
  

  

Abstract—In this paper, a probability-based segmentation 
approach is presented for object tracking. The proposed 
approach uses the Dirichlet process mixture model to describe 
the probabilistic distribution of observations in a single scan of a 
laserscanner.  Then the number of segments is inferred from the 
observations by the Gibbs sampling method. Moreover each 
segment is classified into one of the three predefined classes such 
that most of non-vehicle-like objects on the roadsides can be 
filtered out. Then, the tracking algorithm, called Joint 
Integrated Probabilistic Data Association Filter (JIPDAF), is 
applied to track the classified objects and manage existing 
tracks. Simulations based on real traffic data demonstrate that 
the non-vehicle-like objects on the roadsides are suppressed. 
Since the number of objects in the tracking step is decreased, the 
computation load of the tracking step is decreased. 

I. INTRODUCTION 
In today’s automotive industry, various driver assistance 

systems have been developed to enhance driving safety and 
alleviate driver workload. The correct operations of these 
systems rely on the ability to detect and track objects around 
the vehicle. Radar, laserscanner and video camera are 
commonly used for this purpose. The laserscanner has the 
advantage of the high angle and radial resolution and it 
preserves the geometric information about the objects.  
Therefore the process of object detecting and tracking based 
on the laserscanner consists of three steps: segmentation, 
classification and tracking. Segmentation is a process of 
grouping together the observations from the same object in a 
given scan and then each segment is classified into one of 
several different classes in the classification step. Finally, the 
tracking step associates segments representing the same 
object from scan to scan. 

Several distance-based approaches have been developed to 
segment the observations in a given scan, e.g., [1][2][3]. The 
segmentation results of these distance-based methods depend 
on the chosen threshold [4]. In order to separate spatially 
closed objects, the threshold is chosen to be small, which 
could lead to an excessive number of segments and thus 
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increases the computation load of the tracking step as a 
consequence. This situation becomes manifest when the own 
vehicle is driven on urban streets. The observations of the 
static objects usually cluttered up the roadsides and are 
difficult to be segmented properly. Nearby observations from 
two objects could be grouped into one segment if a large 
threshold is used. Therefore, tuning the threshold is a tradeoff. 
As an alternative to these distance-based segmentation 
methods, we consider a probability-based segmentation 
approach to reduce the number of segments on the roadsides; 
meanwhile, the observations in front of the own vehicle could 
be segmented correctly. The Dirichlet process (DP) mixture 
model is used to describe the probabilistic distribution of 
observations in each scan of the laserscanner because of the 
flexibility of the DP mixture model in dealing with 
segmentation [5]. The number of segments in the DP mixture 
model is inferred from observations by the Gibbs sampling 
method. The segmentation results depend on the spatial 
distribution of the observations in each scan. 

Following the segmentation step, each segment is 
classified into one of several predefined classes. In this paper, 
only three classes, which are small, medium, and big objects, 
are defined. The tracks which are initialized from the 
non-vehicle-like objects on the roadsides can be suppressed 
by excluding the big objects in the tracking step. Then, a track 
is initialized for small or medium object in the tracking step. 
The Joint Integrated Probabilistic Data Association Filter 
(JIPDAF) algorithm [7] is used to update the tracks and 
calculate the existence probability of every track. The track 
management, which includes the track confirmation and track 
deletion, is implemented based on this probability. 

The paper structure is shown as follows: Sections II and III 
describe the modules of scan segmentation and object 
classification. The object tracking is presented in section IV. 
Finally some results of simulations and conclusions are 
presented in sections V and VI, respectively.  

II. SCAN SEGMENTATION 

A. Dirichlet Process Mixture Model 
The purpose of the scan segmentation is to group all the 

observations of a scan into several segments, each of which 
represents an individual object. Since the number of segments 
is unknown, the proposed method uses the DP mixture model 
to describe the probabilistic distribution of the observations 
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and then performs probabilistic inference about the segments. 
A Dirichlet process defines a distribution over probability 

measures on potentially infinite parameter spaces Θ. This 
stochastic process, DP(α0, G0), is defined by a positive real 
number, α0, and a base measure, G0. The stick-breaking 
construction of DP [8] is given below 
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where F(θi) denotes the distribution of the observation xi  
with parameter θi. The factors θi are assumed to be random 
variables and are conditionally independent given G, and the 
observation xi is conditionally independent of the other 
observations given the factor θi. When G is distributed 
according to a DP, this model is referred to as a DP mixture 
model. A graphical model representation of a DP mixture 
model is shown in Fig. 1(a) [8]. An equivalent representation 
of a DP mixture model using a stick-breaking construction is 
given by the following conditional distributions [5]: 
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where GEM means that π is constructed by (1) and the 
factors θi take on values φk with probability πk. An alternative 
graphical model using a stick-breaking construction is shown 
in Fig. 1(b). A tutorial on DP can be found in [8]. 

