
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994 851

Learning Concepts in Parallel Based upon the
Strategy of Version Space
Tzung-Pei Hong and Shian-Shyong Tseng, Member, IEEE

Abstruct- In this paper, we have attempted to apply the
technique of parallel processing to concept learning. A parallel
version-space learning algorithm based upon the principle of
divide-and-conquer is proposed. Its time complexity is analyzed
to be O(klog, n) with n processors, where n is the number
of given training instances and b is a coefficient depending on
application domains. For a bounded number of processors in the
real situations, a modified parallel learning algorithm is then
proposed. Experimental results are then performed on a real
learning problem, showing our parallel learning algorithm works
and being quite consistent with results of theoretic analysis. We
have finally concluded that when the number of training instances
is large, it is worth learning in parallel because of its faster
execution.

Index Terms-Divide-and-conquer, generalization process, hy-
pothesis, parallel learning, specialization process, training in-
stance, version space

I. INTRODUCTION

EARNING general concepts from a set of training in- L stances has become increasingly important for artificial
intelligence researchers in constructing knowledge-based sys-
tems [2], 131, [7], 181, [28]. This problem has been studied by
many researchers over the last two decades; many approaches
have been proposed to solve it 1171, [18]. Learning strategy
adopted can be divided into two classes: data-driven strategy
and model-driven strategy [5], [21], [22]. Data-driven strategy
processes input examples one at a time, gradually general-
izing the current set of descriptions until a final conjunctive
hypothesis is computed. Therefore, it processes in a bottom-
up way. On the other hand, model-driven strategy searches a
set of possible generalizations in an attempt to find a few best
hypotheses satisfying certain requirements by considering an
entire set of training instances as a whole. So, it processes in
a top-down manner.

No matter which strategy is adopted, its efficiency is limited
by its leaming speed. Because of the dramatic increase in
computing power and the concomitant decrease in computing
cost over last decade, learning from examples by parallel

Manuscript received May 20, 1991; revised June 18, 1993. This work was
supported by the National Science Council of the Republic of China under
Contract NSCS 1-0408-EOO9-16.

T.-P. Hong is with the Department of Computer Science, Chung-Hua
Polytechnic Institute, Hsinchu, Taiwan 30067 Republic of China; e-mail:
tphong@chpi.edu.tw.

S.-S. Tseng is with the Department of Computer and Information Science,
National Chiao-Tung University, Hsinchu, Taiwan 30050 Republic of China;
e-mail: sstseng@cis.nctu.edu.tw.

IEEE Log Number 9213314.

processing has become a feasible way for conquering the low-
speed problem in learning within a single processor [1 11, [131,

In this paper, one famous data-driven learning strategy,
called “version space” [19]-[22] is adopted as our strategy
for parallel learning, because its characteristic of not checking
past training instances makes independent processing among
different processors possible. We then discuss the feasibility of
parallel learning on the strategy of “version space” and propose
a parallel learning algorithm that can be accomplished in
O (k log, n) (where n is the number of given training instances
and k is a coefficient depending on application domains). Proof
of correctness in the proposed parallel learning algorithm is
also given. This algorithm is further modified for practical
restriction to a bounded number of processors. Experiments on
the Iris Learning Problem [6], [lo] finally ensure the validity
of our parallel learning algorithm.

This paper is organized as follows. The leaming problem
considered in this paper is formally defined in Section 11. The
version space learning strategy is introduced in Section 111.
A parallel learning model and a parallel learning algorithm
are proposed-in Section IV. This is followed by analysis of
time complexity in Section V. A modified parallel learning
algorithm for a bounded number of processors is then proposed
in Section VI. Some experiments to verify effectiveness of

Conclusion and future work are finally summarized in Section
VIII.

~141.

our parallel learning algorithm are made in Section VII. -

11. LEARNING PROBLEM

Before describing the learning problem, some terminology
should first be defined. An instance space is a set of instances
that can be legally described by a given instance language.
Instance spaces can be divided into two classes: attribute-
based instance spaces and structured instance spaces. In an
attribute-based instance space, each instance can be repre-
sented by one or several attributes. Each attribute may be
nominal, linear, or tree-structured [30] (Fig. 1). For example,
instance “color = red, weight = 1, shape = oval” is attribute-
based. Attribute-based instance spaces are of the main concem
here.

A hypothesis space is a set of hypotheses that can be legally
described by a concept description language (generalization
language). The most prevalent form of a hypothesis space is
restriction to concepts that can be expressed only in conjunc-

1041-4347/94$04.00 0 1994 IEEE

~-

858 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994

Tree-structured attribute sha / \
non-convex I I convex

Fig. 1. Attribute domain.

tive forms. For example, hypothesis “color = red and shape
= convex” are in conjunctive forms. Because some unsolved
problems in learning disjunctive concepts based on version
space strategy [4], [20] still exist, the hypothesis spaces here
are restricted to conjunctive forms.

Given an instance space and a hypothesis space, a set of
predicates is still required to test whether a given hypothesis
matches a given instance (i.e., whether the given instance
is contained in the instance set corresponding to the given
hypothesis). For example, in a tree-structured attribute domain,
one matching predicate is a predecessor-successor relation in
the hierarchy tree. In other words, a hypothesis matches an
instance if the instance is a successor of the hypothesis in the
hierarchy tree.

Two partial ordering relations, called ‘:more-specijic-than”
(I) and “more-general-than” (2) exist in the hypothesis space.
Hypothesis A 5 hypothesis B (or B 2 A) iff each instance
contained in A is also contained in B. Note that these two
relations are reflexive. That is, A 5 A and A 2 A. These
partial ordering relations are important because they provide a
powerful basis for organizing the search through the hypothesis
space [20].

A hypothesis A is a least general generalization (lgg) [24],
[25] of two hypotheses B and C (1) if A 2 B and A 2 C;
and (2) if another hypothesis A’ 2 B and A’ 2 C, then
’ (A 2 A’) . Similarly, a hypothesis A is a least specific
specification (Iss) of two hypotheses B and C iff (1) A 5 B
and A 5 C; and (2) if another hypothesis A‘ I B and A’ 5 C,
then ’ (A 5 A’) .

The learning problem to be solved in this paper can now
be defined as in [20].

Given the following information:
1) instance space,
2) hypothesis space,
3) a set of predicates to test whether a given hypothesis

4) a set of positive and negative training instances of a

determine one or several hypotheses in conjunctive forms, each
of which is consistent with the presented training instances.

