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Abstract—This paper reports the impacts of NH3 plasma treat-
ment time, oxide overetching depth, and gate oxide thickness on
symmetric vertical-channel Ni-salicided poly-Si thin-film transis-
tors (VSA-TFTs) for the first time. OFF-state currents may be
improved by increasing the oxide overetching depth. The ON/OFF
current ratio may be also improved by increasing the oxide
overetching depth. The NH; plasma optimum treatment time of
VSA-TFTs is significantly shorter than that of conventional top-
gate horizontal-channel TFTs. The performance of VSA-TFTs is
degraded by NH3 plasma treatment for too long a time. VSA-TFTs
with 15-nm gate oxide thickness display better subthreshold swing
(< 150 mV/dec) than VSA-TFTs with 30-nm gate oxide thickness.
OFF-state currents can be improved by increasing L,,.sx, even
when the oxide overetching depth and the gate oxide thickness are
changed.

Index Terms—NHj3 plasma treatment, Ni-salicided, oxide
overetching depth, polycrystalline-silicon thin-film transistors
(poly-Si TFTs), vertical channel, vertical-channel Ni-salicided
poly-Si TFTs (VSA-TFTs).

I. INTRODUCTION

ECENTLY, polycrystalline-silicon thin-film transistors

(poly-Si TFTs) have attracted considerable attention be-
cause of their diversity of applications, including nanowire tran-
sistor, nonvolatile memory, and 3-D circuit integration [1]-[7].
One effective approach to obtaining high-performance poly-
Si TFTs and enhancing device density is to scale down the
channel length. However, it is difficult to reduce channel length
due to the limits of photolithography resolution. Therefore,
vertical-channel thin-film transistors (VTFTs) have been widely
researched and developed to overcome the limits of photolitho-
graphy [8]-[10]. In these previous works, VTFTs have shown
great potential for 3-D integration since the channel lengths
are determined by the thicknesses of the poly-Si or silicon-
dioxide film, instead of photolithographic process limitations.
However, these works using asymmetric source/drain (S/D)
have encountered circuit design difficulties. S/D parasitic series
resistance and contact resistance remain problems for device
scaling and reduce device performance.
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Conventional top-gate poly-Si TFTs suffer from large OFF-
state leakage currents due to their high electric field in the
drain depletion region, which results in field emission via
grain boundary traps [11], [12]. In order to reduce the leakage
currents, a variety of methods have been proposed to reduce
the electric field near the drain region, including the lightly
doped drain, field-induced drain, high-k spacer offset-gated
structure, and Si/Ge T-Gate structure [13]-[17]. Nevertheless,
those structures require additional masks or extra materials
(HfO4, Ge), complicating fabrication processes.

It is well known that the numerous grain boundaries and in-
tragranular defects in poly-Si channel film result in the degrada-
tion of poly-Si TFT performance. To achieve high-performance
poly-Si TFTs, it is necessary to reduce the defects in the poly-
Si channel film. Hence, many plasma treatment methods are
used to passivate the defects in the poly-Si channel film, in-
cluding Hy, O2, N5, and NH3 plasmas [18]-[24]. Based on the
literatures, the NH3 plasma treatment offers better performance
enhancement, hot-carrier stress endurance, and thermal stability
than other plasma treatment methods.

In our previous work, the VSA-TFTSs have been successfully
fabricated and demonstrated [25]. The parasitic series resis-
tance of S/D and the floating n™ region may be significantly
reduced by Ni-salicidation, resulting in improved ON-state
currents. The ON-state currents will not be limited by the
parasitic series resistance of S/D and the floating n™ region
when the gate bias is increased. The OFF-state currents can be
improved by modifying the oxide overetching, the equivalent
dual-gate structure, and the floating n* region length without
additional masks. The performance can be improved by increas-
ing the NH3 plasma treatment time in the conventional top-gate
horizontal-channel TFTs [23], [24].

However, the effects of NH3 plasma treatment time on the
VSA-TFTs were not investigated in our previous work. In this
paper, the n* S/D and floating n™ region of VSA-TFTs were
fully Ni-salicided. We study the effects of NH3 plasma treat-
ment time, oxide overetching depth, and gate oxide thickness on
the VSA-TFTs with self-aligned oxide overetching structures
for the first time.

