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Abstract Effect size reporting and interpreting practices have
been extensively recommended in academic journals when
primary outcomes of all empirical studies have been analyzed.
This article presents an alternative approach to constructing
confidence intervals of the weighted eta-squared effect size
within the context of one-way heteroscedastic ANOVA mod-
els. It is shown that the proposed interval procedure has
advantages over an existing method in its theoretical justifi-
cation, computational simplicity, and numerical performance.
For design planning, the corresponding sample size proce-
dures for precise interval estimation of the weighted eta-
squared association measure are also delineated. Specifi-
cally, the developed formulas compute the necessary sam-
ple sizes with respect to the considerations of expected
confidence interval width and tolerance probability of in-
terval width within a designated value. Supplementary
computer programs are provided to aid the implementation
of the suggested techniques in practical applications of
ANOVA designs when the assumption of homogeneous
variances is not tenable.
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The analysis of variance (ANOVA) compares the impact of
categorical design factors on a continuous response variable in
order to determine whether differences exist among the treat-
ment groups. To indicate how much the knowledge of a

treatment group improves prediction of the response variable,
several strength-of-association measures have been suggested
in the literature, such as the estimators of bη2 , b"2 , and bw2

(Grissom & Kim, 2005; Hays, 1994; Keppel, 1991; Kline,
2004; Maxwell & Delaney, 2004). They can be interpreted as
a proportion that reflects how much variability in the response
variable is associated with the variation in the treatment levels.
The underlying rationale and discrepancy of these three asso-
ciation measures have been discussed in Fern and Monroe
(1996), Glass and Hakstian (1969), Maxwell, Camp, and
Arvey (1981), and Richardson (1996). Accordingly, the sam-
ple eta-squared bη2 , is one of the most commonly reported
association indices in practical applications of ANOVA. De-
tailed discussion and related issues can be found in Cohen
(1973), Haase (1983), Levine and Hullett (2002), Olejnik and
Algina (2003), Pierce, Block, and Aguinis (2004), and
Richardson (2011).

One important assumption underlying the ANOVA designs
is that of equal population variances. Violation of the
homogeneity-of-variance assumption has been the target of
criticism in applications of ANOVA. For example, Grissom
(2000) emphasized that there are theoretical reasons to expect,
and empirical results to document, the existence of heterosce-
dasticity in clinical studies. Moreover, Grissom and Kim
(2005, pp. 10–14) provided additional explanations for the
intrinsic causes of variance heterogeneity in real data. The
practical importance and methodological complexity of the
problem has incurred numerous attempts to develop various
parametric and nonparametric alternative procedures to count-
er the effects of heteroscedasticity (Keselman et al., 1998; Lix,
Keselman, & Keselman, 1996). It follows from the compre-
hensive reviews of Grissom (2000), Harwell, Rubinstein,
Hayes, and Olds (1992), and Tomarken and Serlin (1986) that
theWelch (1951) procedure is a widely accepted technique for
correcting for variance heterogeneity. Specifically, it has
advantages over other, contending methods in its overall
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performance, computational ease, and general availability in
statistical computer packages.

According to the general discussions of Breaugh (2003),
Ferguson (2009), Fern and Monroe (1996), Kirk (1996),
Richardson (1996), and Vacha-Haase and Thompson
(2004), group difference and strength of association (or
correlation ratio) are two of the major classes of effect sizes
in practical applications. It should be noted that these con-
ventional measures and conversion formulas of effect size
make the standard assumption of homoscedasticity. However,
Grissom and Kim (2001) were concerned by the frequent
occurrence of variance heterogeneity in many areas of re-
search. Therefore, they advised caution regarding the robust-
ness and appropriateness to heteroscedasticity of current effect
size measures that assume homogeneous variances. Ulti-
mately, the prevailing heteroscedastic phenomenon has
prompted different conceptions and definitions of effect size.
This issue has important implications for interpreting the
meaning of effect sizes, but it has received relatively limited
attention in the methodological literature. In the case of com-
paring the means for two different groups, Keselman, Algina,
Lix, Wilcox, and Deering (2008) emphasized that the well-
known Cohen’s (1988) standardized mean difference is not
appropriate when the homogeneity-of-variance assumption is
violated and discussed several alternative definitions of a
standardized mean difference effect size to circumvent the
untenable assumption of equal variances. Accordingly, the
diversity of suggested measures in Grissom and Kim (2001)
and Keselman et al. (2008) implies that there is no firm
consensus as to the definition of a standardized mean differ-
ence effect size in the presence of heteroscedasticity. The
various indices of standardized mean difference simply repre-
sent different quantities, each with their unique features,
and may prove to be useful in a given application. Also,
see Bonett (2008) for a discussion of standardized linear
contrasts of means with different standardizers in hetero-
scedastic ANOVA.

Although numerous approaches have been suggested to
tackle the practical and complex issue of heteroscedasticity,
Keselman et al. (2008) presented a unified formulation of
approximate degrees of freedom (ADF) procedures within
the context of general linear models. Essentially, the pre-
scribed Welch (1951) method for comparing mean equality
can be obtained from the general ADF perspective. Thorough
treatment and related applications of the Welch statistic and
other ADF methods are also described in Lix and Keselman
(1995). To further circumvent the sensitivity of traditional
methods for comparing mean equality with nonnormality, in
additional to heteroscedasticity, Keselman et al. (2008) em-
phasized the applications of ADF procedures with robust
estimators of both central tendency and variability. As was
noted earlier, Keselman et al. (2008) pointed out the appar-
ently problematic outcome of Cohen’s standardized mean

difference when variance heterogeneity is present. More im-
portant, they also explicated the vital differences and merits of
various definitions and estimators of standardized mean dif-
ference effect size. It is important to note that Bonett (2008)
has suggested several useful standardized linear contrasts of
means within the heteroscedastic ANOVA setting. However,
no explicit formulations were provided for a population
strength of association effect size measure such as the coun-
terpart of eta-squared η2 in traditional ANOVA designs.

In contrast, a weighted formulation of effect size θ was
proposed in Kulinskaya and Staudte (2006, Equation 2) to
accommodate the underlying characteristics of possibly un-
equal error variances and unbalanced group sizes for a one-
way heteroscedastic ANOVA. It was also noted in Kulin-
skaya and Staudte that when variances are equal, the weight-
ed effect size θ reduces to the widely recognized effect size
index f2 in traditional one-way ANOVA (Cohen, 1988, p.
274). Moreover, the weighted effect size can be readily
transformed to a weighted coefficient of determination ρ2

0 θ/(1 + θ), just as the prevalent strength of association
measure of eta-squared η2 0 f2/(1 + f2) is a one-to-one
function of effect size f 2. Hence, the coefficient of determi-
nation ρ2 resembles the eta-squared index η2 for represent-
ing the proportion of explained variance within the context
of a one-way heteroscedastic ANOVA. In view of the ap-
pealing features and versatile usefulness for the definitions
of weighted effect size θ and weighted coefficient of deter-
mination ρ2, Kulinskaya and Staudte presented an approxi-
mate interval estimation procedure for θ on the basis of a
shifted and rescaled chi-square transformation of Kulin-
skaya, Staudte, and Gao (2003). Clearly, it follows from
the monotone transformation ρ2 0 θ/(1 + θ) that a desired
confidence interval of ρ2 can be immediately constructed
from the obtained interval estimate of θ. Moreover, several
simulation studies were conducted in Kulinskaya and
Staudte to examine the performance of the suggested tech-
nique. According to the numerical results, they concluded
that the interval procedure is surprisingly accurate in terms
of the nominal coverage probability, except for very small
sample sizes. Also, the coverage probability tends to exceed
the nominal level when the magnitude of the weighted effect
size is small.

