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a b s t r a c t

The wavelet transform method originated by Wei et al. (2002) [19] is an effective tool
for enhancing the transverse stability of the synchronous manifold of a coupled chaotic
system. Much of the theoretical study on this matter is centered on networks that
are symmetrically coupled. However, in real applications, the coupling topology of a
network is often asymmetric; see Belykh et al. (2006) [23,24], Chavez et al. (2005) [25],
Hwang et al. (2005) [26], Juang et al. (2007) [17], and Wu (2003) [13]. In this work, a
certain type of asymmetric sparse connection topology for networks of coupled chaotic
systems is presented. Moreover, our work here represents the first step in understanding
how to actually control the stability of global synchronization from dynamical chaos for
asymmetrically connected networks of coupled chaotic systems via the wavelet transform
method. In particular, we obtain the following results. First, it is shown that the lower
bound for achieving synchrony of the coupled chaotic system with the wavelet transform
method is independent of the number of nodes. Second, we demonstrate that the wavelet
transformmethod as applied to networks of coupled chaotic systems is evenmore effective
and controllable for asymmetric coupling schemes as compared to the symmetric cases.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Network synchronization is one of the most important research fields for the simulation of natural phenomena. Such
interesting phenomena are ubiquitous in engineering [1], physics [2], chemistry [3], biology [4], etc. Indeed, many results
[5–13] give analytical criteria for determining the range of coupling strength for acquiring locally or even globally stable
synchronization. As a matter of fact, in networks of oscillators that are smooth and continuous in time, the synchronous
solution becomes stable when the strength of coupling between oscillators exceeds a critical value. General approaches
to the local synchronization of networks of coupled chaotic systems have been proposed, including the criteria based on
the master stability function (MSF) [6,10,14] originated by Pecora and Carroll [10], and the matrix measures approach [15].
Recently, global synchronization of networks of coupled chaotic systemswith asymmetric coupling has also been intensively
studied. The methods include Lyapunov function-based criteria [6], the partial contraction approach [16], and the matrix
measure approach [15,17,18]. All the works mentioned above, in proving global synchronization, use explicitly or implicitly
the fact that the larger the coupling strength is, themore easily the corresponding system can be synchronized. This, in turn,
suggests that only the second-largest eigenvalue λ2 of the coupling matrix has a determining effect on the synchrony of the
system. However, as the number of nodes of the system increases, the corresponding λ2 tends to 0. Hence, to synchronize
the system, a greater strength of coupling is needed. The wavelet transform method originated in [19] is an effective tool
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for enhancing the transverse stability of the synchronous manifold of a coupled chaotic system. Much of the theoretical
study [20–22] on this matter is centered on networks that are symmetrically coupled. However, in real applications, the
coupling topology of a network is often asymmetric [13,17,23–26].

Typically, we assume that the coupled system has N nodes (oscillators) and ui is them-dimensional vector of dynamical
variables of the ith node. Let the isolated (uncoupling) dynamics be u̇i = f (ui) for each node. Here, ui has a chaotic dynamics
in the sense that its largest Lyapunov exponent is positive. Let H : Rm

→ Rm be a linear vectorial function describing the
coupling within the components of each node. Thus, the dynamics of the ith node are given as follows:

u̇i = f (ui) + ϵ

N
j=1

aijH(uj), i = 1, 2, . . . ,N, (1.1a)

where ϵ is a coupling strength and A = (aij)N×N is the coupling matrix with conditions
N

j=1 aij = 0 for 1 ≤ i ≤ N .
Furthermore, let u = (u1,u2, . . . ,uN)T , and F(u) = (f (u1), f (u2), . . . , f (uN))T . We may write (1.1a) in the following
vector–matrix form:

u̇ = F(u) + ϵ(A ⊗ H)u, (1.1b)

where ⊗ is the Kronecker product. We mention that there are various coupling schemes contained in Eq. (1.1b). Next, we
briefly introduce the concept of the wavelet transform method [19] to reconstruct the network topology of (1.1). For more
details, see [20–22]. Let N = 2n and n ∈ N, the natural numbers. Write A as

A =

A11 · · · A1n
...

. . .
...

An1 · · · Ann


n×n

,

where the dimension of each block matrix Akl is 2 × 2. By means of an i-scale wavelet operator W [27], the matrix A is
transformed into W (A), of the form

W (A) =

A11 · · · A1n
...