II. EXPERIMENT

Fig. 1 shows a schematic cross-sectional diagram of VSA-
TFTs with 30-nm gate oxide thickness, 50-nm channel thick-
ness, and oxide overetching depths of about (a) 40, (b) 80,
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Fig. 1. Schematic cross-sectional diagram of VSA-TFTs with 30-nm gate
oxide thickness, 50-nm channel thickness, and oxide overetching depths of
about (a) 40, (b) 80, and (c) 120 nm.
and (c¢) 120 nm. In Fig. 1(a), VSA-TFTs with 40-nm oxide
overetching depth showing a roughly 40-nm overlap region
between the gate and S/D n* edges are designated “over-
lap VSA-TFTs.” VSA-TFTs with 80-nm oxide overetching
depth showing an aligned gate and S/D n™ edges are desig-
nated “alignment VSA-TFTs” [see Fig. 1(b)]. VSA-TFTs with
120-nm oxide overetching depth showing a roughly 40-nm
offset region between the gate and S/D n™ edges are designated
“offset VSA-TFTs” [see Fig. 1(c)]. Furthermore, VSA-TFTs
with 15-nm gate oxide thickness, 50-nm channel thickness,
and 80-nm oxide overetching depth are designated “GO-15-nm
VSA-TFTs.” The GO-15-nm VSA-TFTs also have a 15-nm
offset region between the gate and S/D n* edges. Conventional
top-gate horizontal-channel devices with a gate oxide of 15 nm,
a self-aligned n™ S/D, and Ni-salicided processes were also
fabricated to serve as controls. Finally, all the devices were
fabricated using NH3 plasma treatment (NH3 plasma treatment
times will be discussed in Section III). The key processes of
VSA-TFTs were discussed in detail in our previous work [25].
We fabricated all devices under identical process conditions,
and all process temperatures were below 700 °C.

Fig. 2 shows the cross-sectional transmission electron micro-
scope (TEM) microphotograph of the offset VSA-TFTs with
fully Ni-salicided n™ S/D and an floating n* region. In the

2009

ching

Oxide over-et

vertical Channel

200 nm

Fig.2. Cross-sectional TEM microphotograph of offset VSA-TFTs with fully
Ni-salicided nt S/D and a floating n* region.
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Fig. 3. (a) Top-view optical microscope microphotograph of VSA-TFTs
without Ni-salicidation and (b) effective dual-gate structure of VSA-TFTs.

VSA-TFTs, the poly-Si thickness in the channel is 50-nm,
and the effective channel length L.g is defined by 2x the
total thickness of the poly-Si gate (about 200 nm). The offset
between gate and S/D nt edges was achieved by modifying
wet oxide over etching resulting in about 40-nm offset region.
Fig. 3 displays the top-view optical microscope microphoto-
graph of VSA-TFTs without Ni-salicidation and effective dual
gate structure of VSA-TFTs. The VSA-TFTs inherently own an
effective dual gate structure. The length of floating n™ region
is defined by mask channel length L,,,sk, whereas the mask
channel width W« is equal to the effective channel width
[see Fig. 3(a)]. The equivalent dual-gate structure [see Fig. 3(b)]
can moderate the lateral electrical field in the drain depletion
region, significantly reducing leakage currents and increasing
the ON/OFF current ratio [26], [27].

III. RESULTS AND DISCUSSION

Fig. 4 displays the transfer characteristics of the VSA-TFTs
with different NH3 plasma treatment times, along with an en-
larged ON-state currents graph of the VSA-TFTs with different
NHj plasma treatment times. VSA-TFTs fabricated with a
10-min NH3 plasma treatment time have lower OFF-state
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Fig. 4. (a) Transfer characteristics and (b) enlarged ON-state currents graph of
the VSA-TFTs with different NH3 plasma treatment times.

