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perforated domains is concerned. Let € denote the size ratio of
the holes of a periodic perforated domain to the whole domain.
It is known that, by energy method, the gradient of the solutions
of elliptic equations is bounded uniformly in € in L% space. Also,
when € approaches 0, the elliptic solutions converge to a solution
of some simple homogenized elliptic equation. In this work, above
results are extended to general W1P space for p > 1. More
precisely, a uniform WP estimate in € for p € (1,00] and a WP
convergence result for p € (%,oo] for the elliptic solutions in
periodic perforated domains are derived. Here n is the dimension
of the space domain. One also notes that the LP norm of the
second order derivatives of the elliptic solutions in general cannot
be bounded uniformly in €.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Convergence for the solutions of elliptic equations in periodic perforated domains is presented.
Let Y =(0,1)" for n > 3 consist of a sub-domain Yy, completely surrounded by another connected
sub-domain Y; (=Y \ Yp), € € (0,1], 25, = {x | x € €(Y;n — j) for some j € Z"} with boundary 9525,

and Q; =R"\ 2f be a connected region. The problem that we consider is

=V . (VUe¢ + Q¢) =F¢ iI‘l.Q;,
(VUe+Qe)-n€=0  ondgy, (1.1)
[Uel|(x) =0(1) for large |x|,
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where Qe, Fe are given functions and i€ is a unit normal vector on 825, |U¢|(x) = 0(1) for large x|
means limyx— oo |Ue|(x) = 0. If Q¢, Fe both are bounded with compact support, by energy method,
a solution of (1.1) in Hilbert space Dl’z(ﬂj) (see definition in Section 2) exists uniquely for each e.

The L? norm of the gradient of the solution of (1.1) in Q; is bounded uniformly in €. If, in addition,

Qc =0 and F. =F in (1.1), by compactness principle [3], there exists a function Uy € D:2(R") such
that the solution U, of (1.1) satisfies

VUeXoe — KVUg in L2(R") weakly as € — 0, (1.2)

where XQ; is the characteristic function on .jS and K is a positive definite matrix depending on Y.

Moreover, Uy in (1.2) satisfies

V. (KVUo)=|Y;|F inR"
{ (KVUg) = |Y§] (1.3)

[Uol(x) =0(1) for large |x|,

where |Y¢| is the volume of Y. It is interesting to know whether a uniform bound of the solution
of (1.1) in € in 52; can be derived in LP space and whether a convergence rate of U, can be obtained
in LP space for any p € (1, o] or not. One example in Remark 2.1 below shows that the LP estimate
of the second derivatives of the solution of (1.1) may not be bounded uniformly in € in general.

There are some literatures related to this work. Lipschitz estimate and W?2'P estimate for uniform
elliptic equations with discontinuous coefficients had been proved in [13,17]. Uniform Hélder, LP, and
Lipschitz estimates in € for uniform elliptic equations with periodic smooth oscillatory coefficients
were proved in [4,5]. Uniform Lipschitz estimate in € for the Laplace equation in periodic perforated
domains was considered in [22]. Uniform Hoélder and Lipschitz estimates in € for non-uniform elliptic
equations with periodic discontinuous oscillatory coefficients were shown in [24]. By homogenization
theory, the solutions of elliptic equations in periodic perforated domains in general converge to a
solution of some homogenized elliptic equation with convergence rate € in L? norm and with con-
vergence rate €!/2 in H' norm as € closes to 0 (see [6,12,20] and references therein). Higher order
asymptotic expansion for the solutions of elliptic equations in perforated domains could be found
in [7,14]. Rigorous proof of higher order convergence rate for the solution of (1.1) in Hilbert spaces
was considered in [6,8,20]. In this work, we shall derive a uniform WP estimate in € for the solu-
tion of (1.1) in 52; and prove a WP convergence result with convergence rate € for the solution of
(1.1) for p > 1 case. The approaches to derive above results are similar to those in [4,5] and are based
on the following steps: First we prove the existence of the Green’s function of the Laplace operator
in perforated domains. Next we find approximations of the Green’s function of the Laplace operator
in perforated domains. Then we derive a uniform WP estimate in € for elliptic equations in per-
forated domains. Finally an asymptotic expansion technique is used to derive the WP convergence
rate for the solutions of (1.1) and (1.3). Concerning the approximation of the Green’s function of the
Laplace operator in bounded perforated domains, some uniform approximations in € in L* space for
the Green'’s function can be found in the review paper [18] and references therein. However, they are
not enough for our purpose. Uniform approximations in € in L° space for the zero, the first, and the
second order derivatives of the Green'’s function are needed here, and they are derived by an approach
different from [18].