. . .
...An1 · · · Ann


n×n

,

where each entry ofAkl is the average of the entries of Akl, 1 ≤ k, l ≤ n. After reconstruction, the coupling matrix A becomes
A + αW (A). Here α is a wavelet constant.

In Eq. (1.1b), the coupling matrix A gives the topological connectivity of nodes. In this work, we consider a generalized
nearest neighbor coupling matrix A(β, v⃗) with mixed boundary conditions. In particular, A(β, v⃗) has the form

A(β, v⃗) =:



a + (1 − β)c b 0 · · · 0 βc
c a b 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 c a b
βb 0 · · · 0 c a + (1 − β)b



=:



A1(β, v⃗) A2(1, v⃗) 0 · · · 0 A3(β, v⃗)
A3(1, v⃗) A1(1, v⃗) A2(1, v⃗) 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 A3(1, v⃗) A1(1, v⃗) A2(1, v⃗)

A2(β, v⃗) 0 · · · 0 A3(1, v⃗) A4(β, v⃗)


(1.2a)

where v⃗ := (a, b, c) is an undetermined vector with three real numbers a, b, c which satisfy b, c ≥ 0, a + b + c = 0,N =

2n ≥ 4, n ∈ N, and

A1(β, v⃗) =


a + (1 − β)c b

c a


, A2(β, v⃗) =


0 0
βb 0


, A3(β, v⃗) =


0 βc
0 0


,

A4(β, v⃗) =


a b
c a + (1 − β)b


, and 0 =


0 0
0 0


.

(1.2b)

It should be noted that the choice of β, 0 ≤ β ≤ 1, gives what type of boundary conditions the coupling configuration has.
In particular, β = 0, β = 1 and 0 < β < 1 give the periodic, Neumann and mixed boundary conditions, respectively.
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The coupling configuration of the networks in Eq. (1.2a) is quite general, and includes asymmetric connections between
nodes and/or some competitive (aij < 0, i ≠ j) couplings between cells ui and uj, and partial-state coupling with nonzero
off-diagonal connections.

Applying the wavelet transform method to A(β, v⃗), we obtain that the matrixW (A(β, v⃗)) is of the following form:

W (A(β, v⃗)) =:



A1(β, v⃗) A2(1, v⃗) 0 · · · 0 A3(β, v⃗)A3(1, v⃗) A1(1, v⃗) A2(1, v⃗) 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 A3(1, v⃗) A1(1, v⃗) A2(1, v⃗)A2(β, v⃗) 0 · · · 0 A3(1, v⃗) A4(β, v⃗)


(1.3a)

where

A1(β, v⃗) = −
(b + βc)

4
⊗


1 1
1 1


, A2(β, v⃗) =

βb
4

⊗


1 1
1 1


, A3(β, v⃗) =

βc
4

⊗


1 1
1 1


,

A4(β, v⃗) = −
(c + βb)

4
⊗


1 1
1 1


, and 0 =


0 0
0 0


.

(1.3b)

Thus, the newly reconstructed coupling matrix is given by

C(α, β, v⃗) := A(β, v⃗) + αW (A(β, v⃗))

=:



C1(α, β, v⃗) C2(α, 1, v⃗) 0 · · · 0 C3(α, β, v⃗)
C3(α, 1, v⃗) C1(α, 1, v⃗) C2(α, 1, v⃗) 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 C3(α, 1, v⃗) C1(α, 1, v⃗) C2(α, 1, v⃗)

C2(α, β, v⃗) 0 · · · 0 C3(α, 1, v⃗) C4(α, β, v⃗)


(1.4a)

where

Ci(α, β, v⃗) = Ai(β, v⃗) + αAi(β, v⃗) for 1 ≤ i ≤ 4. (1.4b)

The eigenvalues of C(α, β, v⃗) are denoted by λi(α, β, v⃗) which satisfy the following conditions:

0 = Re (λ1(α, β, v⃗)) ≥ Re (λ2(α, β, v⃗)) ≥ · · · ≥ Re (λi(α, β, v⃗)) ≥ · · · ≥ Re (λN(α, β, v⃗))

where Re(z) denotes the real part for complex number z. For fixed 0 ≤ β ≤ 1, we mention that the graphs of a mapping of
the wavelet parameter α into λi(α, β, v⃗) are called the (real) eigencurves of C(α, β, v⃗) for 1 ≤ i ≤ N .