currents (defined as the minimum drain currents) and higher
ON-state currents than VSA-TFTs fabricated with other NH3
plasma treatment times. This is attributed to the hydrogen passi-
vation of the defect states, the nitrogen pileup at the SiOo/poly-
Si interface, and the strong Si—N bond formation that terminates
the dangling bonds in the grains and at the grain boundaries in
the channel region [23], [24]. Because the poly-Si channels are
deposited after the gate oxide in VSA-TFTs, the exposed poly-
Si channels are easily damaged under too long NH3 plasma
treatment time, resulting in poor electric characteristics. The
mechanisms of the damage to the gate oxide integrity and
the SiOy/poly-Si interface during long NHj3 treatment times
include electrostatic charging damages [28]. Therefore, we be-
lieve that NH3 plasma treatment time of 10 min is the optimum
condition for the VSA-TFTs in this independent experiment.
By the same token, the hidden poly-Si channels under the top
gate in conventional devices require longer NH3 plasma treat-
ment times to achieve improved characteristics [23], [24]. We
used 30-min NH3 plasma treatment times to passivate the con-
ventional top-gate horizontal-channel TFTs. The NH3 plasma
optimum treatment time of VSA-TFTs is significantly shorter
than that of conventional top-gate horizontal-channel TFTs.
Fig. 5 shows the transfer characteristics and the ON-state
current distribution of overlap VSA-TFTs with Wi aqx = 1 pm
and different L, ,5. The OFF-state currents can be improved by
increasing the L, ,sk. This may be attributed to the mitigation
of the OFF-state peak lateral electric field in the drain depletion
region [25]. In Fig. 5(b), the ON-state currents are degreased
with increasing L,,sk- The ON-state currents can be main-
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Fig. 5. (a) Transfer characteristics and (b) ON-state current distribution of

overlap VSA-TFTs with Wi, a5k = 1 pm and different Ly, a5k-

tained at approximately the same value from Ly .5 = 1 pm
t0 Liask = 2 pm due to the Ni-silicidation in the floating n*
region. However, the ON-state currents are slightly degraded
when Lp,,sx = 3 pm and significantly degraded when Ly, =
5 pm. This result is consistent with Fig. 5(a). The series
resistance in the floating n™ region rises with increasing L, ask,
and therefore, L,,sx may not be indefinitely increased.

We believe that the value of a subthreshold swing (S.S.) may
indicate the gate control ability in the channel. It is easier to
lose the gate control ability in shorter channel devices, resulting
in degradation of the S.S. The VSA-TFTs with small L,,,sk
have shorter effective channel lengths than the VSA-TFTs with
large Liask, and thus have more serious short-channel effects.
VSA-TFTs with large Ly,,sx can suppress the short-channel
effect resulting in improved S.S. The overlap VSA-TFTs with
Lmask = 3 pm have good S.S. (S.S. =292 mV/dec) and the
largest ON/OFF current ratio. Accordingly, the optimum value
of Liask 1S 3 pum in this paper.

Fig. 6 exhibits the transfer characteristics and the enlarged
ON-state currents graph of VSA-TFTs with Wiyask/Linask =
1 pum/3 pm and various oxide overetching depths. The
OFF-state currents can be improved by increasing the oxide
overetching depth. The electric field in the drain depletion
region may be diminished as a result of increasing the offset
region between the gate and the S/D n™ edges [13]-[17].
However, the ON-state currents will be reduced by increasing
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Fig. 6. (a) Transfer characteristics and (b) enlarged ON-state currents graph

of the VSA-TFTs with Wi,ask/Lmask = 1 pm/3um and various oxide
overetching depths.

the oxide overetching depth [see Fig. 6(b)]. The overlap VSA-
TFTs have higher ON-state current than the alignment and offset
VSA-TFTs due to shorter effective channel length. The offset
VSA-TFTs have the lowest ON-state currents, caused by the
series resistance in the offset region. The offset VSA-TFTs
can suppress the short-channel effect, resulting in improved
S.S. Although the ON-state currents of offset VSA-TFTs are
slightly smaller than the others, the offset VSA-TFTs display
an obvious improvement in the OFF-state currents resulting in
the largest ON/OFF current ratio, exceeding 108.

Fig. 7 shows the transfer characteristics and the enlarged
ON-state currents graph of the GO-15-nm VSA-TFTs with
Winask = 1 pm and different L,,sk. The OFF-state currents
can be improved by increasing the Ly, ,sx, and the ON-state
currents are nearly identical. The enlarged ON-state currents
graph shows that the ON-state currents of the various Ly,,si are
different. However, the difference in the ON-state currents for
the various L,k 1S very small. Hence, the ON-state currents
can be maintained at the same level from the L,,sx = 1 pm
to the Lyask = 3 pwm. These results are consistent with Fig. 5
and our previous work, implying that VSA-TFTs can improve
the OFF-state currents by increasing L,.sk, even though the
thermal oxide overetching depth and the gate oxide thickness
are changed. Moreover, the S.S. of the GO-15-nm VSA-TFTs
with Lyasx = 1 pm is 144 mV/dec, the S.S. of the GO-15-nm
VSA-TFTs with Ly,sx = 2 pm is 130 mV/dec, and the S.S. of
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Fig. 7. (a) Transfer characteristics and (b) enlarged ON-state currents graph of
the GO-15-nm VSA-TFTs with Wi,k = 1 um and different Ly, 45k