The rest of this manuscript is organized as follows: Notation and main results are stated in Sec-
tion 2. In Section 3, we present uniform Hoélder and uniform Lipschitz estimates in € for the solutions
of elliptic equations in periodic perforated domains; prove an L* convergence result for an elliptic
equation in perforated domains; derive a priori estimates for some interface problems; show the exis-
tence of the Green’s function of the Laplace operator in perforated domains; and give some estimates
for the zero order and the first order derivatives of the Green’s function. Approximation of the second
order derivatives of the Green’s function of the Laplace operator in perforated domains is derived in
Section 4. Main results (that is, a uniform WP estimate in € and a W1-P convergence result for
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the solution of (1.1)) are shown in Section 5. Finally, uniform Hélder and uniform Lipschitz estimates
in € for the solutions of elliptic equations in perforated domains claimed in Section 3 are proved in
Section 6.

2. Notation and main result

W*P(D) denotes a Sobolev space with norm || - [ws.pm), cke(D) is a Holder space with
norm | - [l cke ), W,So’cp(]D)) = {¢ | ¢ € WSP(D) for any compact subset D of D}, Cﬁ)’f‘(]D)) ={¢|¢e
cke (D) for any compact subset D of D}, and [¢]co« is the Holder semi-norm of ¢, where s > —1,
pell ool k>0, a€[0,1] (see [2,11]). HS(D) = WS2(D), LP(D) = WOP(D), H} (D) = W,‘o*f(D),

C(D) = C%%M). C*°() is a space of infinitely differentiable functions in D, C°(D) is a subset
of C*°(D) with compact support in D, and CSST(R") is a subset of C*°(R™) of (0, 1)"-periodic
functions. H;er(D) (resp. C’;;_,‘;‘(D)) is the closure of ngr(R”) under the H® (resp. C%%) norm and
IS5, = ¢ 1Hs @0, 1)) (Tesp. 181 ety = 1l ke @no.1ym ) for s =1, k>0, a €[0,1]. WP (D) is
the closure of Cg°(D) under the WP norm for s > 1, p € (1, 00). supp(¢) is the support of ¢. For
Banach spaces By and By, define ||¢1, ..., &llB; = 15118, +- -+ 1% lB; and [ |IB;nB, = IZ 118, + 1 IB,-
Let By(x) denote a ball centered at x with radius r > 0. For any set D C R", |DJ is the volume of D,
D is the closure of D, X is the characteristic function on D, D/r = {x | rx € D} for r > 0, dist(x, 9D)
is the distance between x and 9D, and

][g(x)dxz ﬁ/g(x)dx if¢ e L' (D).
D D

If ¢ e L'D), Q)xr = F o ¢ dy. Let 2n = {x|x € Yn — j for some j € Z"), 2y =R"\ 2m,
28 = 0m, 2F = w2y, and 327 be the boundary of 2 for any w € (0,00). DL2R" =
{¢ e LnZTHZ(R”) | V¢ € L*(R™)} under the norm I¢llpragny = IVEll2@ny is a Hilbert space (see
p. 168 [15]). D‘vz(.Q)i) = {¢lgs | for ¢ € DV2(R")} for any € € (0,1] with norm ||;||D1_z(9;)
IV¢li2qg) and DM2R" \ Ym) = (¢lgn\y; | for any ¢ € DV2RM) with norm [[¢ |l pr2gn 7y =
IVE Il 2@n\7;- 1t is easy to see that both D”(Q?), DL2(R™\ Y,,) are also Hilbert spaces. Denote

by x; for i € {1,...,n} the i-th component of x € R", R', = {x|x; >0}, and dR, = {x|x,; =0}.
Next we present our main results.

Theorem 2.1. Suppose

Al. Yy, is a smooth simply-connected sub-domain of (0, 1)" forn >3,
A2. €€(0,1],pe(1,0), Q¢ € LP(.Q;) with support in B¢ (0) for some t > 0,

then a Wl'p(.Q;) solution of

loc

—V (VU +Qe) =0 in £,
(VUe+Qe)-0°=0 onds2,
[Uel(x) =0(1) for large |x|

exists uniquely. The solution U satisfies
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IVUellLr(5) < €llQellzr(es) forp e (1, 00),

I E”[_n ) < cllQeller e forpe(1,n),

lUe ”LP(BS(O)DQ;) < sl Qe ||LD(.Q;) forp e (1, 00),

where s > 0; c is a positive constant independent of €, Q¢; and c; s is a positive constant independent of € but
dependent on t, s.

Theorem 2.2. Suppose A1 and
A3. € €(0,1], p € (1, 00), Fe € W—1-P(R") with support in B;(0) for t > 0,

thena W) p(Q ) solution of

loc

_AU6 = Fé in Q;,
VU -0 =0 ondfy, (21)
[Uc|(x) =0(1) for large |X|

exists uniquely and satisfies

IUe ||W1-p(35(o)ng;) < sl Fe XBt(O)ﬂQ; lw-1.p @y (2.2)

where s > 0 and c; s is a constant independent of € but dependent on t, s. If, in addition, Fec € LP(R") has
compact support, the solution of (2.1) satisfies

vUu < | F ey forpe(l,n
Il e|| (95) Il €||LP(Qf) forpe(,n),

(2.3)
lUe

SclFellrieg)  forpe(1,n/2),

P

2P (29)

where c is a constant independent of €, Fe.
Theorem 2.1 and Theorem 2.2 imply that

Corollary 2.1. Suppose A1, € € (0, 1], p € (25, 00), and

n-2°
Ad. Q. P ([2 ), Fe € L"+P (R™) have compact support,

then a WLP(Q;) solution of (1.1) exists uniquely and satisfies

IUe ||w1p(_(ze (||Qe||uz(gf) +11Qe, Fe”

):

(QE + [ Fell

L n+2p (QG
where c is a constant independent of €, Q¢, Fe.

