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Learning Concepts in Parallel Based upon the 
Strategy of Version Space 
Tzung-Pei Hong and Shian-Shyong Tseng, Member, IEEE 

Abstruct- In this paper, we have attempted to apply the 
technique of parallel processing to concept learning. A parallel 
version-space learning algorithm based upon the principle of 
divide-and-conquer is proposed. Its time complexity is analyzed 
to be O(klog, n )  with n processors, where n is the number 
of given training instances and b is a coefficient depending on 
application domains. For a bounded number of processors in the 
real situations, a modified parallel learning algorithm is then 
proposed. Experimental results are then performed on a real 
learning problem, showing our parallel learning algorithm works 
and being quite consistent with results of theoretic analysis. We 
have finally concluded that when the number of training instances 
is large, it is worth learning in parallel because of its faster 
execution. 

Index Terms-Divide-and-conquer, generalization process, hy- 
pothesis, parallel learning, specialization process, training in- 
stance, version space 

I. INTRODUCTION 

EARNING general concepts from a set of training in- L stances has become increasingly important for artificial 
intelligence researchers in constructing knowledge-based sys- 
tems [2], 131, [7], 181, [28]. This problem has been studied by 
many researchers over the last two decades; many approaches 
have been proposed to solve it 1171, [18]. Learning strategy 
adopted can be divided into two classes: data-driven strategy 
and model-driven strategy [5], [21], [22]. Data-driven strategy 
processes input examples one at a time, gradually general- 
izing the current set of descriptions until a final conjunctive 
hypothesis is computed. Therefore, it processes in a bottom- 
up way. On the other hand, model-driven strategy searches a 
set of possible generalizations in an attempt to find a few best 
hypotheses satisfying certain requirements by considering an 
entire set of training instances as a whole. So, it processes in 
a top-down manner. 

No matter which strategy is adopted, its efficiency is limited 
by its leaming speed. Because of the dramatic increase in 
computing power and the concomitant decrease in computing 
cost over last decade, learning from examples by parallel 
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processing has become a feasible way for conquering the low- 
speed problem in learning within a single processor [ 1 11, [ 131, 

In this paper, one famous data-driven learning strategy, 
called “version space” [19]-[22] is adopted as our strategy 
for parallel learning, because its characteristic of not checking 
past training instances makes independent processing among 
different processors possible. We then discuss the feasibility of 
parallel learning on the strategy of “version space” and propose 
a parallel learning algorithm that can be accomplished in 
O ( k  log, n)  (where n is the number of given training instances 
and k is a coefficient depending on application domains). Proof 
of correctness in the proposed parallel learning algorithm is 
also given. This algorithm is further modified for practical 
restriction to a bounded number of processors. Experiments on 
the Iris Learning Problem [6], [lo] finally ensure the validity 
of our parallel learning algorithm. 

This paper is organized as follows. The leaming problem 
considered in this paper is formally defined in Section 11. The 
version space learning strategy is introduced in Section 111. 
A parallel learning model and a parallel learning algorithm 
are proposed-in Section IV. This is followed by analysis of 
time complexity in Section V. A modified parallel learning 
algorithm for a bounded number of processors is then proposed 
in Section VI. Some experiments to verify effectiveness of 

Conclusion and future work are finally summarized in Section 
VIII. 

~141. 

our parallel learning algorithm are made in Section VII. - 

11. LEARNING PROBLEM 

Before describing the learning problem, some terminology 
should first be defined. An instance space is a set of instances 
that can be legally described by a given instance language. 
Instance spaces can be divided into two classes: attribute- 
based instance spaces and structured instance spaces. In an 
attribute-based instance space, each instance can be repre- 
sented by one or several attributes. Each attribute may be 
nominal, linear, or tree-structured [30] (Fig. 1). For example, 
instance “color = red, weight = 1, shape = oval” is attribute- 
based. Attribute-based instance spaces are of the main concem 
here. 

A hypothesis space is a set of hypotheses that can be legally 
described by a concept description language (generalization 
language). The most prevalent form of a hypothesis space is 
restriction to concepts that can be expressed only in conjunc- 
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Tree-structured attribute sha / \  
non-convex I I convex 

Fig. 1. Attribute domain. 

tive forms. For example, hypothesis “color = red and shape 
= convex” are in conjunctive forms. Because some unsolved 
problems in learning disjunctive concepts based on version 
space strategy [4], [20] still exist, the hypothesis spaces here 
are restricted to conjunctive forms. 

Given an instance space and a hypothesis space, a set of 
predicates is still required to test whether a given hypothesis 
matches a given instance (i.e., whether the given instance 
is contained in the instance set corresponding to the given 
hypothesis). For example, in a tree-structured attribute domain, 
one matching predicate is a predecessor-successor relation in 
the hierarchy tree. In other words, a hypothesis matches an 
instance if the instance is a successor of the hypothesis in the 
hierarchy tree. 

Two partial ordering relations, called ‘:more-specijic-than” 
(I) and “more-general-than” (2) exist in the hypothesis space. 
Hypothesis A 5 hypothesis B (or B 2 A )  iff each instance 
contained in A is also contained in B. Note that these two 
relations are reflexive. That is, A 5 A and A 2 A. These 
partial ordering relations are important because they provide a 
powerful basis for organizing the search through the hypothesis 
space [20]. 

A hypothesis A is a least general generalization (lgg) [24], 
[25] of two hypotheses B and C (1) if A 2 B and A 2 C; 
and (2) if another hypothesis A’ 2 B and A’ 2 C, then 
’ ( A  2 A’) .  Similarly, a hypothesis A is a least specific 
specification (Iss) of two hypotheses B and C iff (1) A 5 B 
and A 5 C;  and (2) if another hypothesis A‘ I B and A’ 5 C,  
then ’ ( A  5 A’) .  