Global synchronization of coupled chaotic systems has been intensively studied with asymmetric connections [13,17,
23–26]. In particular, Juang et al. [17] reported that the coupling configuration A of the networks includes asymmetric
connections, and the second-largest real parts of the eigenvalues, Re (λ2), can dominate the stability of the global
synchronous behavior for the networks of coupled chaotic systems in Eq. (1.1). Mathematically speaking, it was shown
that the lower bound ϵc on the critical coupling strength is proportional to −Re (λ2) (see, e.g., Theorems 3.1–3.2 of [17]).
Namely,

ϵc ∝
1

−Re (λ2)
.

Consequently, as the number of nodes increases, which in turn makes λ2 closer to the zero, the coupling strength that is
needed to get the system synchronized becomes greater. In this work, we consider a certain type of asymmetric sparse
connection topology for networks of coupled chaotic systems. In particular, we obtain the following results. First, it is
shown that the lower bound for achieving synchrony of the coupled chaotic system with the wavelet transform method
is independent of the number of nodes. Second, we demonstrate that the wavelet transformmethod as applied to networks
of coupled chaotic systems is even more effective and controllable for asymmetric coupling schemes as compared to the
symmetric cases.

2. The main results for C(α, 1, v⃗)

In this section, the influence of thewavelet transformmethod on the nearest neighbor couplingwith generalized periodic
boundary conditions A(1, v⃗) is considered. In this case, we obtain that C1(α, 1, v⃗) = C4(α, 1, v⃗), and the coupling matrix
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C(α, 1, v⃗) is indicated as follows:

C(α, 1, v⃗) =



C1(α, 1, v⃗) C2(α, 1, v⃗) 0 · · · 0 C3(α, 1, v⃗)
C3(α, 1, v⃗) C1(α, 1, v⃗) C2(α, 1, v⃗) 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 C3(α, 1, v⃗) C1(α, 1, v⃗) C2(α, 1, v⃗)

C2(α, 1, v⃗) 0 · · · 0 C3(α, 1, v⃗) C1(α, 1, v⃗)


(2.1a)

where

C1(α, 1, v⃗) =


a b
c a


+ α


a
4

⊗


1 1
1 1


= C4(α, 1, v⃗),

C2(α, 1, v⃗) =


0 0
b 0


+ α


b
4

⊗


1 1
1 1


, and C3(α, 1, v⃗) =


0 c
0 0


+ α


c
4

⊗


1 1
1 1


.

(2.1b)

First, we solve the corresponding eigenvalue problem C(α, 1, v⃗)b = λb, where b = (b1, b2, . . . , bn)
T and bi ∈ C2, 1 ≤ i ≤

n, in block component form; we obtain

C3(α, 1, v⃗)bi−1 + C1(α, 1, v⃗)bi + C2(α, 1, v⃗)bi+1 = λbi, i = 1, . . . , n.

The boundary conditions would yield that

C3(α, 1, v⃗)b0 + C1(α, 1, v⃗)b1 + C2(α, 1, v⃗)b2 = λb1 = C1(α, 1, v⃗)b1 + C2(α, 1, v⃗)b2 + C3(α, 1, v⃗)bn

C3(α, 1, v⃗)bn−1 + C1(α, 1, v⃗)bn + C2(α, 1, v⃗)bn+1 = λbn = C2(α, 1, v⃗)b1 + C3(α, 1, v⃗)bn−1 + C1(α, 1, v⃗)bn

or, equivalently,

b0 = bn, and b1 = bn+1.

To study the block difference equation, we first seek to find the solution bi of the form

bi = δi

1
v


i = 1, . . . , n.

Substituting these bi into the block difference equation, we have
C3(α, 1, v⃗)δ−1

+ (C1(α, 1, v⃗) − λI) + C2(α, 1, v⃗)δ
 1

v


= 0.

The existence of a nontrivial solution (1, v)T guarantees that the following condition holds:

det

C3(α, 1, v⃗)δ−1

+ (C1(α, 1, v⃗) − λI) + C2(α, 1, v⃗)δ


= 0.