Theorem 2.3. If A1 holds, € € (0, 1], and both Q, Fe € L™ (R") for any § > 0 have compact support, then
a Dl*Z(Q;) solution of
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=V . (VUe + Q¢) =F¢ in-Q;,

- (2.4)
(VU¢ 4+ Qe)-n€ =0 on 382,
exists uniquely and satisfies
IUellioe(g) < €llQe, Fellpnts gy, (2.5)
where c is a constant independent of €, Q¢, Fe. If, in addition, Q¢ = 0in R", then
IVUelloos) < CllFellpmes @, (2:6)
where c is a constant independent of €, Fe.
Let XD (y) € H},,(£2) for i € {1,...,n} satisfy, in the cell Yy,
~V (VXD +8)=0 inYy,
(VXD +8)-ny=0 ondYp,
(2.7)

/X(i) dy =0,
Yr

where ﬁy denotes a unit normal vector on dY,;, and €; is the unit vector in the i-th coordinate
direction in R". Define

xg'”(y)ze}g(")(g) forie{l,...,n},
2.
Xe=(x,....x), (28)
X=X, xM).
Denote by & an n x n matrix function whose (i, j)-component is 3; X" and define
K= /(1 + E(y))dy, (2.9)

Yr

where [ is the identity matrix. By [3], K is a constant symmetric positive definite matrix. For i1, i €
{1,...,n}, find ST-2)(y) € H},.(2y) satisfying, in the cell Yy,

ASGni2) 4 ailx(iz) = —8i, iy — ailx(iz) + i, inyy,
vSini2) ﬁy + X(iz)nyi1 =0 ondYp, (210)

/S(h.iz) dy =0,
Yg
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where
1 ifiy =iy,
Sirip = e .
0 ifiy #iy,
Ki, i, is the (i1, i2)-component of K in (2.9), and ny, is the i1-th component of ﬁy =(My,,...,0Ny,).

Let S(y) = (SU12)(y)) be an n x n matrix function and Se(y) = €(S012)(2)). By energy method
and Lax-Milgram Theorem [11], X@) in (2.7) and S22 in (2.10) for i1,i € {1,...,n} are solvable
uniquely in H;laer(Qf)~ By Theorem 6.30 [11] and tracing the proof of Theorem 8.24 [11], if Y, is a
(%% domain for some « € (0, 1), then

5 gy + 15

@) SC forii,ip e{1,...,n}, (211)

por (827)
where c is a constant.

Remark 2.1. The W2'P norm of the solution of (1.1) in general is not bounded uniformly in € even
if Q¢, Fe have compact supports and ||Q€||W1,p(91er), |Fe ”Lp(g;) are bounded independent of €. One

example is as follows. Suppose 7 is a bell-shaped smooth function satisfying n € C5°(B1(0)), n € [0, 1],
and n(x) =1 in B1/3(0). By (2.7) and (2.8), we have the following equation

—v - (V(nx) =XV +ner) = —(VXL +8) vy in 25,
(VM) = xPVn + i) -n€ =0 on 9925,
|77X§])‘(X) =0 for large |x|.

By (2.11), we see
1 > 1, >
“X(e ' —né; HWLP(Q;) +| (VXE '+ el)V””LP(Q;)
is bounded uniformly in €, but ||77X§1)||Wz,p(9;) is not bounded uniformly in €.

Let IT. for € € (0,1] denote an extension operator in Q; which maps a function ¢ in Q; to

¢ in R" and still keeps the same regularity of ¢ (see [1] for the existence of such an operator).
By Theorem 4.31 [2] and extension theorem [1], we know, for any ¢ € Wl'p(.Q;), p € (1,n), and

€€ (0,1],

I€1, 8, ey < ITEC, 2, o < NV ITEE Iy < €IV ur o (212)

where ¢ is independent of €. If F € C$°(R"), then the Dl’Z(Q;) solution of

—AUc=F in .Q;,
) (213)
VU -0 =0 ondsy,

exists uniquely by Lax-Milgram Theorem [11], extension theorem [1], and (2.12). Moreover,

<
IIUelanzTnz(Q;) FIVUell2@4) < CIIFIILH%(R”),
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where c is independent of €, F. By compactness principle [3], there is a subsequence of the solution
of (2.13) satisfying, for any fixed r > 0,

MU — Uy in L?(B,(0)) strongly
5 ase — 0,
VUeXqe — KVUp  in L*(Br(0)) weakly

where [1¢ is the extension operator used in (2.12), XQF is the characteristic function on £2¢, and K is
the one in (2.9). The limit function Ug € D12(R") satisfies

-V - (KVUg) =|Yf|F inR" (2.14)
where |Y¢| is the volume of Y ;. Moreover, we have the following results:
Theorem 2.4. Assume A1 and € € (0, 1].
() Ifpe (n"Tz, oo) and F € WP (R") with compact support, the solutions of (2.13) and (2.14) satisfy

Ucs—U < ce||F s
1Ue = Uollirigg) < celFll om0 ooy

[VUe — (I + VXe)VUg < ce||F||

np s
||LP(Q;) WLP(R”)QWLW(R”)

where c is a constant independent of €, F.