The term “consistent” means that this hypothesis matches
(includes) all given positive training instances and matches no
(excludes) given negative ones.

matches a given instance, and

target concept to be learned,

Example 1: Consider the learning problem of classifying
examples belonging to different kinds of iris flowers [6], [lo].
Assume that the following information is given.

Instance Space: Each training instance is described by
four attributes-Sepal Width (S.W), Sepal Length (S.L),
Petal Width (P.W), and Petal Length (P.L). Units for
all the four attributes are centermeter, measured to the
nearest millimeter.
Hypothesis Space: Each legal hypothesis is restricted to
be conjunctions of form a 5 X < b (for each attribute
X) , where a and b are limited to multiples of 8 mm.
Matching Predicates: A hypothesis H matches a training
instance I if and only if the value of each attribute in I
is within the range of the corresponding attribute in H .
Training Set: Positive instances-(S.1 = 5.1, S.W =
3.5, P.L = 1.4, P.W = 0.2), and (S.L = 4.3, S.W = 3.0,
P.L = 1.1, P.W = 0.l), and negative instances-(S.1
= 7.0, S.W = 3.3, P.L = 4.7, P.W = 1.4).

According to above information, any one hypothesis more
general than (4.0 5 S.L < 5.6, 2.4 5 S.W < 4.0, 0.8 5 P.L
< 1.6, 0.0 5 P.W < 0.8), and more specific than (0.0 5 S.L
< 6.4, 0.0 5 S.W < 00, 0.0 5 P.L < CO, 0.0 5 P.W < a),
(0.0 5 S.L < 00, 0.0 L S.W < 00, 0.0 5 P.L < 4.0, 0.0 5
P.W < CO), or (0.0 I S.L < 00, 0.0 5 S.W < 00, 0.0 P.L
< 00, 0.0 5 P.W < 0.8) is desired. Methods in achieving the
boundaries are discussed in the next section.

111. OVERVIEW OF VERSION SPACE LEARNING STRATEGY

Version space leaming strategy [191, [20] was proposed by
Mitchell in 1978, having been applied successfully in some
systems such as Meta-DENDRAL [3] and LEX [23]. The
term “version space” is used to represent all legal hypotheses
describable within a given concept description language and
consistent with all observed training instances. A version space
can be represented by two sets of hypotheses: set S and dual
set G, defined as follows.

S = {s I s is a hypothesis consistent with observed
instances. No other hypothesis exists that is both more specific
than s and consistent with observed instances};

G = {g I g is a hypothesis consistent with observed
instances. No other hypothesis exists that is both more general
than g and consistent with observed instances}.

Sets S and G together precisely delimit the version space,
and each hypothesis in the version space is both more general
than some hypothesis in S and more specific than some
hypothesis in G. When a new positive training instance
appears, set S is generalized to include this training instance;
when a new negative training instance appears, set G is
specialized to exclude this training instance. An example is
given below to clearly explain version space strategy.

Example 2: For the learning problem given in Example 1,
learning process by version space strategy is shown in Fig. 2.
In the newly formed version space by Step 3 (Fig. 2), (7.2 5
S.L < OO,o.o 5 s.w < 00,o.o 5 P.L < OO,o.o I P.W
< CO) in G is discarded and then is not included in the newly
formed version space, because there is no hypothesis more
specific than it and more general than hypothesis (4.0 5 S.L

HONG AND TSENG: LEARNING CONCEPTS IN PARALLEL 859

1. (S.L=5.1, S.W=3.5, P.L=1.4, P.W=0.2) Positive traznzng instance

S: (4.8<S.L<5.6, 3.2<S.W<4.0, 0.8<P.L<1.6, O.O<P.W<O.8)

G: (O.O<S.L<m, O.O<S.W<m, O.O<P.L<m, O.O<P.W<m)

2. (S.L=4.3, S.W=3.0, P.L=1.1, P.W=O.l) Posatzve traznzng znstance

S: (4.0(S.L<5.6, 2.4<S.W<4.0, 0.8(P.L<1.6, O.O(P.W<0.8)

G: (O.O<S.L<m, O.O<S.W<m, O.O<P.L<m, O.O<P.W<m)

3. (S.L=7.0, S.W=3.3, P.L=4.7, P.W=1.4) Negatzve traznzng instance

S: (4.0(S.L<5.6, 3.2<S.W<4 0, 0.8<P.L<1.6, O.O<P.W<0.8)

G: (O.O<S.L<6.4, O.O<S.W<m, O.O<P.L<m, O.O<P.W<m)

(7.21S.L<m, O.O<S.W<m, O.O<P.L<m, O.O<P.W<m)

(O.O<S.L<m, O.OSS.W<3.2, O.O<P L<m, O.O<P.W<m)

(O.O<S.L<m, 4.0<S.W<m, O.O<P.L<m, O.O<P.W<m)

(O.O<S.L<m, O.O<S.W<m, O.O<P L<4.0, O.O<P.W<m)

(O.O<S.L<m, O.O<S.W<m, 4.8<P.L<m, O.O<P.W<m)

(O.O<S.L<m, O.O<S.W<m, O.O_(P.L<m, O.O<P.W<O.8)

(O.O<S.L<m, O.O<S.W<m, O.O<P.L<m, l.G<P.W<m)

Fig. 2. Illustration for the version space strategy.

Discarded

Discarded

Discarded

Discarded

Discarded

< 5.6, 3.2 5 S.W < 4.0, 0.8 5 P.L < 1.6, 0.0 5 P.W < 0.8)
in S .

Lemma 1: In a nonempty version space, each hypothesis in
S/G must be more specific/general than at least one hypothesis
in G/S.

Proofi Assume some hypothesis s in S is not more
specific than any hypothesis in G. According to the definition
of version space, each hypothesis in the version space V must
be more specific than some hypothesis in G and more general
than some hypothesis in S. s is then not in V, implying that
s is not in S. A contradiction arises. Each hypothesis in S
must then be more specific than at least one hypothesis in G.

U
In parallel processing, coping with the synchronization

problem is difficult if dependency among different processors
is heavy [I], [26]. Because of the characteristic of not checking
past training instances, the strategy of version space is suitable
for rocessing in parallel.

Similar arguments can be given for G.

Iv . LEARNING CONCEPTS IN PARALLEL

By applying similar idea used in DADO [9], 1291, a par-
allel learning model adopted is shown in Fig. 3. Each circle
represents a training instance, and each rectangle represents a
processing element.