The learning problem to be solved in this paper can now 
be defined as in [20]. 

Given the following information: 
1) instance space, 
2) hypothesis space, 
3) a set of predicates to test whether a given hypothesis 

4) a set of positive and negative training instances of a 

determine one or several hypotheses in conjunctive forms, each 
of which is consistent with the presented training instances. 

The term “consistent” means that this hypothesis matches 
(includes) all given positive training instances and matches no 
(excludes) given negative ones. 

matches a given instance, and 

target concept to be learned, 

Example 1: Consider the learning problem of classifying 
examples belonging to different kinds of iris flowers [6], [lo]. 
Assume that the following information is given. 

Instance Space: Each training instance is described by 
four attributes-Sepal Width (S.W), Sepal Length (S.L), 
Petal Width (P.W), and Petal Length (P.L). Units for 
all the four attributes are centermeter, measured to the 
nearest millimeter. 
Hypothesis Space: Each legal hypothesis is restricted to 
be conjunctions of form a 5 X < b (for each attribute 
X ) ,  where a and b are limited to multiples of 8 mm. 
Matching Predicates: A hypothesis H matches a training 
instance I if and only if the value of each attribute in I 
is within the range of the corresponding attribute in H .  
Training Set: Positive instances-(S.1 = 5.1, S.W = 
3.5, P.L = 1.4, P.W = 0.2), and (S.L = 4.3, S.W = 3.0, 
P.L = 1.1, P.W = 0.l), and negative instances-(S.1 
= 7.0, S.W = 3.3, P.L = 4.7, P.W = 1.4). 

According to above information, any one hypothesis more 
general than (4.0 5 S.L < 5.6, 2.4 5 S.W < 4.0, 0.8 5 P.L 
< 1.6, 0.0 5 P.W < 0.8), and more specific than (0.0 5 S.L 
< 6.4, 0.0 5 S.W < 00, 0.0 5 P.L < CO, 0.0 5 P.W < a), 
(0.0 5 S.L < 00, 0.0 L S.W < 00, 0.0 5 P.L < 4.0, 0.0 5 
P.W < CO), or (0.0 I S.L < 00, 0.0 5 S.W < 00, 0.0 P.L 
< 00, 0.0 5 P.W < 0.8) is desired. Methods in achieving the 
boundaries are discussed in the next section. 

111. OVERVIEW OF VERSION SPACE LEARNING STRATEGY 

Version space leaming strategy [ 191, [20] was proposed by 
Mitchell in 1978, having been applied successfully in some 
systems such as Meta-DENDRAL [3] and LEX [23]. The 
term “version space” is used to represent all legal hypotheses 
describable within a given concept description language and 
consistent with all observed training instances. A version space 
can be represented by two sets of hypotheses: set S and dual 
set G, defined as follows. 

S = {s I s is a hypothesis consistent with observed 
instances. No other hypothesis exists that is both more specific 
than s and consistent with observed instances}; 

G = {g I g is a hypothesis consistent with observed 
instances. No other hypothesis exists that is both more general 
than g and consistent with observed instances}. 

Sets S and G together precisely delimit the version space, 
and each hypothesis in the version space is both more general 
than some hypothesis in S and more specific than some 
hypothesis in G. When a new positive training instance 
appears, set S is generalized to include this training instance; 
when a new negative training instance appears, set G is 
specialized to exclude this training instance. An example is 
given below to clearly explain version space strategy. 

Example 2: For the learning problem given in Example 1, 
learning process by version space strategy is shown in Fig. 2. 
In the newly formed version space by Step 3 (Fig. 2), (7.2 5 
S.L < OO,o.o 5 s.w < 00,o.o 5 P.L < OO,o.o I P.W 
< CO) in G is discarded and then is not included in the newly 
formed version space, because there is no hypothesis more 
specific than it and more general than hypothesis (4.0 5 S.L 
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1. (S.L=5.1, S.W=3.5, P.L=1.4, P.W=0.2) Positive traznzng instance 

S: (4.8<S.L<5.6, 3.2<S.W<4.0, 0.8<P.L<1.6, O.O<P.W<O.8) 

G: (O.O<S.L<m, O.O<S.W<m, O.O<P.L<m, O.O<P.W<m) 

2. (S.L=4.3, S.W=3.0, P.L=1.1, P.W=O.l) Posatzve traznzng znstance 

S: (4.0(S.L<5.6, 2.4<S.W<4.0, 0.8(P.L<1.6, O.O(P.W<0.8) 

G: (O.O<S.L<m, O.O<S.W<m, O.O<P.L<m, O.O<P.W<m) 

3. (S.L=7.0, S.W=3.3, P.L=4.7, P.W=1.4) Negatzve traznzng instance 

S: (4.0(S.L<5.6, 3.2<S.W<4 0, 0.8<P.L<1.6, O.O<P.W<0.8) 

G: (O.O<S.L<6.4, O.O<S.W<m, O.O<P.L<m, O.O<P.W<m) 

(7.21S.L<m, O.O<S.W<m, O.O<P.L<m, O.O<P.W<m) 

(O.O<S.L<m, O.OSS.W<3.2, O.O<P L<m, O.O<P.W<m) 

(O.O<S.L<m, 4.0<S.W<m, O.O<P.L<m, O.O<P.W<m) 

(O.O<S.L<m, O.O<S.W<m, O.O<P L<4.0, O.O<P.W<m) 

(O.O<S.L<m, O.O<S.W<m, 4.8<P.L<m, O.O<P.W<m) 

(O.O<S.L<m, O.O<S.W<m, O.O_(P.L<m, O.O<P.W<O.8) 

(O.O<S.L<m, O.O<S.W<m, O.O<P.L<m, l.G<P.W<m) 

Fig. 2. Illustration for the version space strategy. 
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< 5.6,  3.2 5 S.W < 4.0, 0.8 5 P.L < 1.6, 0.0 5 P.W < 0.8) 
in S .  