the GO-15-nm VSA-TFTs with L, = 3 pm is 127 mV/dec.
The GO-15-nm VSA-TFTs with Ly ,sc = 1 um have shorter
effective channel lengths and more serious short-channel effects
than the others, resulting in degradation of S.S. The S.S. of the
GO-15-nm VSA-TFTs is better than that of the offset VSA-
TFTs (the S.S. of the offset VSA-TFT with L5 = 3 pum is
269 mV/dec). In other words, the GO-15-nm VSA-TFTs have
better gate control ability than the offset VSA-TFTs due to their
thinner gate oxide thickness. Therefore, the S.S. in the VSA-
TFTs can be improved by decreasing the gate oxide thickness.
Fig. 8 displays the transfer characteristics of GO-15-nm
VSA-TFTs and offset VSA-TFTs with Wiask/Lmask =
1 pm/3pm. The transfer characteristics of conventional TFTs
with Winask/Lmask = 1 pm/0.4 pm are also shown for com-
parison. It is obvious that the GO-15-nm VSA-TFTs and the
offset VSA-TFTs outperform conventional TFTs. The conven-
tional TFTs have slightly higher ON-state currents only in the
high gate voltage due to their shorter effective channel length.
Several important parameters of GO-15-nm VSA-TFTs, off-
set VSA-TFTs, and conventional top-gate horizontal-channel
TFTs are listed in Table 1. I, is defined as the drain current
at Vo =5 V and Vp =0.1 V, whereas I,g is defined as
the minimum drain current at Vp = 0.1 V. In Table I, the
field-effect mobility of GO-15-nm VSA-TFTs is smaller than
that of the offset VSA-TFTs. We believe that the vertical
electric field of the channels in the GO-15-nm VSA-TFTs is
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TFTs with Winask/Lmask = 1 pm/3pm. Transfer characteristics of con-
ventional TFTs with Wi,as1/Limask = 1 pm/0.4 pum are also shown for
comparison.

TABLE 1
SELECTED IMPORTANT PARAMETERS OF GO-15-nm VSA-TFTs,
OFFSET VSA-TFTs, AND CONVENTIONAL TOP-GATE
HORIZONTAL-CHANNEL TFTs

S.S Mobility Toge Ion on/off
(mV/dec) (cmZ/V 's)| (pA) (uA) ratio
Vol 127 s0 | 005 | 576 | >10°
ngf_f;eFth 269 67 | 004 | 559 | >10°
C““;;“Tﬁs"“a' 399 29 | 104 | 483 [3.8x10°

higher than that of the offset VSA-TFTs due to their thinner
gate oxide thickness resulting in more serious carrier scattering
and degraded drain current. Therefore, the drain ON-state cur-
rents of GO-15-nm VSA-TFTs are not much higher than that
of the offset VSA-TFTs. The VSA-TFTs have higher mobility,
lower OFF-state current, and better S.S. than conventional TFTs.
It appears that the OFF-state currents of the GO-15-nm VSA-
TFTs could be further improved by employing an optimum
oxide overetching depth.

IV. CONCLUSION

In this paper, we have investigated the effects of NH3 plasma
treatment time, oxide overetching depth, and gate oxide thick-
ness on VSA-TFTs. VSA-TFTs with 10-min NH3 plasma treat-
ment time have lower OFF-state currents and higher ON-state
currents than VSA-TFTs with longer NH3 plasma treatment
times. The OFF-state currents and ON/OFF current ratio may be
improved by increasing the oxide overetching depth. The S.S.
can be improved by decreasing the gate oxide thickness; the
S.S. of GO-15-nm VSA-TFTs is less than 150 mV/dec. The
OFF-state currents can be improved by increasing the Ly,,sk,
even though the thermal oxide overetching depth and the gate
oxide thickness are changed. Compared with the conventional
top-gate horizontal-channel TFTs, the VSA-TFTs have better
characteristics in S.S., ON/OFF current ratio, and field-effect
mobility.

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 58, NO. 7, JULY 2011

ACKNOWLEDGMENT

The authors would like to thank the Nano Facility Center of
National Chiao Tung University and the National Nano Device
Laboratory for providing process equipment.