(2) If§ > 0 and F € W18 (R™) with compact support, the solutions of (2.13) and (2.14) satisfy

Uc—-U < c€e||F
Ve = Vollica SCENFN om0

where c is a constant independent of €, F.

(3) If 8 > 0 and F € W2 t8(R") with compact support, the solutions of (2.13) and (2.14) satisfy

[VUe — (I + VXe)VUg < ce||F|

2i )
||L°°(Q;) Wl'ﬁ(Rn)ﬁwlnﬂS(Rn)

where c is a constant independent of €, F. Here I is the identity matrix and X¢ is defined in (2.8).

3. Existence of the Green’s function

This section consists of three subsections. The first subsection is to present uniform Holder and
uniform Lipschitz estimates as well as to show a convergence result for elliptic equations in perforated
domains .Q; We also give a local maximum norm estimate for a non-uniform elliptic equation. In the
second and the third subsections, we prove the existence and derive some estimates for the Green'’s
function of the Laplace equation in the perforated domain £ and in R"\ Y,n respectively.

3.1. Some auxiliary results
Let dy be a positive constant and let Dy, D1, D, A, D, be smooth domains satisfying

YnCDoCDiCDCACY CDy,
dist(Ym, 0Dg), dist(Dg, 0D4), dist(D1, 0D) > dg > 0, (3.1)
dist(D, 0.A), dist(A, dY), dist(Y, 0D), dist(0D2, 021m) > dp > 0.

Next we give a uniform Hélder estimate for elliptic equations in perforated domains.
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Lemma 3.1. For any § > 0 and € € (0, 1], thereisa u € (0, %) such that any solution of

—V - (VUe + Qe) = Fe  in B1(x) N 25,
. (3.2)
(VUe+Qe)-n*=0  onBi(x)Nds2y

satisfies

[Ué]CO,/L(W) < C(||Ue||L2(Bl(x)m97) + 11 Qe. Fs||Ln+5(31(x)m97)),
where x € R" and c is a constant independent of €, x.

Proof of Lemma 3.1 will be given in Section 6.1. Next we give a pointwise estimate for the solution
of (2.13) and the solution of (2.14).

Lemma 3.2.If§ > 0, € € (0,1], and F € W3 (R™) with compact support, the solution of (2.13) and the
solution of (2.14) satisfy

Us—-U <cellF
IUe = Uollpo () < cell ”wL%(Rn)nWLM(Rn)’

where c is a constant independent of €, F.

Proof. By Lemma 4.4 [11], (2.14) in [11], and Theorem 3 on p. 39 [23], the solution of (2.14) satisfies

| v2Uo clIF| (33)

1,20 < 120 ,
W n+2 (Rn)ﬂwLnﬂS(Rn) W n+2 (Rn)mwl,nJﬂS(Rn)

where c is a constant dependent on n, §, K but independent of F. Define
Pe(®) =Uc(®) — Uo(x) — X () VUo(¥) — Se()V2Uo(x)  in 2,

where Ue, Ug are the solutions of (2.13), (2.14) respectively, X¢ is defined in (2.8), and S¢ is defined
in (2.10). Then function @, € DLZ(.Q;) satisfies

—V - (Vge +SeV2Uo) =X VAU + VSV Uo  in 2§,
(3.4)
(Ve +SeV3Up) - R =0 on 125,
By energy method, (2.11), (2.12), and (3.3), the solution of (3.4) satisfies
n \% ey < ce||F n s 3.5
e At LI (35)
where c is independent of €, F. By Lemma 3.1, (2.11), and (3.5), for any € € (0, 1] and x € R",
[(pG]CO.u(W) < ce ”F”W]% (R")QWL”*a(R")’ (36)

where u € (0, n‘sﬂ) and c is independent of €, x, F. By Holder inequality and (3.5)-(3.6),



1742 L.-M. Yeh/]. Differential Equations 255 (2013) 1734-1783

lpe )| < |@e () — ][ <pe(y)dy’+‘ ][ (/)e(J/)dJ/‘
B](X)OQ; Bl(x)ﬂ.fo
ScellFl g an ;
W n+2 (Rn)mwl.nJré(Rn)

which implies the lemma. O

Lemma 3.3. Forany p € (1, 0), s € (n, 00), and « € (0, 1), there is a constant c such that any solution of