All processing elements on the same level of the tree can
work concurrently and in parallel. Learning process starts from
the bottom rectangular level of the tree. At the beginning, each
processing element inputs two separate training instances, finds
sets S and G, which are defined in version space strategy,
and forms a version space as output. Each processing element
lying on one level higher than the previous one then inputs two
version spaces, processing them in order to form an equivalent
version space as output. This process is repeated along with
the tree bottom-up until a final version space is obtained.

Level

0

. . A I z . .

Fig. 3, Bottom-up processing in a binaly tree.

A . Merging Two Version Spaces

The following lemma shows version space strategy allowing
a convenient, consistent method for merging several sets of
hypotheses generated from distinct training data sets [20].

Lemma 2: Intersection of two version spaces formed from
two sets of training instances yields the version space consis-
tent with the union of these two training sets.

Proof: Let Vl and V2 denote two original version spaces;
I1 and I2 denote corresponding training sets. Since each
hypothesis in VI matches all positive training instances and
no negative training instances in 11, and because each one
in V2 matches all positive training instances and no negative
training instances in 1 2 , a hypothesis lying in both VI and
V2 must match all positive training instances and no negative
training instances in I1 and Iz. Intersection of VI and V2 must

0
Corollary 1: Let intersection of two version spaces, formed

from two given training sets I1 and 1 2 with I = I1 U 1 2 , be
V. Intersection of two other version spaces, formed from two
training sets 1, and I4 with I = 13 U 14, is then still V.

The following two lemmas can be used to find intersection
of two version spaces.

Lemma3: For each hypothesis s/g in S/G of the newly
formed version space V from VI and V2, there must exist
some hypothesis sl/gl in S 1 / G 2 and 52/92 in S 2 / G 2 such
that s/g is a lgg/lss of sl /gl and s 2 / g 2 .

Proofi Without loss of generality, we need to prove only
the case for a hypothesis s in S. According to definition of S ,
no other hypothesis exists more specific than s in V. Since V
is the intersection of VI and V2, s must be more general than
some hypothesis s1 in SI and some s 2 in 5’2. Furthermore,
s must be a lgg of both s1 and sa; otherwise, there exists a
hypothesis in V that is more specific than s , contradicting the
fact s is in S . 0

Inverse statement of Lemma 3 is.not always true. A lgg/lss
of some sl/gl in S1/G1 and some 52 /92 in S 2 / G 2 is not
necessarily in S/G. It may be subsumed by some other
hypotheses in the same set or may contradict hypotheses in
the dual set.

Lemma 4 : For hypothesis s/g that is a Igg/lss of some
hypothesis sl/gl iryS1/G1 and s ~ / g 2 in S 2 / G 2 , and another
hypothesis s’/g’ that is a lgg/lss of another hypothesis si/g:
in S1/G1 and sh/g& in S 2 / G 2 , if s /g is more specific/general
than s’lg’, then s‘/g‘ will not be in S/G.

Proof: Without loss of generality, only the case for S
needs to be proven. If s is in S, s’ will not then be in S ,

then be consistent with the union of I1 and 12.

860 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. b, NO. b. DECEMBER 1994

according to the definition of S. I f s is not in S, it cannot then
find any hypothesis in G more general than it, according to
Lemma 1. Since s is more specific than s’, s’ cannot find any
hypothesis in G more general than it neither. s’ cannot be in

According to Lemma 3, the set (named S’) that contains
desired set S can be found by taking each hypothesis in S1 and
each in SZ to generate the lgg’s of the pair of chosen hypothe-
ses. A Generalization process is defined here as the process of
finding the lgg ’s of two chosen hypotheses. A Specialization
process is similarly defined as the process of finding the lss’s
of two chosen hypotheses. Besides, Lemma 4 introduces an
additional processing, redundancy and subsumption checking,
in excluding the redundant and not least general hypotheses
in S’. The process is similar for set G. After redundancy
and subsumption checking, another type of checking called
contradiction checking needs to be performed in discarding
the hypotheses in S IG that is not more specific/general than
any hypothesis in G / S due to Lemma 1.

Generally assume that two version spaces VI and V2 exist,
where corresponding SI contains a1 hypotheses and corre-
sponding S2 contains a2 hypotheses. That is, we define the
following.

S is implied. 0

SI: [hypothesis,, , hypothesisl2, . . , hypothesislal].
S2: [hypothesis,, , hypothesis,, , . . . , hypothesisza2].

The process of merging S1 and Sa into an equivalent S is the
Cartesian product of S1 and Sa, denoted as S1 x S,; restated,
the lgg’s of each hypothesis in SI and each hypothesis in
S2 are obtained. Redundancy, subsumption, and contradiction
checking, meanwhile, should be done among newly formed
hypotheses in S and G. Merging of G sets can be processed
in a similar way.

B. Parallel Learning Algorithm

Parallel algorithm for concept learning can be outlined
below from the above discussion. This is basically based upon
the principle of divide-and-conquer [161, [27].

Parallel Learning Algorithm:
INPUT: A set I of n training instances.
OUTPUT: A version space V with sets S and G consistent
with the set I.
STEP 1: Divide I into I1 and 12. The sizes of I1 and
I2 are equal. (If the size of I is not even, add a virtual
training instance to I to make the size even.) Besides, the
distributions of positive and negative training instances in
11 and 12 are as equal as possible.
STEP 2: Recursively and in parallel apply the algorithm to
find the version space VI for 11 and V, for 1 2 , respectively.
STEP 3: Merge the two version spaces VI and V2 into an
equivalent version space V.
The version space for a virtual training instance here is

the universal version space with S equal to the most specific
hypothesis and G equal to the most general hypothesis in the
hypothesis space. From Corollary 1, any partition of I will not
affect correctness of the final version space. It indeed affects

intermediate results, however, and then influences learning
speed. By interleaving positive and negative training instances
as much as possible, illegal hypotheses in S and G can be
removed as early as possible. The needed learning time is then
shorter. This is illustrated by the experiments in Section VII.

Each positive training instance can initially be viewed as a
version space with set S containing only the instance itself;
each negative training instance can be viewed as a version
space with set G excluding only the instance itself. The
merging algorithm is then described as follows:

Version Space Merging Algorithm:
INPUT: Two version spaces VI with SI, GI, and V, with
Sa, Ga.
OUTPUT: An equivalent version space V with S and G.
STEP 1: Initialize both sets S and G to be 4.
STEP 2: Take a hypothesis in SI and a hypothesis in Sz (in
an order of (1, l), (1, 2), .e., (1, (SZ~) , (2, I), (2, 2), .-.,
(2, (SZ~) , . . ., ClSll, l), (IS,(, 2), . . .(IS,(, (SZ(), where 1x1
denotes cardinality of set X) to perform a generalization
process. Set newly formed hypotheses to be SI. Check S’
with S against redundancy and subsumption with three cases
possibly existing.