We assume, for the moment, that the equation has four roots, say δ1, δ2, δ3, and δ4. Hence, the general solution can then be
written as

bi = c1δi
1


1
v1


+ c2δi

2


1
v2


+ c3δi

3


1
v3


+ c4δi

4


1
v4


for i = 1, . . . , n. Here, vk, k = 1, 2, 3, 4, are some constants depending on δk, k = 1, 2, 3, 4. Applying the boundary
conditions to the coupling matrix C(α, 1, v⃗), we get the matrix form as follows: 1 1 1 1

v1 v2 v3 v4
δ1 δ2 δ3 δ4

v1δ1 v2δ2 v3δ3 v4δ4

 diag(δn
1 − 1, δn

2 − 1, δn
3 − 1, δn

4 − 1)

c1
c2
c3
c4

 = 0.

Now, if diag(δn
1 −1, δn

2 −1, δn
3 −1, δn

4 −1) is singular, then the above equation has a nontrivial solution c := (c1, c2, c3, c4)T .
Note that diag(δn

1 − 1, δn
2 − 1, δn

3 − 1, δn
4 − 1) is singular if and only if the δk, k = 1, 2, 3, 4, satisfy δn

= 1. Returning to the
eigenvalue problem for C(α, 1, v⃗), we conclude that the eigenvalue λ satisfies the following conditions:

det

C3(α, 1, v⃗)δ−1

+ (C1(α, 1, v⃗) − λI) + C2(α, 1, v⃗)δ


= 0,
δn

= 1. (2.2)

To solve the system of equations, we first note that the Ωm(α, v⃗) :=
α
4 (cδ−1

m + a + bδm), where δm := ei2mπ/n, are the roots
of δn

= 1 form = 0, . . . , (n − 1). Hence, form = 0, . . . , (n − 1), the determinant in Eq. (2.2) can be rewritten as follows:

det

C3(α, 1, v⃗)δ−1

m + (C1(α, 1, v⃗) − λI) + C2(α, 1, v⃗)δm


= det


Ωm(α, v⃗) − a − λ Ωm(α, v⃗) + cδ−1
m + b

Ωm(α, v⃗) + c + bδm Ωm(α, v⃗) − a − λ


= (Ωm(α, v⃗) − a − λ)2 − (Ωm(α, v⃗) + cδ−1

m + b)(Ωm(α, v⃗) + c + bδm) = 0.
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Consequently, the eigenvalue formula for the eigenvalue problem C(α, 1, v⃗)b = λb can be derived and described as in the
following theorem.

Theorem 2.1. Let N be any positive even integer with N = 2n ≥ 4, n ∈ N, and let C(α, 1, v⃗) be the N × N matrix which is
given in Eq. (2.1). Then all the eigenvalues of C(α, 1, v⃗) are of the following form:

λ±

m(α, 1, v⃗) = (a + Ωm(α, v⃗)) ±


(Ωm(α, v⃗) + cδ−1

m + b)(Ωm(α, v⃗) + c + bδm) (2.3)

where Ωm(α, v⃗) =
α
4 (cδ−1

m + a + bδm) and δm := ei2mπ/n are the roots of δn
= 1 for m = 0, . . . , (n − 1). Here, we choose the

nonnegative real parts of complex numbers for the last term in Eq. (2.3).

From Theorem 2.1, we find that the eigenvalues λ±
m(α, 1, v⃗) of C(α, 1, v⃗) have the following properties.

Proposition 2.1. Let λ±
m(α, 1, v⃗) be the eigenvalues of thematrix C(α, 1, v⃗)which is given in Theorem 2.1, and let the dimension

of C(α, 1, v⃗) be N × N,N = 2n ≥ 4, n ∈ N. Then, we obtain that

lim
α→∞

Re(λ−

m(α, 1, v⃗)) = −∞, and lim
α→∞

λ+

m(α, 1, v⃗) =
1
2
[3a − bδm − cδ−1

m ] =: Λm(1, v⃗),

for m = 1, . . . , (n − 1).

Proof. First, we define Ωm(α, v⃗) =
α
4 (cδ−1

m + a + bδm) =: α∆m(α, v⃗) for m = 1, . . . , (n − 1). By substituting the Euler

formula δm = ei
2mπ
n = cos 2mπ

n + i sin 2mπ
n and a + b + c = 0 into ∆m(α, v⃗), we obtain

∆m(α, v⃗) =
a
4


1 − cos

2mπ

n


+ i


(b − c)

4
sin

2mπ

n


, m = 1, . . . , (n − 1).