In this paper, the object tracking is implemented in 
Cartesian coordinates. The ith observation, xi = (xi, yi), is 
distributed according to N(μi, Σi), where μi is the mean vector 
and Σi is the covariance matrix. In other words, 

xi|θi ~ N(μi, Σi),  θi={ μi, Σi } 

 
Figure 1.  (a) Graphical representation of Dirichlet process mixture model. 
(b) Alternative representation using a stick-breaking construction. 

Each observation is associated with an indicator variable zi, 
which represents the segment number. A conjugate 
normal-inverse-Wishart prior, denoted by ( ), , ,NIW κ ϑ ν Δ , 

on θi is placed and takes the following form: 
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where d is the dimension of x, ν  and Δ are the degrees of 
freedom and covariance parameter for the inverse-Wishart 
density, ϑ  is the expected mean, and κ  is the number of 
pseudo-observations. The parameters κ , ϑ , ν and Δ  are 
called the prior hyperparameters λ . In order to infer the 
indicator variable zi, a Gibbs sampler by marginalizing over 
the infinite set of parameters θ and mixture weights π as in [9] 

is used. Given the assignments { } 1

N
j j

z z
=

=  from the last 

iteration, the posterior distribution of zi factors for the Gibbs 
sampling as follows: 
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 The Gibbs sampler based on (6) is used to resample the N 
cluster assignments zi in order and update fk(x) for each new 
sampled assignment zi. A new cluster is created when zi is 
equal to K+1 and a cluster is deleted if none of the 
observations are assigned to this cluster. 

Fig. 2(c) and 2(d) show the segmentation results using the 
distance-based approach [1] and the probability-based 
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approach, respectively. The threshold, S0, used for noise 
reduction for the distance-based approach is 1.5 and the 
parameters for the probability-based approach are listed in 
section V. The number of segments in Figure 2(d) is smaller 
than that in Figure 2(c); therefore the number of tracks which 
need processing is reduced. The tracking results are shown in 
section V. Figure 3(d) shows that the right-angle shape “|_” 
(“_|”) which represents the rear and left (right) sides of a 
vehicle, is separated into two segments due to the Gaussian 
assumption of the observations used in the DP mixture model. 
Therefore, these two segments need to be grouped into one. 
Besides, segments of the same object separated due to 
occlusions are also grouped by the following grouping 
method. 

A. Joint Broken Segments 
The main purpose of this procedure is to group the broken 

segments due to the right-angle shape and the obscuration of 
the  security  barrier  on  the  highway.  Since  both  distance- 

 
Figure 2.  The results of segmentation when driving on a road. (a) The 
original observation in one single scan. (b) The corresponding video frame. (c) 
The segmentation result of the distance-based approach. (d) The 
segmentation result of the probability-based approach. 

 
Figure 3.  The results of segmentation when driving on a highway. (a) The 
original observation in one single scan. (b) The corresponding video frame. (c) 
The segmentation result of the distance-based approach. (d) The 
segmentation result of the probability-based approach. 

based and probability-based methods result in broken 
segments, it is required to group these broken segments 
before the classification step. First of all, we count the 
observation from right to left and assign an order number i to 
each observation. So the bearing of the first observation is 40 
degree, as shown in Fig. 4. The angular resolution of the 
laserscanner is configured to be 0.5 degrees. The maximum 
number of observations in a scan is 201 (i =1~201). Similarly, 
each segment is assigned a number s with the order from right 
to left. Two segments sth and (s+1)th, which form a right-angle 
shape are grouped together as long as the following 
conditions are fulfilled: 

( ) ( ) ( ) ( )max , min , 1 max , min , 1x x 0.5,  y y 2.5i s i s i s i s+ +− < − <   (7) 

where xmax(i),s means the x value of the maximum order 
number in the sth  segment and xmin(i),s means the x value of the 
minimum order number in the sth  segment. After grouping 
the segments of right-angle shape, the broken segments of the 
security barrier, sth and (s+2)th, are grouped if the following 
conditions  are satisfied: 

( ) ( ) ( ) ( )max , min , 2 max , min , 2x x 0.5,  y y 20i s i s i s i s+ +− < − <   (8) 

In order to avoid grouping the segments which represent 
different vehicles, (8) is not implemented if the number of the 
segments, after (7) is done, is bigger than ten. 

III. OBJECT CLASSIFICATION 
In the object classification step, each segment is classified 

into one of the three predefined classes according to the size 
of the segment. The size of the segment is determined as 
follows: 

( ) ( ) ( ) ( )x , , y , ,b max x min x ,  b max y min yi s i s i s i s= − = −  

Next, a representative point of each object, called the 
measurement vector, is calculated and used for object 
tracking. 