Case 1. If a hypothesis s’ in S’ is more general
than some hypothesis s in S, discard s‘ in S’.
Case 2. If a hypothesis s’ in S’ is more specific
than some hypothesis s in S, discard s and add
s’ to set S.
Case 3. Otherwise, add s’ to set S .

STEP 3: Repeat STEP 2 until each hypothesis in SI is
processed with each hypothesis in Sa.
STEP 4: Take a hypothesis in GI and a hypothesis in G2 (in
an order of (1, I), (1,2), . . ., (1, (Gz~) , (2, I), (2,2), . . ., (2,
IGzI), . . ., <lG1(, l), (lG11, 2), . . -(lG,l, IG2))) to perform a
specialization process. Set newly formed hypotheses to be
GI. Check G‘ with G against redundancy and subsumption
with three cases possibly existing.

Case 1. If a hypothesis g’ in G’ is more specific
than some hypothesis g in G, discard g’ in G‘.
Case 2. If a hypothesis g’ in G’ is more general
than some hypothesis g in G, discard g and add
g‘ to set G.
Case 3. Otherwise, add g’ to set G.

STEP 5: Repeat STEP 4 until each hypothesis in G1 is
processed with each hypothesis in G2.
STEP 6: Take a hypothesis s in S and a hypothesis g in G
(in an order of (1, l), (1, 2), ..., (1, /GI), (2, l), (2, 2), .e.,

(2,)GI), . . ., (ISl, I), ((SI, 2), . . -(JSl, JGI)). Check s with
g against contradiction with two cases possibly existing.

Case 1. If g is not more general than s, mark s
and g.
Case 2. Otherwise, do nothing.

HONG AND TSENG: LEARNING CONCEF'TS IN PARALLEL 86 I

STEP 7: Repeat STEP 6 until each hypothesis in S is
processed with each hypothesis in G.
STEP 8: Discard those hypotheses in S with (GI marks and
those in G with IS(marks.
After execution of Step 8, the desired version space is

obtained. Note in Case 1 of Step 2/Step 4, the process includes
checking of redundancy. This is because more-specific-than
and more-general-than relations have the reflexive property.
Correctness of our algorithm is shown below.

Theorem 1: The version space obtained by the version
space merging algorithm here is the intersection of two given
original version spaces.

Proof: Let S" denote set S obtained after Step 3, and
let G" denote set G obtained after Step 5 for the sake of
clarity. Because of Step 2, in generated hypotheses, only the
least general ones are kept, such that each hypothesis in S"
is not more general than the others. According to Lemmas 3
and 4, S" is a superset of the final S. S" can then be divided
into two disjoint sets: the final S and SI'-S. It implies that
any hypothesis in SI'-S is not in the final version space and
is not more specific than ,any hypothesis in G by Lemma 1.
Otherwise, some hypothesis in SI'-S must be in S. Set GI'
after STEP 5 can similarly be divided into the final set G
and G"-G. In Step 6 to Step 8, S" and G" are checked for
contradiction and G"-G and 5'"-S will be discarded after Step
8. After Step 8, the final sets G and S are then desirable. 0

It can easily be seen that Steps 2 and 3 can be performed
in parallel; Steps 4 and 5 and Steps 6 to 8 are also the same
cases. The merging algorithm described above can then be
further parallelized if q free processors are available.

Parallel Version Space Merging Algorithm:
INPUT: Two version spaces VI with SI, G I , and V2 with
S2, G2.
OUTPUT: An equivalent version space V with S and G.
PSTEP 1 : In each processor P;, initialize both sets SPi and

PSTEP 2: Divide and assign (SI I hypotheses of SI (without
loss of generality, assume (SI I 2 I & () as equally as possible
onto the available q processors. Refer to the set in P; as
SP1;. In each processor Pi, take a hypothesis in SPli and
a hypothesis in S2 to perform a generalization process.
Set newly formed hypotheses to be SP,!. Check SP,! with
SP; against redundancy and subsumption with three cases

GPi to be 4.

possibly existing.

Case 1. If a hypothesis s' in SP: is more general
than some hypothesis s in SP;, discard SI in SP,!.
Case 2. If a hypothesis s' in SP,! is more specific
than some hypothesis s in SPi, discard s and add
s' to set SPi.
Case 3. Otherwise, add SI to set SP;.

Repeat this step until each hypothesis in SPI; is processed
with each hypothesis in S2.
PSTEP 3: Pairwise and in parallel, merge-check SP1, SP2,
. . ., SP, against interprocessor redundancy and subsump-
tion by the bottom-up way (Fig. 4). In each intermediate

processor for managing sets SP; and SPj, check each
hypothesis SI in SP; with SPj, with three cases possibly
existing.

Case 1. If SI is more general than some hypothesis
s in SPj, discard s' in SPi.
Case 2. If SI is more specific than some hypothesis
s in SPj, discard s and add s' to set SPj.
Case 3. Otherwise, add s' to set SPj.

Output SPj upward for further merge-check. Refer to the
set output at Level 0 as SI.
PSTEP 4: Divide and assign IG1 I hypotheses of G1 (without
loss of generality, assume 1G11 2 1G21) as equally as
possible onto the q available processors. Refer to the set
in Pi as GP1;. In each processor Pi, take a hypothesis in
GPl; and a hypothesis in G2 to perform a specialization
process. Set newly formed hypotheses to be GP,!. Check
GP,! with GP; against redundancy and subsumption, with
three cases possibly existing.

Case 1. If a hypothesis g1 in GP,! is more specific
than some hypothesis g in GP;, discard g' in GP,!.
Case 2. If a hypothesis g1 in GP,! is more general
than some hypothesis g in GPi, discard g and add
g' to set GP;.
Case 3. Otherwise, add g1 to set GPi;

Repeat this step until each hypothesis in GP1; is processed
with each hypothesis in G2.

PSTEP 5: Pairwise and in parallel, merge-check GP1, GP2,
. . ., GP, against interprocessor redundancy and subsump-
tion by the bottom-up way (Fig. 4). In each intermediate
processor for managing sets GP; and GPj, check each
hypothesis g' in GPi with GPj with three cases possibly
existing.