Moreover, the limit of λ−
m(α, 1, v⃗) can be calculated as follows:

lim
α→∞

α ·

∆m(α, v⃗) +
a
α


−

∆m(α, v⃗) +
cδ−1

m + b
α


∆m(α, v⃗) +

c + bδm
α


=


lim

α→∞
α


· 2∆m(α, v⃗).

By using the fact Re(∆m(α, v⃗)) < 0 form = 1, . . . , (n − 1), we have

lim
α→∞

Re(λ−

m(α, 1, v⃗)) =


lim

α→∞
α


· 2Re(∆m(α, v⃗)) = −∞, m = 1, . . . , (n − 1).

Furthermore, we handle the limit of λ+
m(α, 1, v⃗) as follows:

lim
α→∞

λ+

m(α, 1, v⃗) = lim
α→∞

(α∆m(α, v⃗) + a)2 − (α∆m(α, v⃗) + cδ−1
m + b)(α∆m(α, v⃗) + c + bδm)

(α∆m(α, v⃗) + a) −


(α∆m(α, v⃗) + cδ−1

m + b)(α∆m(α, v⃗) + c + bδm)

= lim
α→∞

2aα∆m(α, v⃗) + a2 − (cδ−1
m + b + c + bδm)α∆m(α, v⃗) − (cδ−1

m + b)(c + bδm)

(α∆m(α, v⃗) + a) −


(α∆m(α, v⃗) + cδ−1

m + b)(α∆m(α, v⃗) + c + bδm)

=
2a∆m(α, v⃗) − (cδ−1

m + b + c + bδm)∆m(α, v⃗)

2∆m(α, v⃗)

=
1
2
[3a − bδm − cδ−1

m ] =: Λm(1, v⃗), m = 1, . . . , (n − 1).

Hence, the proposition holds true. �

We are now in a position to describe the main results for Re(λ2(α, 1, v⃗)) of C(α, 1, v⃗).

Theorem 2.2. Let N be any positive even integer with N = 2n ≥ 4 and n ∈ N. C(α, 1, v⃗) is an N × N matrix which is given
in Eq. (2.1), and Re (λ2(α, 1, v⃗)) are the second-largest real parts of the eigenvalues of C(α, 1, v⃗). Then, there exists a critical
wavelet constant αc > 0 such that

Re (λ2(α, 1, v⃗)) = Re


λ+

[ n
2 ]

(α, 1, v⃗)


= Re


λ+

[ n
2 ]+1(α, 1, v⃗)


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(a) N = 8 and v⃗ = (−7, 6, 1). (b) N = 10 and v⃗ = (−10, 6, 4).

Fig. 2.1. The graphs give all the real parts of the eigencurves of C(α, 1, v⃗), and the red dotted line is Re (λ2(α, 1, v⃗)). (a) N = 8, which is a multiple of 4,
and v⃗ = (−7, 6, 1). (b) N = 10, which is even but not a multiple of 4, and v⃗ = (−10, 6, 4).

for all α ≥αc . Furthermore,

2a ≤ lim
α→∞

Re (λ2(α, 1, v⃗)) =
a
2


3 + cos

2
 n
2


π

n


≤ a < 0.

Proof. Let N be a positive even integer with N = 2n ≥ 4, n ∈ N. For m = 1, . . . , (n − 1), using Proposition 2.1(c) and the
Euler formula δm = ei

2mπ
n = cos 2mπ

n + i sin 2mπ
n , we obtain that limα→∞ Re(λ−

m(α, 1, v⃗)) = −∞, and

lim
α→∞

λ+

m(α, 1, v⃗) =
1
2
[3a − bδm − cδ−1

m ] =
a
2


3 + cos

2mπ

n


+

i
2
(b − c) sin

2mπ

n
=: Λm(1, v⃗).

In fact, 2a ≤ Re (Λm(1, v⃗)) ≤ a ≤ 0 for m = 1, . . . , (n − 1). Obviously, Re (Λm(1, v⃗)) attains its maximum at two values
m =

 n
2


, and

 n
2


+ 1 form = 1, . . . , (n − 1). Thus, there exists a critical wavelet constantαc > 0 such that

Re (λ2(α, 1, v⃗)) = Re


λ+

[ n
2 ]

(α, 1, v⃗)


= Re


λ+

[ n
2 ]+1(α, 1, v⃗)


for all α ≥αc . Moreover, we also obtain that

2a ≤ lim
α→∞

Re (λ2(α, 1, v⃗)) =
a
2


3 + cos

2
 n
2


π

n


≤ a ≤ 0.

