perlbmk 0 | 410.bwaves 4.15E+10
300.twolf 0 | 433.milc 1.34E+08
173.applu 1716 | 434.zeusmp 1716
178.galgel 3436 | 437.leslie3d 1716
179.art 3.12E+08 | 450.soplex 9.33E+08
188.ammp 0 | 453.povray 2.41E+08
191.fma3d 321789 | 465.tonto 116450
200.sixtrack 235950 | 470.Ibm 0
301.apsi 1908 | 482.sphinx3 1
400.perlbench 57874640

binary instrumentation. The data shows that the continuous profiling method works
slightly worse than the DPEH method. This is because the accumulated MDA profile
may incur extra overhead (e.g., some instructions are still translated to MDA code
sequence, although they do not have MDA with the current input).

As discussed in Section 4, for applications that have frequent memory reference
behavior changes, the dynamic profiling method may not work very well. As shown in
Table IV, when the hot threshold is 50, there are still a large number of MDAs which
can’t be detected by the dynamic profiling method in 164.gzip, 179.art, 483.xalancbmk,
410.bwaves, 433.milc 450.soplex, and 453.povray. As we can see in Figure 22, these
seven benchmarks are exactly the applications that suffer significant performance
degradation compared with DPEH mechanism (8% for 164.gzip, 14% for 179.art, 340%
for 483.xalancbmk, 433% for 410.bwaves, 15% for 433.milc 8% for 450.soplex, and 9%
for 453.povray).

For the static profiling mechanism, the performance of most benchmarks is similar to
DPEH mechanism. Table III summarizes the number of MDAs which are not detected
while profiling with train input set. As we can see in Table III, while profiling with train
input set, there are still a large number of MDAs in 252.eon, 179.art, and 450.soplex.
The performance of these benchmarks has a significant degradation when compared
with DPEH (91% for 252.eon, 13% for 179.art, and 155% for 450.soplex).

The direct method mechanism is generally worse than all others, simply be-
cause it indiscriminately increases the instruction overhead for all nonbyte memory
instructions.

6.8. Evaluation of Full-Fledged Adaptation Method

In Section 5.2, we discussed how a full-fledged adaptive method can be implemented,
and we speculated that the implementation may not worth pursuing. To verify our
speculation, we have implemented the fully adaptive method (as shown in Figure 7)
in our system. The performance is shown in Figure 23 (with results normalized to the
execution time of the exception handling method). As shown in Figure 23, the full-
fledged adaptive method incurs significant runtime overhead. Only a few benchmarks
do better with it while most other benchmarks suffer significant performance degra-
dation. As shown in Figure 19, about 80% of MDA instructions are always misaligned,
and only about 5% MDA instructions are frequently aligned. Therefore, less than 20%
of MDA instructions exhibit a phased behavior of the type [MDA — non-MDA]. If
we want to convert the MDA sequence back to normal memory operation, the control
must be redirected to the BT monitor and one context switch is needed. Therefore, only
when the number of consecutive aligned memory accesses of an MDA instruction ex-
ceeds a threshold, the MDA code sequence is converted back (in our system we set the
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Fig. 23. Performance of full-fledged adaptation in comparison with the DPEH method.
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threshold to 1000 because the overhead of context switch is high). As a result, only
a few MDA instructions can benefit from the full-fledged adaptive method while the
majority of MDA instructions suffer high profiling overhead.

6.9. Impact on MDA-Free Benchmarks

Up to now, we have studied the impact of different MDA handling mechanisms
on programs that have a significant number of MDAs. However, for programs that
have no MDAs, what is the performance impact of the MDA handling mechanisms?
Figure 24 shows the performance impact of MDA handling mechanisms on programs
where MDAs are rare or nonexistent (the baseline is the performance without MDA
handling mechanisms). As shown in the figure, for most benchmarks the performance
of DPEH, dynamic profiling and static profiling methods are basically the same as the
baseline. Direct method shows severe performance degradation because it introduces
a large number of redundant instructions from unnecessary MDA code sequence.

7. RELATED WORK

Most binary translation systems which translate the X86 ISA have dealt with MDA
instruction handling.