REFERENCES

[1] Y.-H. Lu, P.-Y. Kuo, Y.-H. Wu, Y.-H. Chen, and T.-S. Chao, “Novel sub-
10-nm gate-all-around Si nanowire channels poly-Si TFTs with raised
source/drain,” IEEE Electron Device Lett., vol. 32, no. 2, pp. 173-175,
Feb. 2011.

[2] W.C. Chen, H. C. Lin, Y. C. Chang, C. D. Lin, and T. Y. Huang, “In situ
doped source/drain for performance enhancement of double-gated poly-
Si nanowire transistors,” IEEE Trans. Electron Devices, vol. 57, no. 7,
pp- 1608-1615, Jul. 2010.

[3] W.C.Chen, H.C.Lin, Z. M. Lin, C. T. Hsu, and T. Y. Huang, “A study on
low temperature transport properties of independent double-gated poly-
Si nanowire transistors,” Nanotechnology, vol. 21, no. 43, pp. 954-956,
Oct. 2010.

[4] T. Y. Chiang, M. W. Ma, Y. H. Wu, P. Y. Kuo, K. T. Wang, C. C. Liao,
C. R. Yeh, and T. S. Chao, “MILC-TFT with high-« dielectrics for one-
time-programmable memory application,” IEEE Electron Device Lett.,
vol. 30, no. 9, pp. 954-956, Sep. 2009.

[5] T.Y.Chiang, W. C. Y. Ma, Y. H. Wu, K. T. Wang, and T. S. Chao, “A novel
PN-diode structure of SONOS-type TFT NVM with embedded silicon-
nanocrystals,” IEEE Electron Device Lett., vol. 31, no. 11, pp. 1239-1241,
Nov. 2010.

[6] E. K. Lai, H. T. Lue, Y. H. Hsiao, J. Y. Hsieh, C. P. Lu, S. Y. Wang,
L. W. Yang, T. Yang, K. C. Chen, J. Gong, K. Y. Hsieh, R. Liu, and
C. Y. Lu, “A multi-layer stackable thin-film transistor (TFT) NAND-type
flash memory,” in IEDM Tech. Dig., 2006, pp. 523-526.

[71 H. Wang, M. Chan, S. Jagar, Y. Wang, and P. K. Ko, “Submicron super
TFTs for 3-D VLSI applications,” IEEE Trans. Electron Devices, vol. 21,
no. 9, pp. 439-441, Sep. 2000.

[8] T. Zhao, M. Cao, K. C. Saraswat, and J. D. Plummer, “A vertical sub-
micron poly silicon thin-film transistor using a low temperature process,”
IEEE Electron Device Lett., vol. 15, no. 10, pp. 415—417, Oct. 1994.

[9] C. S. Lai, C. L. Lee, T. F. Lei, and H. N. Chern, “A novel vertical
bottom-gate polysilicon thin film transistor with self-aligned offset,” IEEE
Electron Device Lett., vol. 17, no. 5, pp. 199-201, May 1996.

[10] M. Z. Lee, C. L. Lee, and T. F. Lei, “Novel vertical polysilicon thin-
film transistor with excimer-laser annealing,” Jpn. J. Appl. Phys., vol. 42,
no. 4B, pp. 2123-2126, Apr. 2003.

[11] J. G. Fossum, A. O. Conde, H. Shichijo, and S. K. Banerjee, “Anomalous
leakage current in LPCVD polysilicon MOSFETS,” IEEE Trans. Electron
Devices, vol. ED-32, no. 9, pp. 1878-1884, Sep. 1985.

[12] K. R. Olasupo and M. K. Hatalis, “Leakage current mechanism in sub-
micron polysilicon thin-film transistors,” IEEE Trans. Electron Devices,
vol. 43, no. 8, pp. 1218-1223, Aug. 1996.

[13] C. T. Liu, C. H. D. Yu, A. Kornblit, and K. H. Lee, “Inverted thin-film
transistor with a simple self-aligned lightly doped drain structure,” IEEE
Trans. Electron Devices, vol. 39, no. 12, pp. 2803-2809, Dec. 1992.

[14] M. H. Juang and Y. M. Chiu, “Effects of a lightly-doped-drain (LDD)
implantation condition on the device characteristics of polycrystalline-Si
thin-film transistors,” Semicond. Sci. Technol., vol. 21, no. 3, pp. 291-294,
Mar. 2006.