Despite the aforementioned arguments and findings in
Kulinskaya and Staudte (2006), the following four caveats
to their interval estimation method should be noted. First,
their confidence interval of θ is constructed from a shifted
and rescaled chi-square approximate distribution for an es-
timator of the explained sum of squares (Kulinskaya &
Staudte, 2006, Equation 11) as an alternative method for
computing the distribution function of Welch’s statistic
(Kulinskaya et al., 2003, Equation 6). Since they have not
successfully obtained a pivotal quantity with the shifted and
rescaled chi-square distribution, further approximations are

26 Behav Res (2013) 45:25–37



made to the shifted and rescaled parameters in order to
compute the involved confidence limits. It is notable that
the statistical presentations and algebraic expressions for
their interval estimators of θ are fairly complicated and the
calculation of confidence intervals requires a special-
purpose computer program for performing the necessary
computation. Therefore, the complexity may result in limit-
ed acceptance in application. Second, the exact interval
procedure for the association strength effect size η2 in ho-
moscedastic ANOVAwas repeatedly described in Fleishman
(1980), Kelley (2007), Kline (2004), Odgaard and Fowler
(2010), Smithson (2001), and Steiger (2004). Specifically,
the exact approach employs a noncentrality inversion tech-
nique of F distributions and is called the “cumulative distri-
bution function” pivotal method in Casella and Berger
(2002, Section 9.2.3) and Mood, Graybill, and Boes (1974,
Section 4.2). Corresponding routines and scripts for the
computations of noncentral F distributions and exact confi-
dence intervals are available in popular software packages
such as R, SAS, SPSS, and STATISTICA. Kulinskaya and
Staudte’s approximate interval estimation method deals with
the more general target effect size of the weighted coefficient
of determination ρ2, which subsumes the association
strength eta-squared η2 as a special case. However, the
shifted and rescaled chi-square transformation of Kulinskaya
and Staudte does not conform to the established noncentral-
ity inversion procedure. Thus, the failure to embed the con-
fidence intervals of ρ2 and η2 in a unified principle is an
obvious limitation of the existing method of Kulinskaya and
Staudte.

Third, the empirical investigation in Kulinskaya and
Staudte (2006) seems to give practically acceptable results
for a wide range of two-sample settings in Tables 1–4. But a
closer inspection of their numerical performance for three-
group situations in Tables 5–7 suggests that the coverage

probability tends to increase with decreasing weighted effect
size θ. In other words, the resulting two-sided confidence
interval may be too wide when the population weighted
effect size is small, whereas the reported interval estimate
is probably not wide enough to attain the desired confidence
level if the magnitude of underlying weighted effect size is
large. Consequently, the unknown magnitude of the under-
lying population weighted effect size could distort the cov-
erage performance of the interval estimates. Potential users
should be aware of the robustness problem associated with
the approximate formula of Kulinskaya and Staudte. Fourth,
they particularly remarked that the actual distribution of the
principal statistic proposed in Kulinskaya et al. (2003) is
highly skewed and does not converge rapidly enough to a
noncentral chi-square distribution. This implies that their
interval procedure gives rise to asymmetric confidence inter-
vals for θ or that the resulting two-sided interval estimates
are not equidistant around the principal statistic. However,
the accuracy of the one-sided confidence intervals and the
sensitivity to heteroscedasticity and unbalanced structures of
Kulinskaya and Staudte are essentially unknown. The exist-
ing results for two-sided confidence intervals in Kulinskaya
and Staudte are not detailed enough to elucidate these fun-
damental issues. It seems prudent, therefore, to confirm that
the properties of their technique are well clarified before it
can be adopted as a general procedure.

According to the editorial guidelines and methodological
recommendations of several prominent educational and psy-
chological journals, it is necessary to include some measures
of effect size and confidence intervals for all primary out-
comes (Alhija & Levy, 2009; Odgaard & Fowler, 2010; Sun,
Pan, & Wang, 2010). Furthermore, Maxwell, Kelley, and
Rausch (2008) advocated the desirability of achieving re-
quired precision in parameter estimation and emphasized the
importance of sample size planning in constructing precise

Table 1 Simulated coverage probability, error, and average width of the approximate confidence intervals for weighted signal-to-noise ratio λ*
when σ2

1;σ
2
2;σ

2
3

� �
0 (1, 1/2, 4), (N1, N2, N3) 0 (10, 10, 10), (μ1, μ2, μ3) 0 (0, 1, 1), (0, 1, 2), (0, 1, 3), and (0, 1, 4)

The proposed approach Kulinskaya and Staudte (2006)

λ* Upper Error Lower Error Two-sided Error Average Upper Error Lower Error Two-sided Error Average

95 % CI 95 % CI 90 % CI width 95 % CI 95 % CI 90 % CI width

0.23 .9597 .0097 .9485 −.0015 .9082 .0082 0.7202 .9625 .0125 .9870 .0370 .9495 .0495 0.8637

0.36 .9542 .0042 .9522 .0022 .9064 .0064 0.9460 .9541 .0041 .9817 .0317 .9358 .0358 1.1230

0.64 .9461 −.0039 .9538 .0038 .8999 −.0001 1.3907 .9383 −.0117 .9816 .0316 .9199 .0199 1.6316

1.08 .9387 −.0113 .9517 .0017 .8904 −.0096 2.0274 .9199 −.0301 .9790 .0290 .8989 −.0011 2.3555

λ* Upper Error Lower Error Two-sided Error Average Upper Error Lower Error Two-sided Error Average

97.5 % CI 97.5 % CI 95 % CI width 97.5 % CI 97.5 % CI 95 % CI width

0.23 .9799 .0049 .9744 −.0006 .9543 .0043 0.8609 .9760 .0010 .9999 .0249 .9759 .0259 1.0393

0.36 .9774 .0024 .9764 .0014 .9538 .0038 1.1287 .9718 −.0032 .9939 .0189 .9657 .0157 1.3461

0.64 .9724 .0026 .9772 .0022 .9496 −.0004 1.6606 .9575 −.0175 .9934 .0184 .9509 .0009 1.9604

1.08 .9672 .0078 .9753 .0003 .9425 −.0075 2.4228 .9383 −.0367 .9919 .0169 .9302 −.0198 2.8437
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confidence intervals. It is worthwhile to note that the notion
of coefficient of determination ρ2 in multiple linear regres-
sion is more commonly referred to as the eta-squared index
η2 to represent the strength of association in the context of
ANOVA settings. For clarity, the weighted coefficient of
determination in Kulinskaya and Staudte (2006) is therefore
referred to as the weighted eta-squared in the remainder of
this article. In an effort to improve the quality of research
analysis and design, this article presents interval estimation
and sample size procedures for the weighted eta-squared
effect sizes in one-way heteroscedastic ANOVAs. On the
basis of the approximate noncentral F distribution for

Welch’s statistic in Levy (1978), we apply the cumulative
distribution function pivotal method to construct well-
supported confidence intervals for the weighted eta-
squared effect sizes. The proposed general methodology
not only enables a transparent and concise exposition of
the inherent statistical arguments and properties, but also
combines the interval procedures for both homoscedastic
and heteroscedastic ANOVA designs into one unified frame-
work. The accuracy of the suggested approach is evaluated
by the computed confidence interval corresponding to the
nominal coverage probability and the actual probability of
coverage it achieves. Extensive numerical examinations