QEMU [Bellard 2005] is a portable processor emulator that relies on dynamic bi-
nary translation to achieve a reasonable emulation speed. It handles MDA by directly
translating all multibyte memory operations into MDA code sequences.

FX!32 [Chernoff et al. 1998; Hookway and Herdeg 1997] is a software emulator that
allows X86 programs to run on DEC Alpha-based systems on Windows NT. Unlike
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other X86 dynamic binary translation systems, it does not dynamically translate code.
Rather, it performs translation and optimization between program runs. Based on the
profiles collected from previous runs, the translator and the optimizer can decide which
memory operations are good candidates of MDA, and such instructions are translated
into the special MDA code sequence as shown in Figure 2. Since the profiles used in
FX!32 were collected from previous runs, not from the current run, we consider it as
static profiling. Although the approach used in FX!32 was quite effective, MDA excep-
tions can still occur frequently for programs that exhibit different memory reference
behavior on runs with varying input datasets.

The IA-32 EL [Baraz et al. 2003] is also a software emulator that improves perfor-
mance of IA-32 applications on the IA-64-based systems. It is a two-phased dynamic
binary translator. In the first phase, source binary is translated into native code with
instrumentations to identify hotspots and collect profiles. In the second phase, hotspots
are retranslated and optimized using collected profiles. The IA-32 EL handles MDA
in three stages: (1) In the first phase, all instructions that may have MDA are lightly
instrumented; (2) if an MDA is detected, the block containing the MDA instruction
is retranslated, and that MDA instruction is heavily instrumented to provide more
detailed misalignment information; and (3) in the second phase, the MDA instructions
detected in the first phase are translated to MDA code sequences. To cope with MDAs
that appear only after the optimization phase, the instructions which are empirically
considered to have danger of incurring MDA later on are instrumented to detect MDA
in the hot code. However, the published work does not reveal how to identify a block
where memory operations have a significant danger of MDA.

Although the Transmeta Code Morphing System [Dehnert et al. 2003; Coon et al.
2006] also dynamically translates x86 binary, it detects and avoids MDA using hard-
ware solutions. UQDBT [Ung and Cifuentes 2000] is another dynamic binary transla-
tion system which migrates x86 applications to SPARC machines. The SPARC proces-
sors require natural alignments, but there were no discussions on MDA handling in
the published work.

8. SUMMARY AND CONCLUSIONS

Binary translation has been used widely in various applications such as ISA migration,
runtime code inspection and optimization, and dynamic instrumentation. A critical but
underinvestigated issue is how to efficiently and effectively handle misaligned data
accesses. Existing techniques either incur excessive overhead or cannot adapt to the
change of memory access behavior at runtime.

In this article, we have studied the strength and weakness of many existing MDA
handling techniques. The direct method which translates every nonbyte memory oper-
ation into the MDA code sequence is naive and incurs excessive overhead. Using static
profile feedback may fail to catch those MDA candidates that do not show up with the
training runs. Using dynamic profiling is less sensitive to profile selection and may fail
to catch important MDA candidates during the profiling phase.

We have proposed an exception handler-based mechanism which can be considered
a lightweight continuous profiling of MDA operations. As long as memory operations
are executed without misaligned exceptions, they can run at full speed without inter-
ference. When a misaligned exception occurs, the exception handler will translate this
particular memory instruction into the MDA code sequence. Based on this lightweight
profiling approach, we combine it with dynamic profiling which can effectively catch
many MDA candidates during the typical profiling phase. Handling many MDA candi-
dates at the same time can avoid the cost of context switching between native execution
and the binary translation. We also make our method more adaptive by dynamically
translating those memory operations that change between MDA and aligned accesses
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into two-version code. Furthermore, this method is improved by code repositioning and
retranslation optimizations to enhance instruction spatial locality. We have shown that
our enhanced methods are more adaptive to program behavior change than all existing
methods, as it outperforms the static profiling method by 13%, the dynamic profil-
ing method by 17%, and the direct method by 44%, on 23 SPEC2000 and SPEC2006
benchmark programs with frequent misaligned data accesses.
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