Lemma 1: In a nonempty version space, each hypothesis in 
S/G must be more specific/general than at least one hypothesis 
in G/S. 

Proofi Assume some hypothesis s in S is not more 
specific than any hypothesis in G. According to the definition 
of version space, each hypothesis in the version space V must 
be more specific than some hypothesis in G and more general 
than some hypothesis in S. s is then not in V, implying that 
s is not in S. A contradiction arises. Each hypothesis in S 
must then be more specific than at least one hypothesis in G. 

U 
In parallel processing, coping with the synchronization 

problem is difficult if dependency among different processors 
is heavy [I], [26]. Because of the characteristic of not checking 
past training instances, the strategy of version space is suitable 
for rocessing in parallel. 

Similar arguments can be given for G. 

Iv .  LEARNING CONCEPTS IN PARALLEL 

By applying similar idea used in DADO [9], 1291, a par- 
allel learning model adopted is shown in Fig. 3. Each circle 
represents a training instance, and each rectangle represents a 
processing element. 

All processing elements on the same level of the tree can 
work concurrently and in parallel. Learning process starts from 
the bottom rectangular level of the tree. At the beginning, each 
processing element inputs two separate training instances, finds 
sets S and G, which are defined in version space strategy, 
and forms a version space as output. Each processing element 
lying on one level higher than the previous one then inputs two 
version spaces, processing them in order to form an equivalent 
version space as output. This process is repeated along with 
the tree bottom-up until a final version space is obtained. 

Level 

0 

. .  A I  . .  . .  z . .  

Fig. 3, Bottom-up processing in a binaly tree. 

A .  Merging Two Version Spaces 

The following lemma shows version space strategy allowing 
a convenient, consistent method for merging several sets of 
hypotheses generated from distinct training data sets [20]. 

Lemma 2: Intersection of two version spaces formed from 
two sets of training instances yields the version space consis- 
tent with the union of these two training sets. 

Proof: Let Vl and V2 denote two original version spaces; 
I1 and I2 denote corresponding training sets. Since each 
hypothesis in VI matches all positive training instances and 
no negative training instances in 11, and because each one 
in V2 matches all positive training instances and no negative 
training instances in 1 2 ,  a hypothesis lying in both VI and 
V2 must match all positive training instances and no negative 
training instances in I1 and Iz. Intersection of VI and V2 must 

0 
Corollary 1: Let intersection of two version spaces, formed 

from two given training sets I1 and 1 2  with I = I1 U 1 2 ,  be 
V. Intersection of two other version spaces, formed from two 
training sets 1, and I4 with I = 13 U 14, is then still V. 

The following two lemmas can be used to find intersection 
of two version spaces. 

Lemma3: For each hypothesis s/g in S/G of the newly 
formed version space V from VI and V2, there must exist 
some hypothesis sl/gl in S 1 / G 2  and 52/92 in S 2 / G 2  such 
that s/g is a lgg/lss of sl /gl  and s 2 / g 2 .  

Proofi Without loss of generality, we need to prove only 
the case for a hypothesis s in S. According to definition of S ,  
no other hypothesis exists more specific than s in V. Since V 
is the intersection of VI and V2, s must be more general than 
some hypothesis s1 in SI and some s 2  in 5’2. Furthermore, 
s must be a lgg of both s1 and sa; otherwise, there exists a 
hypothesis in V that is more specific than s ,  contradicting the 
fact s is in S .  0 

Inverse statement of Lemma 3 is.not always true. A lgg/lss 
of some sl/gl in S1/G1 and some 52 /92  in S 2 / G 2  is not 
necessarily in S/G. It may be subsumed by some other 
hypotheses in the same set or may contradict hypotheses in 
the dual set. 

Lemma 4 :  For hypothesis s/g that is a Igg/lss of some 
hypothesis sl/gl iryS1/G1 and s ~ / g 2  in S 2 / G 2 ,  and another 
hypothesis s’/g’ that is a lgg/lss of another hypothesis si/g: 
in S1/G1 and sh/g& in S 2 / G 2 ,  if s /g  is more specific/general 
than s’lg’, then s‘/g‘ will not be in S/G. 

Proof: Without loss of generality, only the case for S 
needs to be proven. If s is in S, s’ will not then be in S ,  

then be consistent with the union of I1 and 12. 
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according to the definition of S. I f s  is not in S, it cannot then 
find any hypothesis in G more general than it, according to 
Lemma 1. Since s is more specific than s’, s’ cannot find any 
hypothesis in G more general than it neither. s’ cannot be in 

According to Lemma 3, the set (named S’ ) that contains 
desired set S can be found by taking each hypothesis in S1 and 
each in SZ to generate the lgg’s of the pair of chosen hypothe- 
ses. A Generalization process is defined here as the process of 
finding the lgg ’s of two chosen hypotheses. A Specialization 
process is similarly defined as the process of finding the lss’s 
of two chosen hypotheses. Besides, Lemma 4 introduces an 
additional processing, redundancy and subsumption checking, 
in excluding the redundant and not least general hypotheses 
in S’. The process is similar for set G. After redundancy 
and subsumption checking, another type of checking called 
contradiction checking needs to be performed in discarding 
the hypotheses in S IG that is not more specific/general than 
any hypothesis in G / S  due to Lemma 1. 