The proof of the theorem is just completed. �

As shown in the proof of Theorem 2.2, if we let N be a multiple of 4, then Re (Λm(1, v⃗)) attains its maximum at only one
value m =

 n
2


=

n
2 . In this case, Re (λ2(α, 1, v⃗)) = Re


λ+

n
2
(α, 1, v⃗)


is independent of the choice of the number of nodes

(oscillators) N for all α ≥αc . Hence, we describe these results as the following corollary.

Corollary 2.1. Let N be any positive even integer with N = 2n ≥ 4, and n ∈ N. If, in addition, N is multiple of 4, C(α, 1, v⃗) is an
N × N matrix which is given in Eq. (2.1), and Re (λ2(α, 1, v⃗)) are the second-largest real parts of the eigenvalues of C(α, 1, v⃗).
Then, there exists a critical wavelet constant αc > 0 such that

Re (λ2(α, 1, v⃗)) = Re


a
2
(2 + α) +

1
2


α2a2 − 4(a + 2b)2


for all α ≥αc . In this case, Re (λ2(α, 1, v⃗)) is independent of the choice of the number of nodes (oscillators) N. Furthermore,

lim
α→∞

Re (λ2(α, 1, v⃗)) = a < 0.

Remark 2.1. In Theorem 2.2, we see that the limit of the second-largest real parts of the eigenvalues Re (λ2(α, 1, v⃗)) is in
between the values 2a and a as α tends to infinity. Using the continuity ofRe (λ2(α, 1, v⃗)) in α ≥αc , we can suitably choose
Re (λ2(α, 1, v⃗)) such that Re (λ2(α, 1, v⃗)) is independent of the choice of the number of nodes (oscillators) N .

Remark 2.2. In Fig. 2.1(a), (rep. Fig. 2.1(b),) we have, respectively, that Re(λ2(α, 1, v⃗)) = Re

λ+

1 (α, 1, v⃗)


= Re(λ+

3
(α, 1, v⃗)) if α ≤ αc and Re (λ2(α, 1, v⃗)) = Re


λ+

2 (α, 1, v⃗)

if α ≥ αc . From Fig. 2.2, we see that, for fixed a, the greater the

imbalance between b and c , the lower their corresponding Re (λ2(α, 1, v⃗)). As a result, we may conclude numerically that
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(a) v⃗ = (a, b, c) = (−10, b, 10 − b). (b) v⃗ = (a, b, c) = (−30, b, 30 − b).

Fig. 2.2. The parts (a) and (b) are mappings of the parameter b into Re(λ2(α, 1, v⃗)) with v⃗ = (−10, b, 10 − b) and v⃗ = (−30, b, 30 − b) for 0 ≤ b ≤ 10
and 0 ≤ b ≤ 30, respectively. For each v⃗, the corresponding wavelet constant α is chosen such that Re (λ2(α, 1, v⃗)) is a minimum, as seen in Fig. 2.1.

the asymmetric coupling of the coupled systems is easier to control via the wavelet transform method than its symmetric
counterpart.

Conclusion. By adjusting the wavelet constant of the wavelet transform method [19], it was obtained that the method
can greatly reduce the coupling strength needed to synchronize a coupled chaotic system. In this work, a certain type
of asymmetric sparse connection topology for coupled chaotic systems with the wavelet transform method was studied
analytically. It is proved that on applying the wavelet transformmethod to the coupled chaotic systems, the lower bound dc
on the coupling strength d for achieving synchrony is independent of the number of nodes N of the systems. Furthermore,
we show that asymmetric coupling schemes for networks of coupled chaotic systems obtained with the wavelet transform
method are even more effective and controllable as compared to those for the symmetric cases. We conclude our work by
suggesting some possible future work. It would be of interest to develop new techniques for finding the explicit eigenvalue
formula for C(α, β, v⃗), where β ≠ 1. Note that our techniques given in [21] fail to carry over to Robin boundary conditions.
It is also very much worthwhile to pursue the cases where the coupling matrix has the form C(α, β, v⃗), 0 ≤ β ≤ 1.
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