A. Predefined Classes 
Let the size of the segment be (bx, by) and the three classes 

of the objects are defined as follows: 
• Small object: bx≦0.8m and by≦1.2m 
• Medium object: 0.8m<bx≦3m and 1.2m<by≦12m 
• Big object: 3m<bx or 12m<by 

The small objects such as pedestrians, bicycles, and 
scooters are vulnerable in a car accident. Therefore, the object 
tracks for the small objects in section V are plotted by the red 
color. The medium objects include cars, trucks, and buses and 
the big objects include walls and security barriers. If the 
segment is classified as a big object, it is excluded from 
updating tracks. Removing the big objects can benefit the 
tracking algorithm by focusing on tracking the other 
dangerous objects on the road. 

B. Obtaining the Measurement Vector 
The measurement vector for the sth segment, denoted by 

(xms, yms), is determined by the middle-rear of the object if the 
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moving direction of the object is the same as the own vehicle. 
On the other hand, the middle-front of the object is chosen as 
the measurement vector in the case of opposite moving 
direction. However, it is hard to find the measurement vector 
correctly through the segment which captures only partial 
information about the geometry and size of the real object. 
Therefore a heuristic method is applied to the following four 
typical kinds of segments. 

• “－” shape:  
m m ., .,(x ,  y ) average(x ,  y )s s s s=  

• “|_” shape: 
  

minm m , , 1, ,(x ,  y ) average(x ,  y ),  , ,s s l s l s s r sl i i= = K  

• “_|” shape: 

minm m , , , end,(x ,  y ) average(x ,  y ),  , ,s s l s l s r s sl i i= = K  

• “ | ” shape:   

( ) ( )( )m m ., .,(x ,  y ) average x ,minimum  ys s s s=  

where .,x s  means all observations in x-direction belong to 
the sth segment, i1,s and iend,s denote the minimum and 
maximum order number of the observations in the sth segment, 
and 

min ,r si  denotes the order number of the observation with 

the minimum range in the sth segment.  

IV. OBJECT TRACKING 
An existing object is associated with a track which passes 

three phases during its existence: tentative, preliminary, and 
maintenance [10]. The JIPDAF gives the probability of track 
existence with two propagation models, Markov chain one 
and Markov chain two [7]. Markov chain one defines the 
probability of track existence at scan k as { }kP x and is given 
by 
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The Markov chain two separates the probability of track 
existence at scan k into the observable track { }o

kP x  and the 

non-observable track { }n
kP x . The model for Markov chain 

two is expressed as 
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where { } { } { }o n
k k kP x P x P x= + . For both models, the Markov 

chain coefficients must satisfy 
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The track management is implemented via the probability, 
{ }kP x . 

A. Track Management 
1) Tentative Track: 

The unassociated measurement vectors become tentative 
tracks after the updates of maintenance and preliminary 
tracks are finished in the previous scan. A preliminary track is 
promoted from a tentative track using the two-point 
differencing method [11], i.e. the promotion occurs if any of 
the measurement vectors in the present scan are within a 
reasonable distance of a tentative track in the previous scan. If 
none of the measurement vectors initiate a new preliminary 
track for a particular tentative track, then the tentative track is 
deleted. 

2) Preliminary Track: 
The preliminary track is updated through the Markov chain 

one model. However, the Integrated Probabilistic Data 
Association Filter (IPDAF) [6] is used here to update the 
preliminary tracks because of the lower computation load. 
The IPDAF also gives the probability of track existence with 
the same two propagation models. Furthermore, JIPDAF and 
IPDAF integrate seamlessly with no transition effects when 
switching from one to the other [7]. Once the existence 
probability of a preliminary track reaches a specified level, 
the track is promoted to the maintenance track. Conversely, if 
the existence probability falls below another specified level, 
the preliminary track is deleted. 

3) Maintenance Track: 
Each maintenance track represents an object and the 

maintenance track is updated through the Markov chain two 
model of the JIPDAF. The track is deleted when the existence 
probability falls below the specified level. Besides, two 
maintenance tracks are merged if the distances of these two 
tracks in the x and y directions are less than 0.8m and 1.2m 
simultaneously. The track with a shorter existing period will 
be deleted. 

When a preliminary track is initialized, a voting approach 
is used to determine the class of the object. For example, if a 
preliminary track is updated with a measurement vector 
which is classified as a small object, the number of votes for 
the small object is added by one. The highest counting value 
among these three classes represents the class of the tracked 
object. 

B. Models Configuration 
1) Object Motion Model: 

The object motion model in Cartesian coordinates is 
1k k kF ω+ = +x x                        (12) 

where xk consists of the position and velocity in each of the 
two coordinates at time k with the transition matrix 

0 1
,      

0 0 1
T

T
T

F T
F F

F
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where T is the sampling period. The motion noise kω  is 
zero-mean white Gaussian noise with the covariance matrix 
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where qx=10 and qy =5 are the factors for the covariance 
matrix of the motion noise. 