Case 1. If g' is more specific than some hypothesis
g in GPj, discard g' in GP;;
Case 2. If g' is more general than some hypothesis
g in GPj, discard g and add g' to set GPj.
Case 3. Otherwise, add g' to set GPj.

Output GPj upward for further merge-check. Refer to the
set output at Level 0 as GI.
PSTEP 6: Divide and assign JG'J hypotheses of GI (without
loss of generality, assume /GI(2 IS'/) as equally as possible
onto the available q processors. Refer to the set in P; as
G:. In each processor Pi, check each hypothesis s in S'
with each hypothesis g in G: against contradiction with two
cases possibly existing.

Case 1. If g is not more general than s, mark s
and g.
Case 2. Otherwise, do nothing.

Repeat this step until each hypothesis in S' is processed
with each hypothesis in G:. Discard those hypotheses in G!,
with JS'J marks. Collect all hypotheses in G:'s as G.

862 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994

Level

0
. . A I . .

? . . . -

Fig. 4. Illustration for parallel merging.

PSTEP 7: Pairwise and in parallel, count the total number
of marks of each hypothesis s in S’ by the bottom-up way
(Fig. 4). Discard the hypotheses of S’ with IG’l marks,
referring to the altered set as S.
Theorem 2: The version space obtained by the parallel

version space merging algorithm here is the intersection of
two given original version spaces.

Pro08 It can easily be proven that each intermediate
result at end of PSTEP 3, PSTEP 5, and PSTEP 7 of the
parallel merging algorithm is, respectively, the same as that at
end of STEP 3, STEP 5, and STEP 8 of the sequential merging
algorithm. After PSTEP 7, sets S and G then constitute the

Theorem 3: The parallel version space learning algorithm
is correct.

Proof: According to Theorems 1 and 2, correctness
of our parallel learning algorithm can easily be proven by

desired version space. 0

G: (0- $3- 00 ,0-- ,0-0.8)
,0-00 .0- 4.0.0- m) (0-

(0-6.4 ,0- m ,0- 0- 00) (1)

S: (4.0-5.6, 2.4-4.0.0.8-1.6.0-0.8)

/ \
G: (O-=,O-m,O-m ,0-0.8)

(0-00 ,O-m ,0- 4.0.0--)

(0-6.4 ,0- - ,0--, 0- 00)

G: (0-- ,0-m,0-- ,0-1.6)
(0-00 ,0-m ,0- 4.8.0-m)
(0-6.4 ,0- ,&=, 0- m)

S: (4.8-5.6, 3.2-4.0, 0.8-1.6, 0-0.8) S: (4.0-4.8. 2.4-3.2.0.8-1.6, 0-0.8)

f f f 2
(5.1,3.5,1.4,0.2,+) (7.0,3.3,4.7,1.4,-) (4.3,3.0,1.1,0.1,+) (6.4,2.7,5.3,1.9,-)

G: (0-- ,0- m .0- ,0-0.8)

(Gm ,0-00,0-3.2,0-m) (2) (0- ,3.2-m ,0-m, 0- m)

S: (4.8-6.4, 3.2-4.8.0.8-2.4, 0-0.8)

/ \
G: ,O-m,O-m ,0-0.8) (Gm ,&m ,0-m ,&1.6)

(0- m .&a, ,0- 4.8.0- m) (0-00 ,0- .0- 3.2.0- m)

(O-m,3.2--,0--.0--) (0-- ,3 .2-m,0-m,0-m)
(5.6-

S: (5.6-6.4, 4.0-4.8, 0.8-1.6,0-0.8) S: (4.8-5.6, 3.2-4.0, 1.6-2.4.0-0.8)
,0- - ,0- 00.0- m)

/ * 2 f Z
(5.7,4.4,1.5,0.4,+) (5.2.2.7.3.9J.4,-) (4.8,3.4,1.9,0.2,+) (5.5,2.8,4.9,2.0,-)

G: (0-00 ,0-- ,O-m ,0-0.8)
(0-- ,0-m ,0- 3.2.0-00)

S: (4.0-6.4, 2.4-4.8.0.8-2.4, 0-0.8)

f Z
(1) (2)

Fig. 5. Illustration of parallel version space strategy. induction.
Example 3: For the learning problem described in Example

1, assume the training set is given as follows:

positive instances: (5.1, 3.5, 1.4, 0.2), (4.3, 3.0, 1.1, O.l), (5.7,
4.4, 1.5, 0.4), and (4.8, 3.4, 1.9, 0.2),
negative instances: (7.0, 3.3,4.7, 1.4), (6.4, 2.7, 5.3, 1.9), (5.0,
2.7, 3.9, 1.4), and (5.5, 2.8, 4.9, 2.0).

Parallel learning process by version space strategy is shown
in Fig. 5; each notation a N b represents a 5 X < b for value
X of some attribute.

V. TIME COMPLEXITY ANALYSIS

Checking is used for examination of redundancy, subsumption,
and contradiction among hypotheses in sets S and G. Checking
between any two hypotheses can be finished within a unit
operation, because it is simpler than a specialization process
or a generalization process.

We now focus on time complexity analysis of our parallel
learning algorithm. Let Tp(n) denote time complexity of our
parallel learning algorithm in dealing with n training instances
with q processors available (assume n 5 q; the case for n > q
is discussed in Section VI). Let M,(n) denote time complexity
of merging two version spaces VI and V2, each of which is

In this section, time complexities of our parallel learning

Mitchell [20], [22] are analyzed and compared. For the purpose

formed from n/2 training instances, into an equivalent version

environment, the following formula holds:
algorithm and the sequential learning algorithm proposed by space with q processors In this parallel leaming

of having a criterion about processing time, a unit operation
is defined below.

Definition:
Unit operation: A specialization or generalization process

from any two chosen hypotheses is defined as a unit operation.
ne unit operation defined above, most likely as the

time unit in Mitchell’s sequential learning analysis
[20], is from here on considered as a basic time unit of

In analyzing time complexity of Mq(n) , let smax and gmax,

respectively, denote the maximum numbers of hypotheses in
Sets s and G appearing in the whole leami% process. For the
parallel merging algorithm outlined in Section IV, the time
complexity of each step is listed in Table I. Therefore, we
have the

processing.
For the merging algorithm proposed in Section IV-B, pro-

cessing time includes the required number of specializa-
~ q (n) = O(s3 ,ax /q + ’:ax [log2 41 + d a x / q

+ g L a x [log2 41) + smax x g m a x / q

tiodgeneralization processes and three types of checking. + smax [log2 41) for q < smax and Smax, (2)

863 HONG AND TSENG: LEARNING CONCEPTS IN PARALLEL

TABLE I
TIME COMPLEXITY IN THE PARALLEL MERGING ALGORITHM

I I I Time Complexity

I I PSTEP 1 I

and

It can be seen from (2) and (3) that M q (i) = M q (j) for
any i, j. This is because they are analyzed by smaX and gmax,
which are the maximum numbers of hypotheses in sets S and
G appearing in the whole hypothesis space.