Table 2 Simulated coverage probability, error, and average width of the
approximate confidence intervals for weighted eta-squared η2* 0 1/6
when σ21;σ

2
2;σ

2
3;σ

2
4

� �
0 (1, 4, 9, 16), (N1, N2, N3, N4) 0 (15, 15, 15,

15), (6, 12, 18, 24), (24, 18, 12, 6), and mean structures (μ1, μ2, μ3, μ4) 0
{−1, 0, 0, 1}/c, {−3, −1, 1, 3}/c, and {−1, −1, 1, 1}/c denoted by μ 0 1, 2,
and 3, respectively

The proposed approach Kulinskaya and Staudte (2006)

μ Upper Error Lower Error Two-sided Error Average Upper Error Lower Error Two-sided Error Average

95 % CI 95 % CI 90 % CI width 95 % CI 95 % CI 90 % CI width

(N1, N2, N3, N4) 0 (15, 15, 15, 15)

1 .9550 .0050 .9526 .0026 .9076 .0076 0.2771 .9442 −.0058 .9892 .0392 .9334 .0334 0.3168

2 .9555 .0055 .9517 .0017 .9072 .0072 0.2779 .9454 −.0046 .9892 .0392 .9346 .0346 0.3192

3 .9509 .0009 .9529 .0029 .9038 .0038 0.2769 .9468 −.0032 .9903 .0403 .9371 .0371 0.3229

(N1, N2, N3, N4) 0 (6, 12, 18, 24)

1 .9453 −.0047 .9493 −.0007 .8946 −.0054 0.2778 .9381 −.0119 .9892 .0392 .9273 .0273 0.3276

2 .9461 −.0039 .9512 .0012 .8973 −.0027 0.2778 .9364 −.0136 .9894 .0394 .9258 .0258 0.3238

3 .9558 .0058 .9501 .0001 .9059 .0059 0.2783 .9439 −.0061 .9880 .0380 .9319 .0319 0.3191

(N1, N2, N3, N4) 0 (24, 18, 12, 6)

1 .9579 .0079 .9532 .0032 .9111 .0111 0.2977 .9384 −.0116 .9918 .0418 .9302 .0302 0.3409

2 .9497 −.0003 .9529 .0029 .9026 .0026 0.2984 .9357 −.0143 .9926 .0426 .9283 .0283 0.3506

2 .9389 −.0111 .9494 −.0006 .8883 −.0117 0.2987 .9282 −.0218 .9930 .0430 .9212 .0212 0.3601

Table 3 Simulated coverage probability, error, and average width of the
approximate confidence intervals for weighted eta squared η2* 0 1/6
when σ21;σ

2
2;σ

2
3;σ

2
4

� �
0 (1, 4, 9, 16), (N1, N2, N3, N4) 0 (15, 15, 15,

15), (6, 12, 18, 24), (24, 18, 12, 6), and mean structures (μ1, μ2, μ3, μ4) 0
{−1, 0, 0, 1}/c, {−3, −1, 1, 3}/c, and {−1, −1, 1, 1}/c denoted by μ 0 1, 2,
and 3, respectively

The proposed approach Kulinskaya and Staudte (2006)

μ Upper Error Lower Error Two-sided Error Average Upper Error Lower Error Two-sided Error Average

97.5 % CI 97.5 % CI 95 % CI width 97.5 % CI 97.5 % CI 95 % CI width

(N1, N2, N3, N4) 0 (15, 15, 15, 15)

1 .9787 .0037 .9774 .0024 .9561 .0061 0.3212 .9697 −.0053 .9976 .0226 .9673 .0173 0.3647

2 .9795 .0045 .9740 −.0010 .9535 .0035 0.3222 .9709 −.0041 .9973 .0223 .9682 .0182 0.3675

3 .9728 −.0022 .9775 .0025 .9503 .0003 0.3210 .9674 −.0076 .9974 .0224 .9648 .0148 0.3711

(N1, N2, N3, N4) 0 (6, 12, 18, 24)

1 .9716 −.0034 .9749 −.0001 .9465 −.0035 0.3221 .9642 −.0108 .9971 .0221 .9613 .0113 0.3759

2 .9719 −.0031 .9740 −.0010 .9459 −.0041 0.3221 .9624 −.0126 .9970 .0220 .9594 .0094 0.3718

3 .9804 .0054 .9736 −.0014 .9540 .0040 0.3226 .9709 −.0041 .9963 .0213 .9672 .0172 0.3673

(N1, N2, N3, N4) 0 (24, 18, 12, 6)

1 .9789 .0039 .9754 .0004 .9543 .0043 0.3437 .9605 −.0145 .9987 .0237 .9592 .0092 0.3895

2 .9750 .0000 .9769 .0019 .9519 .0019 0.3447 .9577 −.0173 .9987 .0237 .9564 .0064 0.3992

3 .9664 −.0086 .9744 −.0006 .9408 −.0092 0.3452 .9495 −.0255 .9989 .0239 .9484 −.0016 0.4090
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were conducted to reveal the advantages in coverage prob-
ability and interval width of the proposed approach over the
approximate transformation method of Kulinskaya and
Staudte under a variety of group mean configurations, var-
iance patterns, and sample size structures. Moreover, sample
size calculations for precise interval estimation of weighted
eta-squared effect sizes are also demonstrated in two differ-
ent perspectives. One approach gives the minimum sample
size, such that the expected confidence interval width is
within the designated bound. The other approach provides
the sample size needed to guarantee, with a given tolerance
probability, that the width of a confidence interval will not

exceed the planned range. To facilitate the recommended
procedures in empirical applications, SAS computer pro-
grams are developed for computing the confidence intervals
of the weighted eta-squared association strength and the
necessary sample sizes for designated interval precision
criteria in planning research designs.

Interval estimation of weighted eta-squared

Consider the one-way heteroscedastic ANOVA model in
which the observations Xij are assumed to be independent

Table 4 Simulated coverage probability, error, and average width of the
approximate confidence intervals for weighted eta-squared η2* 0 1/6
when σ2

1;σ
2
2;σ

2
3;σ

2
4

� �
0 (1, 1, 1, 1), (N1, N2, N3, N4) 0 (15, 15, 15, 15),

(6, 12, 18, 24), (24, 18, 12, 6), and mean structures (μ1, μ2, μ3, μ4) 0 {−1,
0, 0, 1}/c, {−3, −1, 1, 3}/c, and {−1, −1, 1, 1}/c denoted by μ 0 1, 2, and
3, respectively

The proposed approach Kulinskaya and Staudte (2006)

μ Upper Error Lower Error Two-sided Error Average Upper Error Lower Error Two-sided Error Average

95 % CI 95 % CI 90 % CI width 95 % CI 95 % CI 90 % CI width

(N1, N2, N3, N4) 0 (15, 15, 15, 15)

1 .9484 −.0016 .9482 −.0018 .8966 −.0034 0.2737 .9446 −.0054 .9868 .0368 .9314 .0314 0.3174

2 .9509 .0009 .9531 .0031 .9040 .0040 0.2747 .9429 −.0071 .9894 .0394 .9323 .0323 0.3170

3 .9528 .0028 .9552 .0052 .9080 .0080 0.2748 .9444 −.0056 .9907 .0407 .9351 .0351 0.3151