—V.-(Vo+ Q) =F inDy\ Vm, 37
(Vo+Q)-i=0  ondYp '
satisfies
”(p”WLP(Yf) < C(”(p|l]_P(D2\}7) +1Q “LP(DZ\YT,,) + ”FXDZ\Y;”W*LP(DZ))! (38)
||V(/)||L°°(Yf) < C(”(/)”Loo([)z\ﬂ) + ||Q ”@u([ﬁ) + ”F”LS(Dz\ﬂ))’
where 1 is the unit outward normal vector on 3Yy, and dD-. See (3.1) for D5.
Proof. Let ¢ denote a constant. o
Step 1: Claim if Q € Cg°(D2 \ Yi) and F € LP(Dy) for p € (1, c0), any solution of
~V-(Vy+Q) =F inDy\ Vm,
(Vy+Q)-n=0  ondYnm, (3.9)
=0 on dD;
satisfies
”w”Wl.p(Dz\ﬂ) < C(”w”LP(Dz\V) + ”Q ”LP(DZ\E) + ”FX[)Z\EHW*LP(DZ))- (3~10)

First we assume 19 e 7y + 1 QI ey \77) + IF Xpp 7 w100y <1 and let ¢ be a solution of

~V-(V§+Q)=F inDy\Vp,

. (3.11)
Y =0 on Y, U dD;y.
By [19], there exists a unique function gﬁ € W(;'p(Dz \ Y) satisfying (3.11) and
1 lwip 7y <€ for p e (1, 00). (3.12)
Set y =y — . (3.9), (3.11), and Q € C(Dy \ V) imply
—AYy =0 inDy\ Ypn,
VY -R=—Vy -0 ondYpy, (313)
v =0 on dD;.
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By the Green’s formula, (3.13), and Theorem 6.5.1 [9], we see that

U /2 = Tavn (§) = Eay (VT - Tilay,,) + Eap, (VY - Tilgp,) 0N 3 Ypm, (3.14)

where Ey,,, Esp, (resp. Tyy,,) are the single-layer potentials (resp. double-layer potential) (see (4.1)
in [25] for definition). By (3.12), (3.14), and Lemma 4.1 [25],

I w1702 (avy < €(1+ VY - Bllw-vppapy) for p e (1,00). (3.15)

Let 1 be a smooth function satisfying n € C*°(D,), n € [0, 1], n(x) =1 if dist(x, dD2) < do/2, n(x) =
ifxeY, [Vnllyicom,) <c. See (3.1) for do. For the existence of such a function 7, we refer the reader
to Lemma 7.2, Chapter 1 [14]. Multiply (3.9) by 7 to see

=V (V) =¥ Vn+nQ) =nF —Vn(Vy + Q) inDy\ Yp, (316)
ny =0 on dY,; U aD,. '
By [19], the solution of (3.16) satisfies
V- n”w ~1/pp(Dy) & <clnygliw, P (Do\ V) <c (317)

(3.13), (3.15), and (3.17) imply

(K2 ||W1,p(|)2\ﬁ) <c.

Together with (3.12), we obtain (3.10).
Step 2: Claim if Q € Cg°(D2\ Yir) and F € LP(Dy) for p € (1, o0), any solution of (3.9) satisfies

||1/f||W1 p(])z\ym) (” Q ||Lp([)2\ym) + ||FX[)2\ym ”W 1 P(Dz)) (3-18)
For any ¢ € C3°(D2 \ Ym) and r € [2, 00), let p be the solution of

—Ap=¢ inDy\Yn,
Vo-n=0 ondYy, (3.19)
p=0 on dD,.

By Lax-Milgram Theorem and Theorem 7.26 [11], the H! solution of (3.19) exists uniquely and
”p”LHZTnZ(DZ\E) X ||/0||H1([)2\ym) C||§||L2([)2\ym) C”“l]_r([)z\ym)

So, if r € [2, 2 i 2] then

oW 7\ 7y < €IS N 1@\ 7o) (3.20)

By (3.10) and (3.20), if r e [2, 2 o= 2]

”p”wlr(Dz\ym) C”C”Lr(])z\ym)’ (3.21)
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If r > =5, by (3.21),

< < 7oy .
”p”WLHZTnZ(DZ\ﬂ) <clig ”LHZTHZ(DZ\Y_m) < llgllyr o\ v (3.22)

Theorem 7.26 [11] and (3.22) then imply

2n
n <c n 1fn>4andr>—
el " (Dy\ i) ”'O”w1‘n%2<nz\x’_m> -4
2n
n<4andr > 5 or (3.23)
eV - N
m W n=2(Dy\Ynm 2n
P21 Ym) n>4andr<—4.

Soifn<4and r > nzT"z orifn>4andre[2, 2 = 4] by (3.10) and (3.22)-(3.23),

lollw, TD\T) S C||§||Lr([)2\ym) (3.24)

Repeating above argument, we see that the solution of (3.19) satisfies (3.24) for all r > 2. Since
C§P D2\ Y.n) is dense in L"(Dy \ Y;) for all r > 2, we see (3.24) holds for any ¢ € L"(D3 \ Y).