Assume that n processors are available with each training
instance initially being located in an individual processor. Only
two processors are then available for each merging process in
Level [log, n1 - 1 and four processors are available in Level
[log, n1 - 2. In general, 2k processors are available in Level
[log, n1 - k. In this case, time complexity is arrived at by
calculating as’ follows:

Time complexity of the sequential algorithm proposed by
Mitchell [20], [22] is given as follows:

~ 1 (n) = O(smax x gmax x n + s2,ax x P + giax x F) , (5)

where p represents the number of positive instances, p rep-
resents the number of negative instances, and p + j3 = n.
Some related remarks about the time complexity analysis are
discussed below.

1) If the sequential merging algorithm is used instead of
the parallel merging algorithm, then Ml(n) = O(s;,,
+ g i a x + smax x gmax), and we have:

3) If smax + gmax processors are available for the
merging process, PSTEP’s 2, 3 and PSTEP’s 4,
5 can be simultaneously done. Besides, in a way
similar to PSTEP 6, IS1 hypotheses of S can also
be managed in parallel, with PSTEP 7 no longer
being needed. In this case, time complexity for
contradictory checking is O(max(smaX, gmax)) instead
of O(smax + smax [log, gmaxl). Since gmax is usually
larger than smax, O(max(smaX, gmax)) is not necessarily

4) In PSTEP’s 2, 3, time complexity is O(siaX/q+

s3,,,/q + skax [log, 41, y must be I smax. It means
that applying more than smax processors cannot reduce
execution time anymore. This is the reason why only
SI, instead of both SI and S2, needs to be divided and
assigned onto the available processors.

5) Time complexity of the sequential leaming algorithm
proposed by Mitchell may actually be greater than that
listed in (5). This is because to exclude a negative train-
ing instance out of a hypothesis is more complex than a
specialization process from two chosen hypotheses.

smaller than O(smax + Smax) [log, gmaxl).

s i a x [log, q1). For s3,ax/(q/2) +S2,ax Pog,(q/2)1)>

864 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994

Sizes of smdGb Numbers df training instances

Fig. 6. Typical relation of version space boundary set sizes to numbers of
training instances.

6) The maximum numbers Smax and gmax of hypotheses
in sets S and G can generally be characterized by the
following entities:

smax = Function, (P, N , 0) ,
gmax = Function, (P, N , O) ,

where
P= the particular learning problem considered,
N = the number of training instances, and
O= the order in which training instances are arranged.

Interleaving positive and negative training instances can
make illegal hypotheses in S and G removed as early as
possible in the contradiction checking. phase; it is then the best
arrangement of training instances. By interleaving positive and
negative training instances, the following equation can then
be derived:

Mitchell also showed that the sizes of S and G typically
behave as shown in Fig. 6 [20]. When n is large (2 n'), then
we have the following:

s,, = Function: (P) ,
gmax = Function; (P) .

In the parallel learning algorithm for large n, smax and gmax

then depend only on the leaming problem.
Mitchell further pointed out for the feature interval learning

problem as in Example 1, S can never contain more than
one hypothesis, and the size of G is usually small [20].
Experiments in Section VI1 show this.

VI. A BOUNDED NUMBER OF PROCESSORS

In the algorithm mentioned above, the leaming process
needs n processors where n (the number of training instances)
may be very large. But in real applications, only a limited
number of processors are available. It is then necessary to
develop a parallel learning algorithm with only a bounded
number of processors available.

Assume r(<n) processors are available, where r is a
constant. The modified parallel learning algorithm here for
a bounded number of processors is divided into two phases.
In Phase 1, n given training instances are equally divided and

placed on T processors, and the sequential leaming algorithm
runs on each processor to obtain its own version space. In
Phase 2, the r version spaces are merged in a way of binary
tree, as mentioned in Section IV. Time complexity of the
modified algorithm can be easily analyzed as follows:

When the number of available processors increases, the time
spent in Phase 1 will decrease; but the time spent in Phase 2
will increase. The time saved in Phase 1 will grow smaller and
smaller along with the addition of processors, and, however,
does not necessarily make up the additional overhead in Phase
2. It implies in getting to the maximum speedup, the number of
processors is not necessarily to be n. The appropriate number
r of processors (over which additional processors are useless
to increase speedup) can then be decided by the inequation
TT(n) 5 TT/2(n), and the following calculation is derived:

From (9), when n is larger, r is larger, too; speedup is then
also larger.

VII. EXPERIMENTS

In demonstrating effectiveness of the proposed parallel
version space learning algorithm, Fisher's Iris Data, containing
150 training instances, is used [6]. Since the data is inconsis-
tent, two training instances are removed out of it to make it
consistent, so that the final version space will not be empty.
Managing noisy data by version space is beyond discussion
here, and can be referenced in [lo], [12], [15].

The Iris Problem has been introduced in Example 1. In fact,
three species of Iris Flowers to be distinguished exist: setosa,
versicolor, and verginica. Fifty training instances exist for each
class. When the concept of setosa is learned, training instances
belonging to setosa are considered as positive; training in-
stances belonging to the other two classes are considered as
negative. Similar management is applied in learning concepts
of the other two classes. Execution of the parallel leaming
algorithm is simulated at the IBM PC/AT (with communication
time ignored). By running 100 times, execution time along
with different numbers of processors (by the parallel merging
algorithm) is shown in Fig. 7. For showing difference between
using the parallel merging algorithm and using the sequential
merging algorithm, versicolor's data is used as positive in-
stances, with the result being as shown in Fig. 8. The numbers
of operations calculated by (8) are also shown in Fig. 9. Sizes
of smax and gmax are listed in Table 11.

From these figures, the following points can be observed.
1) From (9), when the number of processors is larger than a

certain number T , additional processors will not continue

HONG AND TSENG: LEARNING CONCEmS IN PARALLEL 865

Opentiom

Seconds

160
140

TABLE I1
SIZES OF s , , , ~ , AND g,,,,

Versicolor 8

+ Set-

a Viginica

* Versicolor

60
40
20

0 16 32 48 64
PlWWORi

Fig. 7. Execution time for Iris Learning Problem.