[15] K. Tanaka, K. Nakazawa, S. Suyama, and K. Kato, “Characteristics of
field-induced-drain (FID) poly-Si TFTs with high ON/OFF current ratio,”
IEEE Trans. Electron Devices, vol. 39, no. 4, pp. 916-920, Apr. 1992.

[16] Z. Xiong, H. Liu, C. Zhu, and J. K. O. Sin, “Characteristics of high-x
spacer offset-gated polysilicon TFTs,” IEEE Trans. Electron Devices,
vol. 51, no. 8, pp. 1304-1308, Aug. 2004.

[17] P. Y. Kuo, T. S. Chao, P. S. Hsieh, and T. F. Lei, “Characteristics of
self-sligned Si/Ge T-gate poly-Si thin-film transistors with high ON/OFF
current ratio,” IEEE Trans. Electron Devices, vol. 54, no. 4, pp. 1171-
1176, May 2007.

[18] H.N. Chern, C. L. Lee, and T. F. Lei, “H2/O2 plasma on polysilicon thin-
film transistor,” IEEE Electron Device Lett., vol. 14, no. 3, pp. 115-117,
Mar. 1993.

[19] H. N. Chern, C. L. Lee, and T. F. Lei, “The effects of Ho—O2-plasma
treatment on the characteristics of polysilicon thin-film transistors,” IEEE
Trans. Electron Devices, vol. 40, no. 12, pp. 2301-2306, Dec. 1993.

[20] J. Y. Lee, C. H. Han, and C. K. Kim, “ECR plasma oxidation effects on
performance and stability of polysilicon thin film transistors,” in JEDM
Tech. Dig., 1994, pp. 523-526.



WU et al.: SYMMETRIC VSA-TFTs WITH SELF-ALIGNED OXIDE OVERETCHING STRUCTURES

[21] M. W. Ma, T. Y. Chiang, W. C. Wu, T. S. Chao, and T. F. Lei, “Character-
istics of HfO2/poly-Si interfacial layer on CMOS LTPS-TFTs with HfOo
gate dielectric and O plasma surface treatment,” IEEE Trans. Electron
Devices, vol. 55, no. 12, pp. 3489-3493, Dec. 2008.

[22] Y. S. Lee, H. Y. Lin, T. F. Lei, T. Y. Huang, T. C. Chang, and C. Y.
Chang, “Comparison of N2 and NH3 plasma passivation effects on poly-
crystalline silicon thin-film transistors,” Jpn. J. Appl. Phys., vol. 37, no. 7,
pp. 3900-3903, Jul. 1998.

[23] E. S. Wang, M. J. Tsai, and H. C. Cheng, “The effects of NHs plasma
passivation on polycrystalline silicon thin-film transistors,” IEEE Electron
Device Lett., vol. 16, no. 11, pp. 503-505, Nov. 1995.

[24] H. C. Cheng, F. S. Wang, and C. Y. Huang, “Effects of NH3 plasma pas-
sivation on n-channel polycrystalline silicon thin-film transistors,” I[EEE
Trans. Electron Devices, vol. 44, no. 1, pp. 6468, Jan. 1997.

[25] Y. H. Wu, P. Y. Kuo, Y. H. Lu, Y. H. Chen, and T. S. Chao, “Novel
symmetric vertical channel nickel-salicided poly-Si thin-film transistors
with high ON/OFF current ratio,” IEEE Electron Device Lett., vol. 31,
no. 11, pp. 1233-1235, Nov. 2010.

[26] 1. H. Song, S. H. Kang, W. J. Nam, and M. K. Han, “A high-performance
multichannel dual-gate poly-Si TFT fabricated by excimer laser irradia-
tion on a floating a-Si thin film,” IEEE Electron Device Lett., vol. 24,
no. 9, pp. 580-582, Sep. 2003.

[27] Y. C. Wu, T. C. Chang, P. T. Liu, C. W. Chou, Y. C. Wu, C. H. Tu,
and C. Y. Chang, “Reduction of leakage current in metal-induced lateral
crystallization polysilicon TFTs with dual-gate and multiple nanowire
channels,” IEEE Electron Device Lett., vol. 26, no. 9, pp. 646—-648, Sep.
2005.

[28] K. Y. Lee, Y. K. Fang, C. W. Chen, K. C. Huang, M. S. Liang, and S. G.
Wuu, “The electrostatic charging damage on the characteristics and reli-
ability of polysilicon thin-film transistors during plasma hydrogenation,”
IEEE Electron Device Lett., vol. 18, no. 5, pp. 187-189, May 1997.