(N1, N2, N3, N4) 0 (6, 12, 18, 24)

1 .9339 −.0161 .9521 .0021 .8860 −.0140 0.2887 .9252 −.0248 .9918 .0418 .9170 .0170 0.3428

2 .9364 −.0136 .9524 .0024 .8888 −.0112 0.2895 .9256 −.0244 .9929 .0429 .9185 .0185 0.3443

3 .9468 −.0032 .9510 .0010 .8978 −.0022 0.2896 .9301 −.0199 .9893 .0393 .9194 .0194 0.3392

(N1, N2, N3, N4) 0 (24, 18, 12, 6)

1 .9397 −.0103 .9512 .0012 .8909 −.0091 0.2888 .9308 −.0192 .9914 .0414 .9222 .0222 0.3423

2 .9367 −.0133 .9509 .0009 .8876 −.0124 0.2891 .9285 −.0215 .9919 .0419 .9204 .0204 0.3445

3 .9469 −.0031 .9512 .0012 .8981 −.0019 0.2896 .9315 −.0185 .9921 .0421 .9236 .0236 0.3388

Table 5 Simulated coverage probability, error, and average width of the
approximate confidence intervals for weighted eta-squared η2* 0 1/6
when σ2

1;σ
2
2;σ

2
3;σ

2
4

� �
0 (1, 1, 1, 1), (N1, N2, N3, N4) 0 (15, 15, 15, 15),

(6, 12, 18, 24), (24, 18, 12, 6), and mean structures (μ1, μ2, μ3, μ4) 0 {−1,
0, 0, 1}/c, {−3, −1, 1, 3}/c, and {−1, −1, 1, 1}/c denoted by μ 0 1, 2, and
3, respectively

The proposed approach Kulinskaya and Staudte (2006)

μ Upper Error Lower Error Two-sided Error Average Upper Error Lower Error Two-sided Error Average

97.5 % CI 97.5 % CI 95 % CI width 97.5 % CI 97.5 % CI 95 % CI width

(N1, N2, N3, N4) 0 (15, 15, 15, 15)

1 .9716 −.0034 .9740 −.0010 .9456 −.0044 0.3175 .9650 −.0100 .9968 .0218 .9618 .0118 0.3653

2 .9773 .0023 .9772 .0022 .9545 .0045 0.3187 .9699 −.0051 .9972 .0222 .9671 .0171 0.3651

3 0.9775 .0025 .9780 .0030 .9555 .0055 0.3187 .9695 −.0055 .9979 .0229 .9674 .0174 0.3630

(N1, N2, N3, N4) 0 (6, 12, 18, 24)

1 .9621 −.0129 .9757 .0007 .9378 −.0122 0.3341 .9476 −.0274 .9979 .0229 .9455 −.0045 0.3910

2 .9621 −.0129 .9757 .0007 .9378 −.0122 0.3351 .9482 −.0268 .9991 .0241 .9473 −.0027 0.3928

3 .9723 −.0027 .9738 −.0012 .9461 −.0039 0.3351 .9569 −.0181 .9978 .0228 .9547 .0047 0.3881

(N1, N2, N3, N4) 0 (24, 18, 12, 6)

1 .9662 −.0088 .9757 .0007 .9419 −.0081 0.3342 .9521 −.0229 .9981 .0231 .9502 .0002 0.3906

2 .9628 −.0122 .9752 .0002 .9380 −.0120 0.3346 .9496 −.0254 .9980 .0230 .9476 −.0024 0.3928

3 .9733 −.0017 .9753 .0003 .9486 −.0014 0.3351 .9555 −.0195 .9982 .0232 .9537 .0037 0.3875

Behav Res (2013) 45:25–37 29



and normally distributed with expected values μi and
variances σ2

i :

Xij � N μi;σ
2
i

� �
; ð1Þ

where μi and σ2
i are unknown parameters, i01, . . . , g ( ≥ 2)

and j01, . . . , Ni. For testing the hypothesis that all treatment
means are equal, the classic F* statistic is the most widely
used statistical procedure assuming homogeneity of variance

σ2
1 ¼ σ2

2 ¼ ::: ¼ σ2
g ¼ σ2

� �
:

F* ¼ SSR g � 1ð Þ=

SSE NT � gð Þ=
; ð2Þ

where SSR is the treatment sum of squares, SSE is the error

sum of squares, and NT ¼Pg
i¼1

Ni. It follows that

F* � F g � 1;NT � g; Λð Þ; ð3Þ
where F(g−1, NT−g, Λ) is the noncentral F distribution with
(g−1) and (NT−g) degrees of freedom, and noncentrality
parameter Λ0NTλ,

l ¼
Xg
i¼1

qi μi � μ
�� �

σ=
n o2

; ð4Þ

qi0Ni/NT, andμ
� ¼Pg

i¼1
qiμi. Furthermore, λ can be alternatively

expressed asl ¼ f 2 ¼ σ2
μ σ2
�

withσ2
μ ¼Pg

i¼1
qi μi � μ

�� �2
, and

is called the signal-to-noise ratio (Fleishman, 1980). The

measure of strength of association or correlation ratio η2

is a one-to-one function of λ:

η2 ¼ l
1þ l

: ð5Þ

Accordingly, the widely used index of the association
effect size η2 is the sample eta-squared:

bη2 ¼ SSR

SSRþ SSE
¼ F*

F*þ NT � gð Þ g � 1ð Þ=
ð6Þ

where F* is defined in Equation 2. Moreover, exact confi-
dence intervals of η2 can be constructed with the noncen-
trality inversion technique of the noncentral F distribution of
F* given in Equation 3 (e.g., Odgaard & Fowler, 2010).

However, it has been shown in numerous studies that the
conventional F* test statistic is sensitive to the heterosce-
dasticity formulation defined in Equation 1. Of the numer-
ous alternatives to the ANOVA F test, we focus on the
approach proposed in Welch (1951) in the form of

W ¼
Pg
i¼1

Wi X i � X
�� �2

ðg � 1Þ=

1þ 2 g � 2ð ÞQ g2 � 1ð Þ=
; ð7Þ

where Wi ¼ Ni S2i ;
�

S2i ¼ PNi

j¼1
Xij�
�

X iÞ2 Ni � 1ð Þ= ;X i ¼ PN1

j¼1

Xij Ni;X
�.
¼ Pg

i¼1
WiX i U ;U= ¼ Pg

i¼1
Wi, and Q ¼ Pg

i¼1
1�Wi U=ð Þ2

Ni � 1ð Þ= . In contrast to the well-documented results of F*
under homoscedasticity, the statistical properties of Welch’s

statistic are more complex, and no explicit analytic form of the

Table 6 Computed sample size, expected width and tolerance proba-
bility for 95 % two-sided confidence interval of weighted eta-squared
η2* 0 .15 with interval bound b 0 ω 0 .3 and tolerance probability 1−γ
0 .90, when σ21;σ

2
2;σ

2
3;σ

2
4

� �
0 (1, 4, 9, 16), (q1, q2, q3, q4) 0 (1/4, 1/4, 1/

4, 1/4), (1/10, 2/10, 3/10, 4/10), (4/10, 3/10, 2/10, 1/10), and mean
structures (μ1, μ2, μ3, μ4) 0 {−1, 0, 0, 1}/c, {−3, −1, 1, 3}/c, and {−1,
−1, 1, 1}/c denoted by μ 0 1, 2, and 3, respectively