Generally assume that two version spaces VI and V2 exist, 
where corresponding SI contains a1 hypotheses and corre- 
sponding S2 contains a2 hypotheses. That is, we define the 
following. 

S is implied. 0 

SI: [hypothesis,, , hypothesisl2, . . , hypothesislal]. 
S2: [hypothesis,, , hypothesis,, , . . . , hypothesisza2]. 

The process of merging S1 and Sa into an equivalent S is the 
Cartesian product of S1 and Sa, denoted as S1 x S,; restated, 
the lgg’s of each hypothesis in SI and each hypothesis in 
S2 are obtained. Redundancy, subsumption, and contradiction 
checking, meanwhile, should be done among newly formed 
hypotheses in S and G. Merging of G sets can be processed 
in a similar way. 

B.  Parallel Learning Algorithm 

Parallel algorithm for concept learning can be outlined 
below from the above discussion. This is basically based upon 
the principle of divide-and-conquer [ 161, [27]. 

Parallel Learning Algorithm: 
INPUT: A set I of n training instances. 
OUTPUT: A version space V with sets S and G consistent 
with the set I. 
STEP 1: Divide I into I1 and 12. The sizes of I1 and 
I2 are equal. (If the size of I is not even, add a virtual 
training instance to I to make the size even.) Besides, the 
distributions of positive and negative training instances in 
11 and 12 are as equal as possible. 
STEP 2: Recursively and in parallel apply the algorithm to 
find the version space VI for 11 and V, for 1 2 ,  respectively. 
STEP 3: Merge the two version spaces VI and V2 into an 
equivalent version space V. 
The version space for a virtual training instance here is 

the universal version space with S equal to the most specific 
hypothesis and G equal to the most general hypothesis in the 
hypothesis space. From Corollary 1, any partition of I will not 
affect correctness of the final version space. It indeed affects 

intermediate results, however, and then influences learning 
speed. By interleaving positive and negative training instances 
as much as possible, illegal hypotheses in S and G can be 
removed as early as possible. The needed learning time is then 
shorter. This is illustrated by the experiments in Section VII. 

Each positive training instance can initially be viewed as a 
version space with set S containing only the instance itself; 
each negative training instance can be viewed as a version 
space with set G excluding only the instance itself. The 
merging algorithm is then described as follows: 

Version Space Merging Algorithm: 
INPUT: Two version spaces VI with SI, GI,  and V, with 
Sa, Ga. 
OUTPUT: An equivalent version space V with S and G. 
STEP 1: Initialize both sets S and G to be 4. 
STEP 2: Take a hypothesis in SI and a hypothesis in Sz (in 
an order of (1, l), (1, 2),  .e., (1, (SZ~) ,  (2, I), (2, 2), .-., 
(2, (SZ~) ,  . . ., ClSll, l),  (IS,(, 2), . . .(IS,(, (SZ(), where 1x1 
denotes cardinality of set X) to perform a generalization 
process. Set newly formed hypotheses to be SI. Check S’ 
with S against redundancy and subsumption with three cases 
possibly existing. 

Case 1. If a hypothesis s’ in S’ is more general 
than some hypothesis s in S, discard s‘ in S’. 
Case 2. If a hypothesis s’ in S’ is more specific 
than some hypothesis s in S, discard s and add 
s’ to set S. 
Case 3. Otherwise, add s’ to set S .  

STEP 3: Repeat STEP 2 until each hypothesis in SI is 
processed with each hypothesis in Sa. 
STEP 4: Take a hypothesis in GI and a hypothesis in G2 (in 
an order of (1, I), (1,2), . . ., (1, (Gz~) ,  (2, I), (2,2), . . ., (2, 
IGzI), . . ., <lG1(, l), (lG11, 2), . . -(lG,l, IG2))) to perform a 
specialization process. Set newly formed hypotheses to be 
GI. Check G‘ with G against redundancy and subsumption 
with three cases possibly existing. 

Case 1. If a hypothesis g’ in G’ is more specific 
than some hypothesis g in G, discard g’ in G‘. 
Case 2. If a hypothesis g’ in G’ is more general 
than some hypothesis g in G, discard g and add 
g‘ to set G. 
Case 3. Otherwise, add g’ to set G. 

STEP 5: Repeat STEP 4 until each hypothesis in G1 is 
processed with each hypothesis in G2. 
STEP 6: Take a hypothesis s in S and a hypothesis g in G 
(in an order of (1, l), (1, 2), ..., (1, /GI), (2, l), (2, 2), .e., 

(2, )GI), . . ., (ISl, I), ((SI, 2), . . -(JSl, JGI)). Check s with 
g against contradiction with two cases possibly existing. 

Case 1. If g is not more general than s, mark s 
and g. 
Case 2. Otherwise, do nothing. 
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STEP 7: Repeat STEP 6 until each hypothesis in S is 
processed with each hypothesis in G. 
STEP 8: Discard those hypotheses in S with (GI marks and 
those in G with IS( marks. 
After execution of Step 8, the desired version space is 

obtained. Note in Case 1 of Step 2/Step 4, the process includes 
checking of redundancy. This is because more-specific-than 
and more-general-than relations have the reflexive property. 
Correctness of our algorithm is shown below. 

Theorem 1:  The version space obtained by the version 
space merging algorithm here is the intersection of two given 
original version spaces. 