Yi-Hong Wu was born in Chiayi, Taiwan, in 1984.
He received the B.S. and M.S. degrees in electronics
engineering from Feng Chia University, Taichung,
Taiwan, in 2006 and 2008, respectively. He is cur-
rently working toward the Ph.D. degree in the De-
partment of Electrophysics, National Chiao Tung
University, Hsinchu, Taiwan.

His research interest includes the studies of semi-
conductor device physics, including low-temperature
polycrystalline-silicon thin-film transistor (TFT),
novel structure poly-Si TFTs, and nonvolatile Flash

memories.

Po-Yi Kuo (A’10) was born in Pingtung, Taiwan, in
1978. He received the Ph.D. degree in electronics
engineering from National Chiao Tung University,
Hsinchu, Taiwan, in 2007.

He joined the Department of Electrophysics,
National Chiao Tung University, as a Postdoctoral
Researcher in October 2008. His current research
topics are the gate-all-around nanowire transistors,
vertical-channel thin-film transistors, Si/Ge hetero-
junction devices, floating-body effect random-access
memory, and the tunneling field-effect thin-film

biosensors.

transistors.

Yi-Hsien Lu was born in Yunlin, Taiwan, in 1983.
He received the B.S. degree in physics from National
Chung Hsing University, Taichung, Taiwan, in 2005
and the M.S. degree in electrophysics from National
Chiao Tung University, Hsinchu, Taiwan, in 2007,
where he is currently working toward the Ph.D.
degree in the Department of Electrophysics.

His current research topic is the fabrication and
characterization of novel structure poly-Si thin-film
transistors.

2013

Yi-Hsuan Chen was born in Taipei, Taiwan, in 1987.
She received the B.S. degree in electrophysics from
National Chiao Tung University, Hsinchu, Taiwan,
in 2009, where she is currently working toward the
Ph.D. degree in the Department of Electrophysics.

Her research interests include the studies of
semiconductor device physics, low-temperature
polycrystalline-silicon thin-film transistors, and non-
volatile Flash memories.

Tsung-Yu Chiang was born in Yunlin, Taiwan, in
1984. He received the B.S. degree in physics from
National Chung Cheng University, Chiayi, Taiwan,
in 2006. He is currently working toward the Ph.D.
degree in the Department of Electrophysics, National
Chiao Tung University, Hsinchu, Taiwan.

His research interest includes the studies of semi-
conductor device physics, including low-temperature
polycrystalline-silicon thin-film transistor, metal-
gate/high-k technology, strain technique, and non-
volatile Flash memories.

Kuan-Ti Wang was born in Kaohsiung, Taiwan,
in 1983. He received the B.S. degree in electronic
engineering from Chang Gung University, Taoyuan,
Taiwan, in 2006. He is currently working toward the
Ph.D. degree in the Department of Electrophysics,
National Chiao Tung University, Hsinchu, Taiwan.

His research interests include dynamic thresh-
old metal-oxide—semiconductor field-effect transis-
tor, metal-gate/high-k technology, and nonvolatile
flash memory.

Li-Chen Yen was born in Taipei, Taiwan, in 1985.
He received the B.S. degree in electronics engineer-
ing from Ming Chuan University, Taoyuan, Taiwan,
in 2006 and the M.S. degree from Chang Gung
University, Taoyuan, Taiwan, in 2008. He is currently
working toward the Ph.D. degree in the Department
of Electrophysics, National Chiao Tung University,
Hsinchu, Taiwan.

His research interest includes the studies of semi-
conductor device physics, including low-temperature
polycrystalline-silicon thin-film transistor, non-

volatile Flash memories, high-k technology, nanowire transistors, and

Tien-Sheng Chao was born in Penghu, Taiwan, in
1963. He received the Ph.D. degree in electronics
engineering from National Chiao Tung University,
Hsinchu, Taiwan, in 1992.

In July 1992, he joined the National Nano
Device Laboratories as an Associate Researcher,
where he became as a Researcher in 1996. He
was engaged in developing thin-dielectrics prepa-
rations, cleaning processes, and complementary
metal-oxide—semiconductor devices fabrication. In
2001, he joined the Department of Electrophysics,

National Chiao Tung University, where he has been a Professor since 2002.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