Seconds

140
120
100

I 0 Sequential-merge

0 Parallel-merge

40 L
2o 0 L

0 16 32 48 64
PlWWOrS

Fig. 8. Execution time of different merging algorithms.

to reduce execution time. Substituting smax, gmax, n, p
and p by 1, 8, 150, 50, and 100, respectively, in (9),
T is derived to be 16 (power of 2). The best speedup
then happens when 16 processors are used. Since (9) is
analyzed by the worst case, the shape of curves in Fig. 7
can be thought to be quite consistent with theoretical
analysis shown in Fig. 9.

2) From Fig. 8, difference of execution time in using the
parallel merging algorithm and using the sequential
merging algorithm increases when the number of avail-
able processors increases. When the number of proces-
sors increases, the merging steps increase and the saved
time increases also.

3) The worst-case speedup by theoretical analysis based on
(4) and (5) is about 3.92, being close to the empirical
speedups, 4.33, 5.27, and 3.84 for these three classes.

"w
6000

5000 +I

* parallel-merge

- .

0 16 32 48 64
Processors

Fig. 9. Numbers of operations calculated by (8).

In comparison with the effect of interleaving positive and
negative training instances, positive ones are arranged on one
side, and negative ones are arranged on the other side. For this
arrangement, gmax can get to 50 and execution time for the
sequential learning algorithm can arrive to 69.22 s in average
on Class setosa. Note that gmax is only 8 and execution time
is only 1.678 s, on the average, for interleaving arrangement.
Interleaving positive and negative training instances is then
an effective way in reducing sizes of S and G and reducing
execution time of the learning process.

At last, the original data is duplicated 10 times in forming
a new set that contains 1500 training instances. The parallel
learning algorithm and the sequential learning algorithm then
run on the set and speedup is found to be 22.73. Theoretic
speedup by (4) and (5) is 19.53. Comparing this result with that
obtained from only 150 training instances, we can conclude
that speedup will increase along with an increase of training
instances.

VIII. CONCLUSION AND PROSPECTS FOR FUTURE WORK

We have successfully applied the technique of parallel
processing in the field of concept learning for raising the
learning speed. We have proposed a parallel version space
leaming algorithm based upon the principle of divide-and-
conquer, and modified this parallel leaming algorithm, as
a result of practical restrictions, to a bounded number of
processors.

By theoretic analysis, we have found, with n processors, that
the learning process can be accomplished within O (E ~ ----f c1
log,n + c ~) . Only T processors, which can be derived by
(9), are actually enough in achieving the maximum speedup.
Our parallel learning algorithm has also been applied on the
Iris Learning Problem in achieving a result quite consistent
with our analysis. Effectiveness of interleaving positive and
negative training instances is also verified.

One important point must finally be clarified here. Mitchell
mentioned that when the current version space is incompletely
learned, an informative new training instance that matches
half the hypotheses in the current version space would be
selected in the next leaming iteration [20]. A shortest number
of training instances are then enough to make a version space

- -

866 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6. NO. 6, DECEMBER 1994

converge to a single hypothesis, thought of as the final concept.
This strategy is good and effective for some learning problems;
however, it is not totally suitable for the leaming problem
defined in Section 11. In this paper, the learning problem to
be solved is to find hypotheses consistent with given training
instances. When the training instances are inconsistent or the
description language is insufficient, the version space derived
is null. A final version space with only a single hypothesis
can always be derived by using only the shortest number of
informative new training instances. This version space derived,
however, cannot guarantee consistency with all the given
training instances.

Besides, it may be not easy to find a training instance
that matches half (or nearly half) the hypotheses in a version
space. Mitchell proposed an effective heuristic for the feature
interval leaming problems. In general, however, an analysis
for a general learning problem is complex and costly [20].
Furthermore, even the training instance that matches half the
hypotheses in the current version space can be derived, it
may be out of the given training set. Methods for collecting
additional training instances are then required, and the leaming
job must then be delayed. As a better altemative than that, all
the current training instances are processed. If a convergent
version space or a null version space is derived, then the
leaming process finishes; otherwise, the incompletely learned
version space can also serve as a better classifier than that by
the former altemative. Off-line knowledge acquisition is then
performed, if possible, to find informative new training in-
stances for further shrinking the incompletely learned version
space.

We must then depend on the characteristics of the appli-
cation domains to determine an appropriate learning strategy.
If the given training instances are assured to be consistent,
each informative new training instance is easily calculated
from a version space, and if all possible instances exist in
the given training set, then sequential learning by processing
an informative new training instance at each iteration is good.
Otherwise, processing all the given training instances would
provide a better result, and parallel processing can then be
well applied.

One disadvantage of the version space learning strategy is
that it is sensitive to noise. When noise exists in the training
set, the version space derived is usually null. Noise, however,
exists in nearly all real-world application domains. Developing
a new leaming strategy or modifying an existing leaming
strategy for managing noise or uncertainty is then necessary.
We have successfully proposed a generalized version space
leaming strategy [12], [15] to handle training sets with noisy
and uncertain instances. We are now trying to use the parallel
leaming model for the kind of leaming problems.

For other models of parallel machine learning, we have
applied the principle of task assignment to top-down leam-
ing strategies [131. We have also applied the broadcasting
communication model in simultaneously processing training
instances in connectionist learning [14]. In the future, we
will attempt to develop parallel models for other leaming
methods and to implement them on various types of parallel
architectures.

~-

ACKNOWLEDGMENT

The authors would like to thank C.-T. Yang for his assis-
tance in performing these experiments. We would also like
to thank the anonymous referees for their very constructive
comments.

REFERENCES

[I] S. G. Akl, The Design and Analysis of Parallel Algorithms. Englewood
Cliffs, NJ: Prentice-Hall, 1989, pp. 1CL17.

[2] B. Arbab and D. Michie, “Generating rules from examples,” in Proc.
1985 Int. Joint Conf. Art. Intell., 1985, pp. 631-633.

[3] B.G. Buchanan and T.M. Mitchell, “Model-directed learning of pro-
duction rules,” in D.A. Waterman and F. Hayes-Roth, Eds., Pattern-
Directed Inference Systems. New York: Academic, 1978, pp. 297-3 12.