Proof: Let S" denote set S obtained after Step 3, and 
let G" denote set G obtained after Step 5 for the sake of 
clarity. Because of Step 2, in generated hypotheses, only the 
least general ones are kept, such that each hypothesis in S" 
is not more general than the others. According to Lemmas 3 
and 4, S" is a superset of the final S. S" can then be divided 
into two disjoint sets: the final S and SI'-S. It implies that 
any hypothesis in SI'-S is not in the final version space and 
is not more specific than ,any hypothesis in G by Lemma 1. 
Otherwise, some hypothesis in SI'-S must be in S. Set GI' 
after STEP 5 can similarly be divided into the final set G 
and G"-G. In Step 6 to Step 8, S" and G" are checked for 
contradiction and G"-G and 5'"-S will be discarded after Step 
8. After Step 8, the final sets G and S are then desirable. 0 

It can easily be seen that Steps 2 and 3 can be performed 
in parallel; Steps 4 and 5 and Steps 6 to 8 are also the same 
cases. The merging algorithm described above can then be 
further parallelized if q free processors are available. 

Parallel Version Space Merging Algorithm: 
INPUT: Two version spaces VI with SI, G I ,  and V2 with 
S2, G2. 
OUTPUT: An equivalent version space V with S and G. 
PSTEP 1 :  In each processor P;, initialize both sets SPi and 

PSTEP 2: Divide and assign (SI I hypotheses of SI (without 
loss of generality, assume (SI I 2 I & ( )  as equally as possible 
onto the available q processors. Refer to the set in P; as 
SP1;. In each processor Pi, take a hypothesis in SPli and 
a hypothesis in S2 to perform a generalization process. 
Set newly formed hypotheses to be SP,!. Check SP,! with 
SP; against redundancy and subsumption with three cases 

GPi to be 4. 

possibly existing. 

Case 1. If a hypothesis s' in SP: is more general 
than some hypothesis s in SP;, discard SI in SP,!. 
Case 2. If a hypothesis s' in SP,! is more specific 
than some hypothesis s in SPi, discard s and add 
s' to set SPi. 
Case 3. Otherwise, add SI to set SP;. 

Repeat this step until each hypothesis in SPI; is processed 
with each hypothesis in S2. 
PSTEP 3: Pairwise and in parallel, merge-check SP1, SP2, 
. . ., SP, against interprocessor redundancy and subsump- 
tion by the bottom-up way (Fig. 4). In each intermediate 

processor for managing sets SP; and SPj, check each 
hypothesis SI in SP; with SPj, with three cases possibly 
existing. 

Case 1. If SI is more general than some hypothesis 
s in SPj, discard s' in SPi. 
Case 2. If SI is more specific than some hypothesis 
s in SPj, discard s and add s' to set SPj. 
Case 3. Otherwise, add s' to set SPj. 

Output SPj upward for further merge-check. Refer to the 
set output at Level 0 as SI. 
PSTEP 4: Divide and assign IG1 I hypotheses of G1 (without 
loss of generality, assume 1G11 2 1G21) as equally as 
possible onto the q available processors. Refer to the set 
in Pi as GP1;. In each processor Pi, take a hypothesis in 
GPl; and a hypothesis in G2 to perform a specialization 
process. Set newly formed hypotheses to be GP,!. Check 
GP,! with GP; against redundancy and subsumption, with 
three cases possibly existing. 

Case 1. If a hypothesis g1 in GP,! is more specific 
than some hypothesis g in GP;, discard g' in GP,!. 
Case 2. If a hypothesis g1 in GP,! is more general 
than some hypothesis g in GPi, discard g and add 
g' to set GP;. 
Case 3. Otherwise, add g1 to set GPi; 

Repeat this step until each hypothesis in GP1; is processed 
with each hypothesis in G2. 

PSTEP 5: Pairwise and in parallel, merge-check GP1, GP2, 
. . ., GP, against interprocessor redundancy and subsump- 
tion by the bottom-up way (Fig. 4). In each intermediate 
processor for managing sets GP; and GPj, check each 
hypothesis g' in GPi with GPj with three cases possibly 
existing. 

Case 1. If g' is more specific than some hypothesis 
g in GPj, discard g' in GP;; 
Case 2. If g' is more general than some hypothesis 
g in GPj, discard g and add g' to set GPj. 
Case 3. Otherwise, add g' to set GPj. 

Output GPj upward for further merge-check. Refer to the 
set output at Level 0 as GI. 
PSTEP 6: Divide and assign JG'J hypotheses of GI (without 
loss of generality, assume /GI( 2 IS'/) as equally as possible 
onto the available q processors. Refer to the set in P; as 
G:. In each processor Pi, check each hypothesis s in S' 
with each hypothesis g in G: against contradiction with two 
cases possibly existing. 

Case 1. If g is not more general than s, mark s 
and g. 
Case 2. Otherwise, do nothing. 

Repeat this step until each hypothesis in S' is processed 
with each hypothesis in G:. Discard those hypotheses in G!, 
with JS'J marks. Collect all hypotheses in G:'s as G. 
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Level 

0 
. .  A I  . .  

? . .  . -  

Fig. 4. Illustration for parallel merging. 

PSTEP 7: Pairwise and in parallel, count the total number 
of marks of each hypothesis s in S’ by the bottom-up way 
(Fig. 4). Discard the hypotheses of S’ with IG’l marks, 
referring to the altered set as S. 
Theorem 2: The version space obtained by the parallel 

version space merging algorithm here is the intersection of 
two given original version spaces. 

Pro08 It can easily be proven that each intermediate 
result at end of PSTEP 3, PSTEP 5, and PSTEP 7 of the 
parallel merging algorithm is, respectively, the same as that at 
end of STEP 3, STEP 5, and STEP 8 of the sequential merging 
algorithm. After PSTEP 7, sets S and G then constitute the 

Theorem 3: The parallel version space learning algorithm 
is correct. 