Expected width Tolerance probability

μ Sample sizes Simulated Approximate Error Sample sizes Simulated Approximate Error
E[H] E[H] P{H < ω} P{H < ω}

(q1, q2, q3, q4) 0 (1/4, 1/4, 1/4, 1/4)

1 (17, 17, 17, 17) 0.2942 0.2941 0.0001 (24, 24, 24, 24) .9244 .9170 0.0074

2 (17, 17, 17, 17) 0.2939 0.2941 −0.0002 (24, 24, 24, 24) .9166 .9170 −0.0004

3 (17, 17, 17, 17) 0.2955 0.2941 0.0013 (24, 24, 24, 24) .9187 .9170 0.0017

(q1, q2, q3, q4) 0 (1/10, 2/10, 3/10, 4/10)

1 (7, 14, 21, 28) 0.2914 0.2905 0.0009 (10, 20, 30, 40) .9782 .9733 0.0049

2 (7, 14, 21, 28) 0.2916 0.2905 0.0011 (10, 20, 30, 40) .9779 .9733 0.0046

3 (7, 14, 21, 28) 0.2910 0.2905 0.0005 (10, 20, 30, 40) .9739 .9733 0.0006

(q1, q2, q3, q4) 0 (4/10, 3/10, 2/10, 1/10)

1 (32, 24, 16, 8) 0.2920 0.2923 −0.0003 (48, 36, 24, 12) .9743 .9593 0.0150

2 (32, 24, 16, 8) 0.2931 0.2923 0.0008 (48, 36, 24, 12) .9708 .9593 0.0115

3 (32, 24, 16, 8) 0.2925 0.2923 0.0002 (48, 36, 24, 12) .9629 .9593 0.0036
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corresponding distribution is available. It was presented
in Levy (1978) that an approximate noncentral F distri-
bution can be obtained by replacing the sample means
and variances in Welch’s statistic with corresponding
population parameters. The numerical comparisons of
the estimated power and simulated power of Levy
(1978) suggest that the noncentral F distribution yields
an adequate approximation for the underlying distribu-
tion of Welch’s statistic. Specifically, the approximate
distribution for W in Levy is

W �� F g � 1; v; Λ*ð Þ; ð8Þ
where the denominator degrees of freedom v ¼ g2 � 1ð Þ=
3tð Þ; t ¼Pg

i¼1
1� wi u=ð Þ2 Ni � 1ð Þ= ;wi ¼ Ni σ2

i

�
; u ¼Pg

i¼1
wi ,

noncentrality parameter Λ*0NTλ*,

l* ¼
Xg
i¼1

qi μi � μ
�
*

� �
σi=

n o2
; ð9Þ

and μ
�
* ¼Pg

i¼1
wiμi u= . It is essential to note that the

formulation of λ* is the direct extension of the signal-
to-noise ratio λ given in Equation 4 under the
heterogeneity-of-variance assumption. For ease of refer-
ence, λ* is termed as the weighted signal-to-noise ratio
for its recognizable relationship with λ. An analogue
application of the monotone transformation between λ
and η2 in Equation 5 can arguably be recommended to
arrive at a weighted eta-squared effect size with λ* in
Equation 9 under the heterogeneity of variance setting,

η2* ¼ l*
1þ l*

: ð10Þ

Accordingly, the weighted eta-squared effect size η2*
was presented in Kulinskaya and Staudte (2006) as a
weighted coefficient of determination with the notation ρ2.
In addition to the supporting arguments in Kulinskaya and
Staudte, the weighted eta-squared effect size η2* provides a
natural generalization of the simple index η2, and it reflects
the proportion of total variance accounted for by the effect
of treatment means, heterogeneous variance components,
and sample size allocation ratios. Notably, the alternative

expressions of wi u= ¼ qi σ2
i

�� � Pg
j¼1

qj σ2j

.� � !,
and μ

�
* ¼ Pg

i¼1

qiμi σ2
i

�� � Pg
j¼1

qj σ2j

.� � !,
imply that both λ* and η2* do not

depend on the group sizes but, rather, on the allocation ratio
among the groups.

To indicate the actual level of the strength of association
in a study, a sample estimate of the weighted eta-squared η2*
may be obtained as

bη2* ¼ W

W þ NT � gð Þ g � 1ð Þ=
; ð11Þ

where W is the Welch statistic given in Equation 7. Clearly,bη2* is a heteroscedastic extension of the common effect size
measure bη2 given in Equation 6. Unlike the degrees of
freedom for the distribution of F*, the denominator degrees
of freedom ν in the noncentral F distribution for W given in
Equation 8 depends on the unknown variances. For inferen-
tial purposes, a further modification of the noncentral F
distribution can be obtained by substituting the respective
sample estimates for the variances in ν, and the resulting
approximation is

W �� F g � 1;bv;Λ*ð Þ; ð12Þ
where the denominator degrees of freedombv ¼ g2 � 1ð Þ 3Qð Þ=

and Q is defined in Equation 7. Ultimately, we propose to
compute the confidence intervals of η2* with the noncentrality
inversion principle through the approximate noncentral F dis-
tribution presented in Equation 12. This is useful because Λ*0
NTλ* can be viewed as a one-to-one function of η

2* in terms of
Λ*0NTη

2*/(1−η2*) with the equality between λ* and η2* in
Equation 10. Explicitly, the upper 100(1 − α1)% confidence
interval of η2* is of the form bη2*L ; 1

� �
, in which bη2*L satisfies

P F g � 1;bv;NTbη2*L 1� bη2*L� ��� �
< WOL

� � ¼ 1� a1;

ð13Þ

where WOL0max WO;F g�1ð Þ;bv;1�a1

� �
and WO is the observed

value of the W statistic defined in Equation 7. Likewise, the
lower 100(1 − α2)% confidence interval of η2 is of the
form 0; bη2*U� �

, in which bη2*
U

satisfies

P F g � 1;bv;NTbη2U 1� bη2U� ��� �
> WOU

� � ¼ 1� a2;

ð14Þ

where WOU0max WO;F g� 1ð Þ;bv; 1� a2

� �
. Typically, a 100(1 −

α)% two-sided confidence interval bη2*L ;bη2*U� �
of weighted eta-

squared association effect size η2* can be obtained by jointly
applying Equations 13 and 14 with α10α20α/2. Since the
noncentrality parameter of a noncentralF distribution is always
nonnegative, it is necessary to use WOL and WOU, instead of
WO, to give proper results for the confidence limits. The
particular adjustments not only have theoretical implications,
but also yield appropriate arguments to prevent computational
error. Although the noncentrality inversion procedure was also
presented in confidence interval calculations of η2, such as
Odgaard and Fowler (2010), their algorithm did not entail
subtle modifications of the observed F* statistic. Note that
the calculation of confidence intervals bη2*L ;bη2*U� �

needs to be
performed merely for the value of the statistic WO actually
observed. In addition, even though Equations 13 and 14 cannot
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be solved analytically, it is really only necessary to compute
them numerically, since a 100(1−α)% confidence level does
not require a closed-form solution. In short, with the desired
confidence level, observed value WO, and estimated degrees
of freedom bv, the numerical computation of confidence limitsbη2*L and bη2*U involves the evaluation of the noncentrality
distribution function of a noncentral F variable, such as the
SAS noncentrality function FNONCT. Accordingly, a SAS/
IML (SAS Institute, 2011) program has been developed to
perform the confidence interval calculations and is available
as supplementary material. In contrast, Kulinskaya and
Staudte (2006) also presented an approximate confidence
interval procedure for η2* based on a shifted and rescaled
chi-square transformation. It should be emphasized, however,
that their method differs markedly from the noncentrality
inversion technique. More important, their analytical argu-
ments and derived formulas are noticeably more involved than
the prescribed justification and methodology. Thus, it is of
both practical value and theoretical interest to explicate the
underlying properties of the two distinct interval procedures.
But due to the complex nature of the interval estimation
formulas under study, a complete analytical treatment is not
possible. Hence, a detailed simulation study is performed next
to evaluate and compare their accuracy under a variety of
treatment effect configurations, heterogeneous variance pat-
terns, and sample size allocation structures.