Let £ € L'(Dy \ Yi) for r € [2, 00), multiply (3.9) by p obtained from (3.19), and use extension
theorem [1] (or see remark above (2.12)), Green Theorem, and Holder inequality to obtain

/wzdx= / Y Apdx= / (QVp — Fp)dx

D\ Vi D\ Vi D2\Vim

/ (QVp — FXy i~ IT1p)d

D\ Vi
< C”; ”Lr(])z\ﬂ)(” Q ||Lp([)2\ﬁ) + ||FX[)2\E ”W*LP(DZ))S (3-25)

forpe(1,2],1/p+1/r=1.So

||1/f||1_17([)2\y_m) < C(”Q ”LP(DZ\E) + ”FXDZ\E”W—LIJ(DZ)) for pe (1,2]. (3-26)

Egs. (3.10) and (3.26) imply (3.18) for p € (1,2]. Similarly take p to be the solution of (3.19) with
L eLl"(Dy\ Yn) for r € (1,2]. Since (3.18) holds for p € (1, 2], the solution of (3.19) satisfies

”p”wl r(Dz\Ym) C||§||Lr([)2\y ) forr € (1 2] (327)

Again we multiply (3.9) by p obtained from (3.19) with ¢ € L"(D; \ Y;z) and r € (1, 2] as well as argue
as (3.25) to see that (3.18) holds for p € [2, 00). So (3.18) holds for p € (1, 00).

Step 3: By Lax-Milgram Theorem [11] and maximal principle (see Theorem 3.1 and Lemma 3.4
[11]), we see that the WP solution of (3.9) exists uniquely and satisfies (3.18) for any Q e
C¥My\ Vi) and F € LP(Dy) for p € (1, 00). Since C5°(D2 \ Y) is dense in LP(D; \ Y;y) and LP(Dy)
is dense in W~1-P(D,) for p € (1, 00), the solution of (3.9) exists uniquely and satisfies (3.18) for any
Q € LP(Dy\ Yp), Fe W1.P(Dy) by using a limiting argument.

Step 4: Let 7 be another smooth function satisfying # € Cg°(D2), 7 € [0,1], # =1 in Y,
VAllw1.eom,) <c. Multiply (3.7) by 7 to see
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=V (Vi) — Vil +7Q) =HF = Vi(Vp + Q) inDz\ Yn,
(Vi) =V +1Q)-n=0 on dYp,
np=0 on 9D>.
Let ¥ = fj and use (3.18) to obtain (3.8);.
Step 5: One can modify the argument from Step 1 to Step 4 and employ Lemma 3.2 [24] and (3.8);
to obtain (3.8)3. So we skip it. O

We also have a uniform Lipschitz estimate for (3.2).

Lemma3.4.If§ >0,€ € (0,1],and @ € (0, 1), any solution U, of (3.2) satisfies

— 2 ~
||VUe||L°°(Bl/2(x)m.Q;)<C(||Ue||L°°(Bl(x)n:z;)+€ W ||Qe||co,a(9—;/€)

+ €72 Qe Fe HL"‘*"‘(Bl(X)ﬂQ;))’ (3.28)

where Q¢ (x) = Q¢ (€x), n= n%, x € R", and c is a constant independent of €, x.
Proof of Lemma 3.4 is in Section 6.2. For any v € (0, 1] and w € (0, o0), we define
1 ifyeR?,
EV(y) =
V2 ify e 2.
Lemma 3.5.If v € (0, 1], w € [1, 00), and 0 € 322, any solution of

V- (E"“Vg) =0 inB;(0) (3.29)

satisfies

101143, 2 0n29) + VICTHkE 20nap) < 192,002 + VI9T2E 0n2p).  (3-30)
where k € N and c is a constant independent of v, w.

Proof. Let d; denote the partial derivative in the x; direction, 8{ be t times of partial derivative 9;,
and 9, . i, = 0,0, ---9;, for i,iy,...,ix €{1,...,n}. We consider the following problem:

V. (AV®)+QVD =0 in B1(0) N {x | x, <0},

—12V . (AV¢) +1v2QVep =0 in B1(0) N {x|x,; > 0},

AV® -i=Vv*AVé -1 on B1(0) N {x | x, =0},

=¢ on B1(0) N {x [ x, =0},

(331)

where A is a positive definite matrix, both A, Q are smooth functions, and 1 is a normal vector on
the plane {x | x, = 0}.
We claim that there is a constant c independent of v such that, for any k € N,

PN (8, 0N <0p T VIR KB, /5 0)N (x>0

< (12123, 0nix<op + VIlL2(8, 0)npxn>01)- (332)
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Proof of the claim: This is done by induction on k. Let n be a bell-shaped function satisfying
n € C°(B1(0)), n €[0,1], and n =1 in B3/4(0). Multiply (3.31) by n(®X{x,<0) + ¢Xx,>0)) and do
integration by parts to obtain

|® ||H1(B3/4(0)ﬂ{xn<0}) + V||¢||H1(B3/4(0)n{xn>0})
< (1928, nix<op + V101128, @) 0p)

where c is independent of v. So we prove (3.32) for k=1 case. Let us assume (3.32) for some k € N
and k > 1. Let 7} be a bell-shaped function satisfying 7} € C5°(B3/4(0)), /7 € [0, 1], and /) =1 in B1,2(0).
Take partial derivative 9;, . ; of (3.31) for iy,...,i € {1,...,n — 1}, multiply the resulting equations
by 7(3i;,....i, @ Xxa<0y + 9iy.....5, @ Xix,>0}), and do integration by parts to obtain