Proof: According to Theorems 1 and 2, correctness 
of our parallel learning algorithm can easily be proven by 

desired version space. 0 

G: (0- $3- 00 ,0-- ,0-0.8) 
,0-00 .0- 4.0.0- m ) (0- 

(0-6.4 ,0- m ,0- 0- 00) (1) 

S: (4.0-5.6, 2.4-4.0.0.8-1.6.0-0.8) 

/ \  
G: (O-=,O-m,O-m ,0-0.8) 

(0-00 ,O-m ,0- 4.0.0-- ) 

(0-6.4 ,0- - ,0--, 0- 00) 

G: (0-- ,0-m,0-- ,0-1.6) 
(0-00 ,0-m ,0- 4.8.0-m ) 
(0-6.4 ,0- ,&=, 0- m )  

S: (4.8-5.6, 3.2-4.0, 0.8-1.6, 0-0.8) S: (4.0-4.8. 2.4-3.2.0.8-1.6, 0-0.8) 

f f  f 2  
(5.1,3.5,1.4,0.2,+) (7.0,3.3,4.7,1.4,-) (4.3,3.0,1.1,0.1,+) (6.4,2.7,5.3,1.9,-) 

G: (0-- ,0- m .0- ,0-0.8) 

(Gm ,0-00,0-3.2,0-m) ( 2 )  (0- ,3.2-m ,0-m, 0- m ) 

S: (4.8-6.4, 3.2-4.8.0.8-2.4, 0-0.8) 

/ \  
G: ,O-m,O-m ,0-0.8) (Gm ,&m ,0-m ,&1.6) 

(0- m .&a, ,0- 4.8.0- m ) (0-00 ,0- .0- 3.2.0- m )  

(O-m,3.2--,0--.0--) (0-- ,3 .2-m,0-m,0-m) 
(5.6- 

S: (5.6-6.4, 4.0-4.8, 0.8-1.6,0-0.8) S: (4.8-5.6, 3.2-4.0, 1.6-2.4.0-0.8) 
,0- - ,0- 00.0- m ) 

/ * 2  f Z  
(5.7,4.4,1.5,0.4,+) (5.2.2.7.3.9J.4,-) (4.8,3.4,1.9,0.2,+) (5.5,2.8,4.9,2.0,-) 

G: (0-00 ,0-- ,O-m ,0-0.8) 
(0-- ,0-m ,0- 3.2.0-00 ) 

S: (4.0-6.4, 2.4-4.8.0.8-2.4, 0-0.8) 

f Z  
(1 )  ( 2 )  

Fig. 5. Illustration of parallel version space strategy. induction. 
Example 3: For the learning problem described in Example 

1, assume the training set is given as follows: 

positive instances: (5.1, 3.5, 1.4, 0.2), (4.3, 3.0, 1.1, O.l), (5.7, 
4.4, 1.5, 0.4), and (4.8, 3.4, 1.9, 0.2), 
negative instances: (7.0, 3.3,4.7, 1.4), (6.4, 2.7, 5.3, 1.9), (5.0, 
2.7, 3.9, 1.4), and (5.5, 2.8, 4.9, 2.0). 

Parallel learning process by version space strategy is shown 
in Fig. 5; each notation a N b represents a 5 X < b for value 
X of some attribute. 

V. TIME COMPLEXITY ANALYSIS 

Checking is used for examination of redundancy, subsumption, 
and contradiction among hypotheses in sets S and G. Checking 
between any two hypotheses can be finished within a unit 
operation, because it is simpler than a specialization process 
or a generalization process. 

We now focus on time complexity analysis of our parallel 
learning algorithm. Let Tp(n)  denote time complexity of our 
parallel learning algorithm in dealing with n training instances 
with q processors available (assume n 5 q; the case for n > q 
is discussed in Section VI). Let M,(n) denote time complexity 
of merging two version spaces VI and V2, each of which is 

In this section, time complexities of our parallel learning 

Mitchell [20], [22] are analyzed and compared. For the purpose 

formed from n/2 training instances, into an equivalent version 

environment, the following formula holds: 
algorithm and the sequential learning algorithm proposed by space with q processors In this parallel leaming 

of having a criterion about processing time, a unit operation 
is defined below. 

Definition: 
Unit operation: A specialization or generalization process 

from any two chosen hypotheses is defined as a unit operation. 
ne unit operation defined above, most likely as the 

time unit in Mitchell’s sequential learning analysis 
[20], is from here on considered as a basic time unit of 

In analyzing time complexity of Mq(n) ,  let smax and gmax,  

respectively, denote the maximum numbers of hypotheses in 
Sets s and G appearing in the whole leami% process. For the 
parallel merging algorithm outlined in Section IV, the time 
complexity of each step is listed in Table I. Therefore, we 
have the 

processing. 
For the merging algorithm proposed in Section IV-B, pro- 

cessing time includes the required number of specializa- 
~ q ( n )  = O(s3 ,ax /q  + ’:ax [log2 41 + d a x / q  

+ g L a x  [log2 41 ) + smax x g m a x / q  

tiodgeneralization processes and three types of checking. + smax [log2 41) for q < smax and Smax, (2) 
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TABLE I 
TIME COMPLEXITY IN THE PARALLEL MERGING ALGORITHM 

I I I  Time Complexity 

I I PSTEP 1 I 

and 

It can be seen from (2) and (3) that M q ( i )  = M q ( j )  for 
any i, j. This is because they are analyzed by smaX and gmax, 
which are the maximum numbers of hypotheses in sets S and 
G appearing in the whole hypothesis space. 

Assume that n processors are available with each training 
instance initially being located in an individual processor. Only 
two processors are then available for each merging process in 
Level [log, n1 - 1 and four processors are available in Level 
[log, n1 - 2. In general, 2k processors are available in Level 
[log, n1 - k. In this case, time complexity is arrived at by 
calculating as’ follows: 

Time complexity of the sequential algorithm proposed by 
Mitchell [20], [22] is given as follows: 

~ 1 ( n )  = O(smax x gmax x n + s2,ax x P + giax x F ) ,  (5 )  

where p represents the number of positive instances, p rep- 
resents the number of negative instances, and p + j3 = n. 
Some related remarks about the time complexity analysis are 
discussed below. 