Numerical comparison of interval estimation procedures

To demonstrate the performance of the two alternative proce-
dures under ANOVA settings, the following empirical exam-
ination consists of two studies, of which the first one
reexamines the interval estimation of weighted signal-to-
noise ratio λ* for the three-group case in Kulinskaya and
Staudte (2006), and the second study evaluates the confidence
intervals of weighted eta-squared η2* for the case of four
groups that were not considered in Kulinskaya and Staudte.

First, we consider the model settings in Table 6 of
Kulinskaya and Staudte (2006) with g03. Specifically,
the sample sizes and error variances are chosen as (N1,
N2, N3)0(10, 10, 10) and ( σ2

1;σ
2
2;σ

2
3 ) 0 (1, 1/2, 4),

respectively. Moreover, four mean effect settings are con-
sidered: (μ1, μ2, μ3)0(0, 1, 1), (0, 1, 2), (0, 1, 3), and
(0, 1, 4), and the resulting weighted signal-to-noise ratio
λ* values are 0.23, 0.36, 0.64 and 1.08, respectively.
With the given sample sizes and parameter configurations,
estimates of the true coverage probability are computed
through Monte Carlo simulation of 10,000 independent data
sets. For each replicate, the confidence limits associated with
one-sided upper and lower 100(1−α/2)% confidence inter-
vals are computed for both (1−α/2)0 .95 and .975. These
confidence limits are also employed to construct the two-

sided 90 % and 95 % confidence intervals. Accordingly, a
total of six different sets of confidence intervals are obtained.
Thus, our simulations cover a much broader range of situa-
tions than those considered in Kulinskaya and Staudte,
which examined only the performance of two-sided 95 %
confidence intervals. In each case, the simulated coverage
probability is the proportion of the 10,000 replicates whose
intervals contain the population-weighted effect size λ*. The
accuracy of the examined procedure is determined by the
difference between the simulated coverage probability and
the designated coverage probability as error0simulated cov-
erage probability−nominal coverage probability. In addition,
the average interval width of λ* is also computed for the
10,000 replicated widths of both 90 % and 95 % two-sided
confidence intervals. The simulated results of coverage prob-
abilities, errors, and average widths for Kulinskaya and
Staudte’s method and the suggested approach are presented
in Table 1. For a concise visualization of these results, the
simulated coverage probabilities of one-sided upper and
lower 95 % confidence intervals and two-sided 90 % confi-
dence intervals are plotted for the proposed approach and
Kulinskaya and Staudte’s method in Figs. 1 and 2, respec-
tively. It appears that the discrepancy between simulated and
nominal coverage probabilities of Kulinskaya and Staudte’s
two-sided confidence intervals tend to decrease for larger λ*.
Although this general pattern agrees with the findings of
Kulinskaya and Staudte, the notable errors of the associated
one-sided confidence intervals reveal that the results of their
two-sided interval estimates remain problematic even for
large values of λ*. Specifically, the simulated coverage
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Fig. 1 Simulated coverage probabilities of the proposed confidence
intervals
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probability of their 90 % two-sided confidence interval is
.8989 with error− .0011 for λ*01.08. But the resulting cov-
erage probabilities of the upper and lower 95 % one-sided
confidence intervals are .9199 and .9790 with substantial
errors− .0301 and .0290, respectively. In addition, the best
performance of the 95 % two-sided confidence intervals is
associated with λ*00.64 and has a simulated coverage prob-
ability of .9509, with error of .0009. In this case, the
corresponding upper and lower 97.5 % one-sided confidence
intervals incur the simulated coverage probabilities of .9575
and .9934, with sizable errors of−.0175 and .0184, respective-
ly. Note that the confidence limits of the (1−α)% two-sided
confidence interval are constructed with the respective lower
and upper limit of the one-sided upper and lower (1−α/2)%
confidence intervals. Thus, it is misleading to report that a two-
sided interval procedure is accurate on the basis of a combina-
tion of some noticeable under- and overestimated one-sided
coverage probabilities. Consequently, a mere coverage proba-
bility assessment of two-sided confidence intervals may ob-
scure systematic overestimation in confidence limits that might
have existed in the shifted and rescaled chi-square transforma-
tion of Kulinskaya and Staudte. In contrast, the simulated
coverage probabilities of the suggested one- and two-
sided confidence intervals closely agree with the nominal
confidence levels for all 24 combined cases in Table 1.
Although the case of the upper 95 % confidence interval
for λ*01.08 yields a coverage probability .9387 and indu-
ces the largest error − .0113, this result still outperforms
that of Kulinskaya and Staudte, which yields a coverage
probability .9199 and error − .0301. Moreover, in terms

of the average widths of the simulated two-sided confi-
dence intervals for the weighted signal-to-noise ratio λ*, it
is apparent that the average width of the proposed ap-
proach is consistently smaller than that computed by the
method of Kulinskaya and Staudte for each of the eight
combinations of two confidence levels (1−α) and four
values of weighted effect size λ*.

To demonstrate that the previous contrasting behaviors
between the two interval procedures continue to exist in other
heteroscedastic ANOVA situations, further numerical investi-
gations were conducted with a wide range of different model
configurations. In the second study, we focus on the interval
estimation of weighted eta-squared η2* with g04 under both

settings of heterogeneous variances (σ2
1;σ

2
2;σ

2
3;σ

2
4) 0 (1, 4, 9,

16) and homogeneous variances (σ2
1;σ

2
2;σ

2
3;σ

2
4) 0 (1, 1, 1, 1).

For sample size structures, three allocation schemes are exam-
ined to represent diverse patterns: (N1,N2,N3,N4)0(15, 15, 15,
15), (6, 12, 18, 24), and (24, 18, 12, 6). These three settings not
only include both balanced and unbalanced designs, but also
create direct- and inverse-pairing with heteroscedastic struc-
ture. Moreover, the three sample size allocation schemes are
cross-combined with three different mean variability settings:
(μ1, μ2, μ3, μ4)0{−1, 0, 0, 1}, {−3, −1, 1, 3}, and {−1, −1, 1,
1}. For ease of comparison, the actual mean structure is further
modified as (μ1, μ2, μ3, μ4)/c with a constant c for adjustment
so that the resulting weighted eta-squared η2* remains the same
as η2*01/6 (λ*01/5) for each case of a total of 18 different
model configurations. Similar variance structures, mean vari-
ability patterns, and sample size allocations were considered in
Cohen (1988) and Tomarken and Serlin (1986). These combi-
nations of model configurations are selected to reveal the
extent of characteristics that are likely to be obtained in actual
applications. General guidelines of design and implementation
of Monte Carlo experiments can be found in Paxton, Curran,
Bollen, Kirby, and Chen (2001). Similar to the implementation
of the preceding examination, the simulated results of coverage
probabilities, errors, and average widths for (1−α/2)% one-
sided and (1−α)% two-sided confidence intervals for hetero-
geneous variances (σ2