[4] A. Bundy, B. Silver, and D. Plummer, “An analytical comparison of
some rule-learning programs,” Art. Intell., vol. 27, pp.,137-181, 1985.

[5] T. G. Dietterich and R. S. Michalski, “A comparative ‘review of se-
lected methods for learning from examples,” in R. S. Michalski, J. G.
Carbonell, and T. M. Mitchell, Eds., Machine Learning: An Artificial
Intelligence Approach, vol. 1. Palo Alto, CA: Toiga, 1983, pp. 41-81.

[6] R.A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Ann. Eugenics, vol. 7, pp. 179-188, 1936.

[7] L.M. Fu and B.G. Buchanan, “Learning intermediate concepts in
constructing a hierarchical knowledge base,” in Proc. 1985 Int. Joint
Conf Art. Intell., 1985, pp. 659466.

[8] S. I. Gallant, “Automatic generation of expert systems from examples,”
in Proc. 2nd Int. Conf. Art. Intell. Applications, 1985, pp. 313-319.

[9] A. Gupta, “Implementing OPS5 production systems on DADO,” in Proc.
1984 IEEE Int. Con$ Parallel Processing, 1984, pp. 83-91.

[101 H. Hirsh, “Incremental version-space merging: a general framework for
concept learning,” Ph.D. dissertation, Stanford Univ., Stanford, CA,
USA, 1989.

[1 I] T. P. Hong and S. S. Tseng, “A parallel concept learning algorithm based
upon version space strategy,” in Proc. 1990 IEEE Int. Phoenix Cor$
Comput. Commun., 1990, pp. 734-740.

[I21 -, “A generalized learning problem,” in Proc. 1990 Inc. Comput.
Symp., 1990, pp. 517-522.

[I31 -, “Models of parallel learning systems,’’ in Proc. 1991 IEEE Int.
Conf. Distrib. Computing Syst., 1991, pp. 125-132.

[141 -, “Parallel perceptron learning on a single-channel broadcast
communication model,” Parallel Computing, vol. 18, pp. 133-148,
1992.

[15] T.P. Hong, “A study of parallel processing and noise management
on machine learning,” Ph.D. dissertation, National Chiao Tung Univ.,
Taiwan, Republic of China, Jan. 1992.

(161 E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms.
New York: Computer Science Press, 1978, pp. 98-140.

[17] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine Learning:
An Artificial Intelligence Approach, vol. 1. Palo Alto, CA: Toiga, 1983.

[181 -, Machine Learning: An Artificial Intelligence Approach, vol. 2.
Palo Alto, CA: Toiga, 1984.

[191 T. M. Mitchell, “Version space: a candidate elimination approach to rule
learning,’’ in Proc. 1977 Int. Joint Con$ Art. Intell., 1977, pp. 305-310.

[20] -, “Version spaces: An approach to concept learning,’’ Ph.D.
dissertation, Stanford Univ., Stanford, CA, USA, 1978.

[21] -, “An analysis of generalization as a search problem,” in Proc.
1979 Int. Joint Conf. Art. Intell., 1979, pp. 577-582.

[22] -, “Generalization as search,” Art. Intell., vol. 18, pp. 203-226,
1982.

[23] T.M. Mitchell, P.E. Utgoff, and R. Banerji, “Learning by experi-
mentation: Acquiring and refining problem-solving heuristics,” in R. S.
Michalski, J. G. Carbonell, and T. M. Mitchell, Eds., Machine Learning:
An Artificial Intelligence Approach, vol. 1. Palo Alto, CA: Toiga, 1983,

[24] G. D. Plotkin, “A note on inductive generalization,” in B. Meltzer and D.
New York: Wiley, 1970,

[25] -, “A further note on inductive generalization,” in B. Meltzer and
New York: Wiley, 1971,

[26] M. J. Quinn, Designing Ejjicient Algorithms for Parallel Computers.

[27] R. C. T. Lee, R. C. Chang, and S. S. Tseng, Introduction to Design and

pp. 163-190.

Michie, Eds., Machine Intelligence, vol. 5.
pp. 153-163.

D. Michie, Eds., Machinelntelligence, vol. 6.
pp. 101-124.

New York: McGraw-Hill, 1987.

Analysis of AIgorirhms. Englewood Cliffs, NJ: Prentice-Hall, 199 1.

HONG AND TSENG: LEARNING CONCEPTS IN PARALLEL 867

[28] M. J. Shaw, “Applying inductive learning to enhance knowledge-based
expert systems,” Decision Support Syst., vol. 3 , pp. 319-332, 1987.

[29] S. J. Stolfo and D. P. Miranker, “DADO: A parallel processor for expert
systems,” in Proc. I984 IEEE Int. Con5 Parallel Processing, 1984, pp.
74-82.

[30] L. H. Witten and B. A. Macdonald, “Using concept learning for
knowledge acquisition,” Int. J. Man-Mach. Studies, vol. 29, pp. 171-196,
1988.

Hua Polytechnic Institute
interests include parallel 1
set, and expert systems.

T.-P. Hong received the B.S. degree in chemical
engineering from National Taiwan University in
1985, and the Ph.D. degree in computer science and
information engineering from National Chiao Tung
University in 1992.

Since 1987, he has been with the Laboratory
of Knowledge Engineering, National Chiao Tung
University, where he has been involved in apply-
ing techniques of parallel processing to artificial
intelligence. He is currently an Associate Professor
at the Department of Computer Science at Chung-

’ in Taiwan, Republic of China. His current research
processing, machine learning, neural networks, fuzzy

S.4 . Tseng (M’88) received the B.S., M.S., and
Ph.D. degrees in computer engineering from Na-
tional Chiao Tung University in 1979, 1981, and
1984, respectively.

Since August 1983, he has been on the faculty
of the Department of Computer and Information
Science, National Chiao Tung University, and is
currently a Professor there. From 1988 to 1991, he
was the Director of the Computer Center at National
Chiao Tung University, Taiwan, Republic of China.
From 1991 to 1992, he acted as the Chairman of the

Department of Computer and Information Science. Now he is the Director of
the Computer Center at the Ministry of Education, Republic of China. His
current research interests include parallel compiler, language processor design,
computer algorithms, parallel processing, and expert systems.

Dr. Tseng is an Associate Editor of Informarion and Education, and
a member of the International Advisory Board of CISNA COMPUTER
FORUM. He was elected an Outstanding Talent of Information Science of
the Republic of China in 1989. He was also awarded the Outstanding Youth
Honor of the Republic of China in 1992.