1) If the sequential merging algorithm is used instead of 
the parallel merging algorithm, then Ml(n)  = O(s;,, 
+ g i a x  + smax x gmax), and we have: 

3) If smax + gmax processors are available for the 
merging process, PSTEP’s 2, 3 and PSTEP’s 4, 
5 can be simultaneously done. Besides, in a way 
similar to PSTEP 6, IS1 hypotheses of S can also 
be managed in parallel, with PSTEP 7 no longer 
being needed. In this case, time complexity for 
contradictory checking is O(max(smaX, gmax)) instead 
of O(smax + smax [log, gmaxl). Since gmax is usually 
larger than smax, O(max(smaX, gmax)) is not necessarily 

4) In PSTEP’s 2, 3, time complexity is O(siaX/q+ 

s3,,,/q + skax [log, 41, y must be I smax. It means 
that applying more than smax processors cannot reduce 
execution time anymore. This is the reason why only 
SI, instead of both SI and S2, needs to be divided and 
assigned onto the available processors. 

5) Time complexity of the sequential leaming algorithm 
proposed by Mitchell may actually be greater than that 
listed in (5). This is because to exclude a negative train- 
ing instance out of a hypothesis is more complex than a 
specialization process from two chosen hypotheses. 

smaller than O(smax + Smax) [log, gmaxl). 

s i a x  [log, q1). For s3,ax/(q/2) +S2,ax Pog,(q/2)1)> 
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Sizes of smdGb Numbers df training instances 

Fig. 6. Typical relation of version space boundary set sizes to numbers of 
training instances. 

6) The maximum numbers Smax and gmax of hypotheses 
in sets S and G can generally be characterized by the 
following entities: 

smax = Function, (P,  N ,  0) ,  
gmax = Function, (P,  N ,  O ) ,  

where 
P= the particular learning problem considered, 
N =  the number of training instances, and 
O= the order in which training instances are arranged. 

Interleaving positive and negative training instances can 
make illegal hypotheses in S and G removed as early as 
possible in the contradiction checking. phase; it is then the best 
arrangement of training instances. By interleaving positive and 
negative training instances, the following equation can then 
be derived: 

Mitchell also showed that the sizes of S and G typically 
behave as shown in Fig. 6 [20]. When n is large (2  n'), then 
we have the following: 

s,, = Function: ( P ) ,  
gmax = Function; ( P )  . 

In the parallel learning algorithm for large n, smax and gmax 

then depend only on the leaming problem. 
Mitchell further pointed out for the feature interval learning 

problem as in Example 1, S can never contain more than 
one hypothesis, and the size of G is usually small [20]. 
Experiments in Section VI1 show this. 

VI. A BOUNDED NUMBER OF PROCESSORS 

In the algorithm mentioned above, the leaming process 
needs n processors where n (the number of training instances) 
may be very large. But in real applications, only a limited 
number of processors are available. It is then necessary to 
develop a parallel learning algorithm with only a bounded 
number of processors available. 

Assume r(<n) processors are available, where r is a 
constant. The modified parallel learning algorithm here for 
a bounded number of processors is divided into two phases. 
In Phase 1, n given training instances are equally divided and 

placed on T processors, and the sequential leaming algorithm 
runs on each processor to obtain its own version space. In 
Phase 2, the r version spaces are merged in a way of binary 
tree, as mentioned in Section IV. Time complexity of the 
modified algorithm can be easily analyzed as follows: 

When the number of available processors increases, the time 
spent in Phase 1 will decrease; but the time spent in Phase 2 
will increase. The time saved in Phase 1 will grow smaller and 
smaller along with the addition of processors, and, however, 
does not necessarily make up the additional overhead in Phase 
2. It implies in getting to the maximum speedup, the number of 
processors is not necessarily to be n. The appropriate number 
r of processors (over which additional processors are useless 
to increase speedup) can then be decided by the inequation 
TT(n) 5 TT/2(n), and the following calculation is derived: 

From (9), when n is larger, r is larger, too; speedup is then 
also larger. 

VII. EXPERIMENTS 

In demonstrating effectiveness of the proposed parallel 
version space learning algorithm, Fisher's Iris Data, containing 
150 training instances, is used [6]. Since the data is inconsis- 
tent, two training instances are removed out of it to make it 
consistent, so that the final version space will not be empty. 
Managing noisy data by version space is beyond discussion 
here, and can be referenced in [lo], [12], [15]. 

The Iris Problem has been introduced in Example 1. In fact, 
three species of Iris Flowers to be distinguished exist: setosa, 
versicolor, and verginica. Fifty training instances exist for each 
class. When the concept of setosa is learned, training instances 
belonging to setosa are considered as positive; training in- 
stances belonging to the other two classes are considered as 
negative. Similar management is applied in learning concepts 
of the other two classes. Execution of the parallel leaming 
algorithm is simulated at the IBM PC/AT (with communication 
time ignored). By running 100 times, execution time along 
with different numbers of processors (by the parallel merging 
algorithm) is shown in Fig. 7. For showing difference between 
using the parallel merging algorithm and using the sequential 
merging algorithm, versicolor's data is used as positive in- 
stances, with the result being as shown in Fig. 8. The numbers 
of operations calculated by (8) are also shown in Fig. 9. Sizes 
of smax and gmax are listed in Table 11. 