1;σ
2
2;σ

2
3;σ

2
4) 0 (1, 4, 9, 16) are presented

in Tables 2 and 3 for α0 .10 and .05, respectively. In addition,
Tables 4 and 5 contain the corresponding numerical results
under homogeneous structure (σ2

1;σ
2
2;σ

2
3;σ

2
4) 0 (1, 1, 1, 1) for

α0 .10 and .05, respectively.
According to the extensive numerical results in Tables 2–5,

the coverage probabilities of the proposed interval procedure
maintain a close range near the nominal levels. Although
some of the absolute errors are slightly larger than .01, the
performance seems generally acceptable. It is noteworthy that
the suggested approach is developed under the possibly un-
equal variances assumption. In view of the stable and ade-
quate performance of the resulting confidence intervals under
both homogeneous and heterogeneous variance settings, the
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proposed interval procedure has great potential usefulness in
practical situations where the extent of underlying variance
heterogeneity is rarely known and may be nearly trivial.
Unfortunately, the interval method of Kulinskaya and Staudte
(2006) does not provide satisfactory results, even though the
coverage performance of some two-sided confidence intervals
in Tables 3 and 5 are reasonably good. The sign and magni-
tude of the errors associated with upper and lower one-sided
confidence intervals show that the simulated coverage proba-
bilities are consistently lower or higher than the nominal levels
throughout Tables 2–5. The poor performance implies that
their approach fails to produce accurate confidence limits
under most of the conditions examined here. Furthermore,
all of the average widths of two-sided confidence intervals
of the suggested interval procedure are less than those com-
puted by the method of Kulinskaya and Staudte. Consequent-
ly, the noncentrality inversion approach is recommended over
the existing shifted and rescaled transformation of Kulinskaya
and Staudte for its overall performance in the accuracy of
coverage probability and the tightness of interval width
corresponding to the nominal confidence level.

Sample size determination for precise interval estimation

With the emphasis on greater use of summary measure and
confidence intervals in the sixth edition of the Publication
Manual of the American Psychological Association (American
Psychological Association, 2009), it is prudent to facilitate this
research practice by determining the necessary sample sizes to
satisfy the desired precision of interval estimation in the plan-
ning stage of research design. Hence, the sample size determi-
nation for precise confidence intervals of the weighted eta-
squared effect size is considered.

According to the formulation of the approximate non-
central F distribution of Welch’s statistic and the application
of the noncentrality inversion technique, an approximate 100
(1−α)% two-sided interval estimate bη2*L ;bη2*U� �

of η2* can be
computed from Equations 13 and 14 with equal tail confi-
dence probability, α10α20α/2. To ensure that the confi-
dence interval is narrow enough to produce meaningful
findings, researchers must recognize the stochastic nature
of confidence intervals due to the inherent randomness in
Welch’s statistic W and the degrees of freedom estimator bv.
However, the property of the approximate degrees of free-
dom bv involves the joint consideration of g heterogeneous
sample variances, and consequently, the complexity of the
exact distribution of bv can be overwhelming. To provide a
feasible solution, the random feature of bv is ignored in the
proposed sample size calculations. This simplification is a
small price to pay for developing a sample size framework
that is informative and useful for precise interval estimation.

The empirical examinations presented later reveal that
sampling fluctuations in bv are minimal and the associated
effects may be negligible. Hence, the width of a confi-
dence interval bη2*L ;bη2*U� �

, denoted by H ¼ bη2*U � bη2*L , can
be viewed as a function of the Welch statistic, degrees of
freedom ν, weighted eta-squared η2*, sample sizes (N1, .
. . , Ng), and confidence coefficient (1−α). Specifically,
the approximate noncentral F distribution suggested in
Levy (1978) is utilized to determine the sample sizes
required to achieve the specified precision properties of
a confidence interval. Two useful principles concerning
the control of the expected width and the tolerance
probability of the width within a preassigned value are
presented here. First, it is necessary to determine the
required sample size such that the expected width E[H]
of a 100(1−α)% confidence interval bη2*L ;bη2*U� �

is within
the given bound

E½H � � b; ð15Þ

where b (>0) is a constant. Second, one may compute the
sample size needed to guarantee, with a given tolerance prob-
ability (1−γ), that the width H of a 100(1−α)% interval
estimate bη2*L ;bη2*U� �

will not exceed the planned value

P H � wf g � 1� g; ð16Þ
where ω ( > 0) is a constant. Both the expectation E[H] and
probability P{H ≤ ω} are evaluated with respect to the ap-
proximate distribution of W presented in Equation 8.

For ease of numerical computation, the sample size allo-

cation ratios (q1, . . . , qg) are rewritten as qi ¼ ri
Pg
j¼1

rj

,
where ri0Ni/N1 for i01, . . . , g. Equivalently, ri0qi /q1, i01, .
. . , g. Thus, with the initially specified sample size allocation
ratios (q1, . . . , qg) or sample size ratios (r1, . . . , rg), the task
is reduced to deciding the minimum sample size N1 (with
Ni0N1ri, i02, . . . , g) required to attain the desired precision
level. With the computational formulas of expected width
and tolerance probability in Equations 15 and 16, the sample
sizes (NEW1, . . . , NEWg) needed for the expected width of a
100(1−α)% two-sided confidence interval bη2*L ;bη2*U� �

to fall
within the designated bound b are the minimum integers (N1,
. . . , Ng)0N1(r1, . . . , rg) such that E[H]≤b. On the other
hand, the sample size (NTP1, . . . , NTPg) required to guarantee
with a given tolerance probability (1−γ) that the width of a
100(1−α)% two-sided confidence interval bη2*L ;bη2*U� �

will not
exceed the planned range ω are the smallest integers (N1, . . . ,
Ng)0N1(r1, . . . , rg) such that P H � wf g � 1� g . The
computation of expected width and tolerance probability
requires the numerical integration and noncentrality inversion
with respect to a noncentral F probability distribution func-
tion. To enhance the applicability of these sample size meth-
odologies, supplementary SAS/IML (SAS Institute, 2011)
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computer programs have been written to aid researchers with
the suggested techniques, and empirical illustrations are pre-
sented next to demonstrate their usefulness in sample size
calculations.

Numerical investigation of sample size procedures

Due to the approximate nature of the suggested sample size
procedures for precise interval estimation of the weighted
eta-squared effect sizes, their features and performances
need to be delineated and examined through numerical
investigations. To demonstrate the sample size methodolo-
gy, an empirical study was conducted in two steps. The first
step involved extensive sample size calculations for the two
precision measures of expected width and tolerance proba-
bility across a wide range of model configurations. In the
second step, a Monte Carlo simulation study was performed
to provide insights into the precision behavior for the rec-
ommended sample size formulas under the design character-
istics specified in the first step.