2) Sensor Measurement Model: 
The sensor measurement model is 

1 1 1k k kH ν+ + += +y x       (13) 
with the measurement matrix 

1 0 0 0
0 0 1 0

H
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

The measurement noise kν  is zero-mean white Gaussian 
noise and is independent with kω . The corresponding 
covariance matrix is configured as 

0.7 0
0 0.1

R
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

3) Track Existence Transition Matrix: 
The probability transition matrices in this paper are 

configured as 

0.8 0.2
0 1

⎡ ⎤
⎢ ⎥
⎣ ⎦

  and  
0.8 0.05 0.15

0.25 0.1 0.65
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

for Markov chain one and two, respectively. 

TABLE I.  THE PRIOR HYPERPARAMETERS 

Parameter Description Value 

α0 the concentration parameter for DP 5 

κ  the number of pseudo-observations 0.01 

ϑ  the expected mean [0 15] 

ν  the degrees of freedom 5 

Δ  the covariance parameter 
0.05 0

0 0.5
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
Figure 4.  The visible area of the SICK laserscanner (left) and the  vehicle 
for data collection (right). 

V. SIMULATION 
The observation data were obtained from a SICK 

laserscanner mounted on the front bumper of the test vehicle. 
The laserscanner observes objects with a horizontal field of 
view of 100°, a range limit of 80m, an angular resolution of 
0.5°, and a scan update rate of 7Hz. The test vehicle is also 

equipped with a video camera on the windshield. Figure 4 
shows the test vehicle and the visible area of the laserscanner. 
The data from the laserscanner and the videos from the 
camera are collected under the real traffic condition. The 
following off-line simulations were implemented on a 
personal computer. Table I shows the prior hyperparameters 
used in this paper. 

Figure 5 shows the object tracks on a highway using the 
probability-based segmentation. The maintenance tracks 
were plotted on the left and the corresponding video frames 
were shown on the right during eight scans. The green points 
and the red points represent the medium objects and the small 
objects, respectively. The rectangle points represent the 
points in the 77th scan and the number on the point is the track 
ID. The security barriers were not tracked and the four tracks 
represent the four cars in front of the test vehicle. The car in 
the same lane was recognized as a small object because the 
laserscanner has a poor angular resolution to the far object. 
The track corresponding to the far car in the first lane (count 
from the left) was deleted in the 73th scan because of the 
obscuration. Thus its track ID is not plotted in Fig. 5. 

Figure 6 shows the results of the complete object tracking 
algorithm when the test vehicle was driven on an urban street.  
The left column presents the results of the probability-based 
segmentation approach and the results using the distance 
-based segmentation approach were shown in the middle 
column. From the video frames in the right column we can 
see that only five vehicle-like objects need tracking and these 
vehicle-like objects were all tracked for both approaches.  
Although both distance-based and probability-based 
approaches generate tracks for non-vehicle-like objects along 
the road sides, it is clear from the simulation that the 
probability-based approach can effectively suppress these 
undesired  tracks.  The  reduced  number  of  dense  tracks is  

 
Figure 5.  The maintenance tracks on a highway based on the 
probability-based segmentation during the eight scans (left) and the 
corresponding video frames (right). 
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beneficial to the computation load in the tracking step.  This is 
because the possibility of a large number of joint association 
events is reduced. A large number of joint association events 
leads to heavier computational burden in tracking step. 

Figure 7 shows the tracking results using the 
probability-based segmentation approach when the test 
vehicle was driven on an urban street. The probability-based 
segmentation approach can also work well in the crowed 
environment most of the time. 

VI. CONCLUSION 
In this paper the probability-based segmentation approach 

was presented and the complete object tracking algorithm 
was simulated via the real traffic data. The results of the 
simulations show that the security barriers on a highway can 
be  removed   from  the  tracking  step  and   the  vehicle-like 

 
Figure 6.  The tracking results based on the probability-based segmentation 
approach (left) and the distance-based segmentation approach (middle) 
during the eight scans on a road and the corresponding video frames (right). 

objects were tracked well. In addition, Dirichlet processes 
favor simpler models [5]. The small pieces of segment on the 
roadsides which are aligned roughly in the y/x direction are 
grouped in general except that the segment with long distance 
to that group. Therefore the probability-based segmentation 
approach can suppress the non-vehicle-like object tracks on 
the roadside because the segmentation result depends on the 
distribution of the observations instead of a threshold. 

 
Figure 7.  The tracking results based on the probability-based segmentation 
during the eight scans on a street (left) and the corresponding video frames 
(right). 
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