1951, @ L1 (B, O <0p + VI0in. i@l H1(By )N (xe>0))

< (12128, 0)nixa<0p + VIO 1128, )0 xa=0p ) (3.33)

where c is independent of v. If we take partial derivative a,fa,-l,_ of (3.31) for iy, ...,ig_1_¢ €

{1,...,n—1},£€{0,...,k—1}, and k > 1, then

o i

32, @

B
1+¢ k+1—s
saf1 th—1 ;
=Y Y Cotyety 830y -0 1@ in B1(0) N {x, <O},
s=0 tj+-+th_1=0
244
0 ai1,~--qik71fe¢

1+¢ k+1—s

th— .
=Y Y Cstyty 030y -0 4¢ inB1(0)N {xq >0},
s=0 t1+-+ty_1=0

(3.34)

where Csy, .., IS smooth in {x, <0} U {x, > 0}. By (3.33)-(3.34), we obtain (3.32) for k + 1 case
and we prove the claim.

Because of A1, we can find an open set O, and a smooth diffeomorphism 7, with positive Ja-
cobian determinant for each @ > 1 such that 0 € Oy, 7,(Oy) = B1(0), 7, (Oyp N 3L25) C {x, = 0},
Tw(Op N 2%) C {xp > 0}, and 7,(Op N .Qjﬁ’) C {xn < 0}. After transform by the mapping 7, Eq. (3.29)
can be written as (3.31) in the new coordinate system. (3.30) follows from (3.32). O

Lemma 3.6.If v, € € (0, 1] and r > 0, any solution of

V- (E"Vg) =0 inBr(x) (3.35)
satisfies
1/2
!so(x)Xg; + Ve (x) Xge | < c‘ ][ wz(y)Xg; +V20 (N Xge dy| (3.36)
Br(x)

where c is a constant independent of x, v, €, 1.
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Proof. Assume x=0 ¢ Q; and define @(y) = @(ry), EV¢/"(y) = EV€(ry). Then (3.35) implies

V- (E"/"V@) =0 inB1(0). (337)

If 1 <e€/r (resp. €/r < 1), Theorems 7.26, 8.24 [11] and Lemma 3.5 for k > n/2 (resp. Lemma 4.3 [24])
imply

[’('Z]’]CO'/"(Buz(O)ﬂQ;/T) < C(”(Z”Lz(Bl(O)ﬁQ;/r) + ||V¢J||L2(Bl(0)ﬁﬂ,%/r))’

where u > 0 and c is a constant independent of v, €, r. So

lp0)| = |@(0)] <

() — ][ <ﬁ<y)dy‘+| ][ &(y)dy‘

B]/z(O)ﬁQ;/T B]/z(O)ﬁQ;/T

< @leor i zomnem ][ IyI"dy + ‘ ][ ) dy‘
B1/2(0)N2 /r B1/2(0)N 2 /r

1/2
<c

15 |*dy + ][ @) |* dy
B](O)O.Q;/r B](O)OQ,%/I’

1/2

=c (3.38)

][ )| dy + ][ o) dy

Br(O)N2§ B (0)NS2E,

IfO#£xe€ .ch we shift x to 0 and repeat the above argument to see that (3.38) with 0 replaced by x

still holds. So (3.36) is proved for x € .Q;

Next we assume x =0 € €Yy C 25 and define @(y) = ¢(ry). So (3.37) still holds. If €/r <1,
by maximal principle [11] and 0 € %Ym, we know that maximal value of |@| in the region %Ym is
bounded by the maximal value of |@| on the boundary of €Y. Since (3.36) holds in .jS

e =[gO] < max §)|

zed
1/2
< max ¢ ][ B Xae e (1) + V2 [F )| Xgg e (1) dy
" Bgy@

1/2
<c

~ 2 ~ 2
][ B Xaer ) + V2B Xeag e (1) dy
B1(0)
1/2
<cC

)

][ o) [* Xae 1) + V2 || Xy, () dy
B (0)

where dg is defined in (3.1) and c is independent of v, €/r. If €/r > 1, Theorems 7.26, 8.24 [11] and
Lemma 3.5 with k > 3 imply
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VIlcon s, monagm < CUPI@0nesm + VI@I2E0negm):

where u, c are positive constants independent of v, €/r.

lp(0)] = || <

() — ][ amdyM ][ ¢<y>dy‘

B1/4(0)N$25, /1 B1/4(0)N$25 /1
< 1@con @ mommem T 1912m,0ne8/m)

Ay~ ~
< (182 @nas/m + V1@ e 0nasm)

1/2

)

-1
<cv

][ e [*Xas (1) + V2|9 [* Xag (v) dy
Br(0)

where c is independent of v, €/r. So (3.36) holds for x=0¢c €Yy, C £2f, case. If x € 25 and x # 0, we
shift the coordinate system such that the origin of the coordinate system is located at x. Then we see
that (3.36) holds for x € 25. O

3.2. The Green'’s function in 2§

Let Gy ¢ for v, € € (0, 1] denote the Green’s function of

—Vy- (Ev’e(}’)vygv,e(?(, J’)) =8(x—y) inR",

Gue(x,¥y)—>0 as|x—y|— oo.