Note that the determination of sample sizes needed for
the chosen precision of the confidence interval procedures
requires detailed specifications of the confidence level, sam-
ple size allocation ratio, and the magnitudes of mean effects
and variance components. To demonstrate the potential ex-
tent of characteristics that an applied work may cover in
heteroscedastic ANOVA research, a systematic numerical
investigation of four-group design is conducted by fixing
the confidence level (1−α)0 .95 and heterogeneous error
variances (σ2

1;σ
2
2;σ

2
3;σ

2
4 ) 0 (1, 4, 9, 16) and varying the

other two factors of sample size allocation ratio and mean
variability pattern for the selected magnitude of weighted
eta-squared η2*0 .15. Accordingly, to represent balanced
and unbalanced patterns, three sample size allocation
settings are considered: (q1, q2, q3, q4)0(1/4, 1/4, 1/4,
1/4), (1/10, 2/10, 3/10, 4/10), and (4/10, 3/10, 2/10, 1/
10). As in the empirical illustration presented above, the
sample size allocation schemes are cross-combined with
three different mean spread settings: (μ1, μ2, μ3, μ4)0
{−1, 0, 0, 1}/c, {−3, −1, 1, 3}/c, and {−1, −1, 1, 1}/c.
Note that different values of constant c are used for
adjustment so that the weighted eta-squared is kept con-
stant as η2*0 .15 throughout this numerical study. More-
over, the interval bound b0ω0 .3, and tolerance
probability (1−γ)0 .90 are selected for the two precision
criteria of expected width and tolerance probability.
These levels were selected to reflect common sample
sizes used in typical research settings. Accordingly, the
necessary sample sizes (NEW1, NEW2, NEW3, NEW4) and
(NTP1, NTP2, NTP3, NTP4) are computed with respect to
the selected precision requirements of expected width and
of tolerance probability, respectively. The resulting

sample sizes are presented in Table 6 for all nine joint
model configurations of varying sample size allocation
and mean dispersion structure.

An inspection of the sample sizes reported in Table 6
shows that the computed sample sizes are identical for all
three mean patterns when the sample size allocation ratio is
fixed due to the restriction of a constant weighted eta-
squared η2*0 .15. Accordingly, the actual sample sizes un-
der the expected width consideration are (NEW1, NEW2,
NEW3, NEW4)0(17, 17, 17, 17), (7, 14, 21, 28), and (32,
24, 16, 8) for the three sample size allocation settings (q1,
q2, q3, q4)0(1/4, 1/4, 1/4, 1/4), (1/10, 2/10, 3/10, 4/10), and
(4/10, 3/10, 2/10, 1/10), respectively. On the other hand, the
corresponding sample sizes associated with the assurance of
tolerance probability principle are (NTP1, NTP2, NTP3,
NTP4)0(24, 24, 24, 24), (10, 20, 30, 40), and (48, 36, 24,
12) for the three sample size allocation schemes, respective-
ly. Also, it is important to note that the total sample sizes,
NT, of the balanced structure are less than those of the
unbalanced structure for both types of interval precisions.
The case with inverse pairing of heterogeneous variance and
unbalanced allocation incurs the largest number of total
sample sizes. Since the two precision criteria impose unique
and distinct precision characteristics on the resulting confi-
dence intervals, the required sample sizes are different.
Although the results are not completely comparable, it typ-
ically requires a larger sample size to meet the necessary
precision of tolerance probability than the control of a
designated expected width, as was noted in Kupper and
Hafner (1989). More important, the sample size procedures
and empirical results presented here enable researchers to
better understand the underlying relationship that exists
between the designated interval precision and the required
sample size given the fundamental information of model
configurations.

In the process of sample size determination, the attained
precision levels associated with the listed sample sizes
(NEW1, NEW2, NEW3, NEW4) and (NTP1, NTP2, NTP3, NTP4)
should be less than or greater than the nominal level for
width bound b0 .3 and tolerance probability (1−γ)0 .90,
respectively. The achieved expected width E[H] and toler-
ance probability P{H≤ω} computed with the approximate
noncentral F distribution in Equation 8 are also summarized
in Table 6. It appears that the resulting approximate
expected widths .2941, .2905, and .2923 for the three
sample size allocation schemes are marginally smaller than
the selected width, b0 .3. However, the approximate toler-
ance probabilities .9170 of equal allocation ratio or balanced
design are slightly greater than the nominal level .90. For the
two unbalanced designs, the approximate tolerance proba-
bilities are .9733 and .9593 for direct- and inverse-pairing of
allocation ratio with heteroscedastic structure, respectively.
It is conceivable that the substantial differences between the
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actual tolerance probabilities and the target level (1−γ)0 .90
are due to the underlying metric of integer sample sizes and
the constraint of a designated sample size allocation ratio.
Since it is not possible to compute exact expected width or
tolerance probability with the specified sample sizes, we
then evaluate the accuracy of the sample size calculations
through the following Monte Carlo simulation study. Under
the computed sample sizes, parameter configurations and
precision settings described in Table 6, estimates of the true
expected width or tolerance probability are computed through
Monte Carlo simulation of 10,000 independent data sets. For
each replicate, the confidence limits and corresponding inter-
val width of the two-sided 95 % confidence intervals of η2*
are calculated. Then the simulated expected width is the mean
of the 10,000 replicates of interval widths, whereas the simu-
lated tolerance probability is the proportion of the 10,000
replicates whose values of interval width are less than or equal
to the specified bound ω0 .3.

The adequacy of the sample size procedure for precise
interval estimation is determined by one of the following
formulas: error0simulated expected width−approximate
expected width or error0simulated tolerance probability−
approximate tolerance probability. Both the simulated and
corresponding errors of expected width and tolerance prob-
ability are also summarized in Table 6. It can be seen from
the results that the performance of the proposed approaches
appears to be good for the range of model specifications
considered here. In particular, the absolute errors of the
expected width are less than .002 for the nine cases exam-
ined here. Also, the absolute discrepancies in tolerance
probability are smaller than .01, with the two exceptions
of .0150 and .0115, associated with inverse pairing of het-
erogeneous variance and unbalanced allocation. Overall,
this empirical evidence demonstrates that the proposed sample
size procedures provide feasible and accurate solutions to
precise interval estimation of the weighted eta-squared under
a wide variety of heteroscedastic model configurations.

Conclusions

To extend and fortify the use of effect sizes and associated
confidence intervals in empirical studies, this article has
focused on the interval estimation and sample size determi-
nation for the weighted eta-squared effect sizes in one-way
heteroscedastic ANOVA. Although existing studies have
shown several interesting and fundamental results, this re-
search contributes to the effect sizes literature by consider-
ing three methodological issues with analytical and
numerical expositions. First, in connection with the well-
known signal-to-noise ratio and eta-squared effect sizes in
the homoscedastic ANOVA framework, we have provided
enhanced interpretations and supportive usages for the

notions of weighted effect size and weighted coefficient of
determination in Kulinskaya and Staudte (2006), as the
weighted signal-to-noise ratio and weighted eta-squared
effect size within the extended context of heteroscedastic
ANOVA. Second, for the interval estimation of weighted
eta-squared, we have addressed the potential deficiencies of
the shifted and rescaled chi-square transformation approach
of Kulinskaya and Staudte and have proposed an improved
procedure that has the advantages of theoretical justification,
computational simplicity, and numerical performance over
the existing method of Kulinskaya and Staudte. Third, the
corresponding sample size procedures for precise interval
estimation of weighted eta-squared have been developed for
both the expected width and tolerance probability consider-
ations. The performance of the suggested sample size cal-
culations appears to be sufficiently accurate for practical
purposes within the range of model specifications considered
in the present article. Overall, the recommended methodology
facilitates the advocated practice of confidence intervals for
effect sizes, and it reinforces the potential usefulness of
ANOVA models under heterogeneity of variance.
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