From these figures, the following points can be observed. 
1) From (9), when the number of processors is larger than a 

certain number T ,  additional processors will not continue 
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20 
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Fig. 7. Execution time for Iris Learning Problem. 
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Fig. 8. Execution time of different merging algorithms. 

to reduce execution time. Substituting smax, gmax, n, p 
and p by 1, 8, 150, 50, and 100, respectively, in (9), 
T is derived to be 16 (power of 2). The best speedup 
then happens when 16 processors are used. Since (9) is 
analyzed by the worst case, the shape of curves in Fig. 7 
can be thought to be quite consistent with theoretical 
analysis shown in Fig. 9. 

2) From Fig. 8, difference of execution time in using the 
parallel merging algorithm and using the sequential 
merging algorithm increases when the number of avail- 
able processors increases. When the number of proces- 
sors increases, the merging steps increase and the saved 
time increases also. 

3) The worst-case speedup by theoretical analysis based on 
(4) and (5) is about 3.92, being close to the empirical 
speedups, 4.33, 5.27, and 3.84 for these three classes. 

"w 
6000 

5000 +I  

* parallel-merge 

- .  

0 16 32 48 64 
Processors 

Fig. 9. Numbers of operations calculated by (8). 

In comparison with the effect of interleaving positive and 
negative training instances, positive ones are arranged on one 
side, and negative ones are arranged on the other side. For this 
arrangement, gmax can get to 50 and execution time for the 
sequential learning algorithm can arrive to 69.22 s in average 
on Class setosa. Note that gmax is only 8 and execution time 
is only 1.678 s, on the average, for interleaving arrangement. 
Interleaving positive and negative training instances is then 
an effective way in reducing sizes of S and G and reducing 
execution time of the learning process. 

At last, the original data is duplicated 10 times in forming 
a new set that contains 1500 training instances. The parallel 
learning algorithm and the sequential learning algorithm then 
run on the set and speedup is found to be 22.73. Theoretic 
speedup by (4) and (5) is 19.53. Comparing this result with that 
obtained from only 150 training instances, we can conclude 
that speedup will increase along with an increase of training 
instances. 

VIII. CONCLUSION AND PROSPECTS FOR FUTURE WORK 

We have successfully applied the technique of parallel 
processing in the field of concept learning for raising the 
learning speed. We have proposed a parallel version space 
leaming algorithm based upon the principle of divide-and- 
conquer, and modified this parallel leaming algorithm, as 
a result of practical restrictions, to a bounded number of 
processors. 

By theoretic analysis, we have found, with n processors, that 
the learning process can be accomplished within O ( E ~  ----f c1 
log,n + c ~ ) .  Only T processors, which can be derived by 
(9), are actually enough in achieving the maximum speedup. 
Our parallel learning algorithm has also been applied on the 
Iris Learning Problem in achieving a result quite consistent 
with our analysis. Effectiveness of interleaving positive and 
negative training instances is also verified. 

One important point must finally be clarified here. Mitchell 
mentioned that when the current version space is incompletely 
learned, an informative new training instance that matches 
half the hypotheses in the current version space would be 
selected in the next leaming iteration [20]. A shortest number 
of training instances are then enough to make a version space 

- -  
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converge to a single hypothesis, thought of as the final concept. 
This strategy is good and effective for some learning problems; 
however, it is not totally suitable for the leaming problem 
defined in Section 11. In this paper, the learning problem to 
be solved is to find hypotheses consistent with given training 
instances. When the training instances are inconsistent or the 
description language is insufficient, the version space derived 
is null. A final version space with only a single hypothesis 
can always be derived by using only the shortest number of 
informative new training instances. This version space derived, 
however, cannot guarantee consistency with all the given 
training instances. 

Besides, it may be not easy to find a training instance 
that matches half (or nearly half) the hypotheses in a version 
space. Mitchell proposed an effective heuristic for the feature 
interval leaming problems. In general, however, an analysis 
for a general learning problem is complex and costly [20]. 
Furthermore, even the training instance that matches half the 
hypotheses in the current version space can be derived, it 
may be out of the given training set. Methods for collecting 
additional training instances are then required, and the leaming 
job must then be delayed. As a better altemative than that, all 
the current training instances are processed. If a convergent 
version space or a null version space is derived, then the 
leaming process finishes; otherwise, the incompletely learned 
version space can also serve as a better classifier than that by 
the former altemative. Off-line knowledge acquisition is then 
performed, if possible, to find informative new training in- 
stances for further shrinking the incompletely learned version 
space. 

We must then depend on the characteristics of the appli- 
cation domains to determine an appropriate learning strategy. 
If the given training instances are assured to be consistent, 
each informative new training instance is easily calculated 
from a version space, and if all possible instances exist in 
the given training set, then sequential learning by processing 
an informative new training instance at each iteration is good. 
Otherwise, processing all the given training instances would 
provide a better result, and parallel processing can then be 
well applied. 

One disadvantage of the version space learning strategy is 
that it is sensitive to noise. When noise exists in the training 
set, the version space derived is usually null. Noise, however, 
exists in nearly all real-world application domains. Developing 
a new leaming strategy or modifying an existing leaming 
strategy for managing noise or uncertainty is then necessary. 
We have successfully proposed a generalized version space 
leaming strategy [12], [15] to handle training sets with noisy 
and uncertain instances. We are now trying to use the parallel 
leaming model for the kind of leaming problems. 

For other models of parallel machine learning, we have 
applied the principle of task assignment to top-down leam- 
ing strategies [ 131. We have also applied the broadcasting 
communication model in simultaneously processing training 
instances in connectionist learning [14]. In the future, we 
will attempt to develop parallel models for other leaming 
methods and to implement them on various types of parallel 
architectures. 

~- 
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