(3.39)

By Theorem 5.4 [16] and remark on pp. 62, 67 [16], Gye(x,-) € H}OC(R” \ {xh N Wllo’cl (R™) exists
uniquely when n >3 and

G, ¥)=Gve(y,x) forx#y. (3.40)
Lemma 3.7. There is a constant c independent of v, € € (0, 1] such that

clx—y|>™" ifx,y € Q¢,

v x—y2 " ifxe ¢, ye RS orifxe 2F, ye QF,
1Go.c(x, )| < Koy V€ T OTYXE T ¥ (3.41)
w2 x—y> T ifx, y € 25,

clx—y|>™" iflx—yl>e,

[VyGu.e (6, 1)| + |VaGu.e ()| Sclx—yI'™" ifx, y € 2F. (3.42)
For any x € 2y, there is a number d > 0 such that if 0 < |x — y| < d, then
VyGua(x, y)| <cv?ix—y' ", (3.43)

where c is a constant independent of v.
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Proof. Proof of (3.41); (that is, for x,y € .Q; case). Setr=|x—y| forx,y € .Q)i Let F € C§°(Br/3(¥))
and find ¢ € DV2(R") satisfying

—V - (E"Vg) = FXge + VF Xge .

By Lax-Milgram Theorem [11], extension theorem [1], and (2.12) for p =2, ¢ is solvable uniquely
in D12(R"). By Definition 5.1 and p. 67 [16] and Lemma 3.6, we see, for x € £2¢,

pXx) = f Gv.e %, 2)F (D) Xe (2) + Gu,e (%, D)VF (D) X, (2) dz,

Br/3(y)

12 (3.44)

lp(o)| <c 9* (@) Xo: (2) + 129 (2) Xog (2) dz

Br/3(x%)

3

where c is independent of x, y, v, €, r. (2.12), (3.44), extension theorem [1], and Holder inequality
[11] imply

f Gr e (% DF (@) X5 (D) + Gy (%, 2V F (D) X (2) 2
Br/3(y)

1/2
< c’ ][ 9?2 Xoc (2) + V29?2 Xog (2) dz

Br/3(x)

n—2
2n

2n
< c’ ][ |¢(Z)Xg; (2) + vp(2) Xge (2)| "2 dz

Br/3(x)
VoXae + vVV@QXae |12 lFll25

N —— <o, (345)

rz— rz—
where c is independent of x, y, v, €, r. Multiply (3.45) by r~" to obtain
Gv.e X, 2)F(2) X2 (2) + Go,e (%, 2)VF (2) X, (2) dz
Br/3(y)
1/2
<— F(z) dz‘ . (3.46)
n—2

Br/3(y)
Since y € £2¢, Egs. (3.39), (3.46) and Lemma 3.6 imply

5 5 5 1/2 c
|Gv.e (. 2)["Xag () + V¥ |Gu.c (%, )| X () 2| < o5
Brs3(y)

’gl),é(X7 y)’ < c

So (3.41)1 holds. (3.41),3 are proved exactly by following the argument of (3.41)1. (3.41)4 (that is,
|x — y| > € case) follows from Theorem 3.1 [11], (3.41);, and (3.1).
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Proof of (3.42). Assume x, y € .Q; x# Yy, and y = 0. We define r = |x|, then
—V - (E"€(2)V0y ¢ (%, 2)) =0 in By5(0).
If 9(2) =Gy e (x, 52), then
~V - (E"*/"Vg)(z) =0 in B1(0).

Suppose 2¢€/r > 1, by Theorem 2.10 [11], Lemma 3.5 with k > % +1, and (3.41), we get

2
[VyGo.e(x. 0] =~ |Ve(0)|
C 1—
< F(”(p”LZ(B](O)ﬂQ?G/r) + V”(p”LZ(B](O)mQr%‘G/V)) < C|X| n7 (3'47)

where c is independent of x, y, v, €/r. Suppose 2¢/r <1, by Lemma 5.3 [24] and (3.41), we also
get (3.47). Assume X,y € .jS and x # y. One can shift y to 0, repeat the above process, and obtain

[VyGu.e(x, ¥)| < c|x—y|'~", where c is independent of v, €. By (3.40), we also obtain |VyGy ¢ (, ¥)| <
clx— y|'~", where c is independent of v, €. So (3.42) is proved. (3.43) can be proved in a similar way
as (3.42), so we skip it. O

Lemma 3.8. There is a unique function G(x, y) in 2y x 2y satisfying, for any x € 2y,

—AyGX, ) =8(x—1y) in 2y,

VyG(x,y)-ny =0 on d2m,

|Gx, y)| <clx—y>" ifx#y, (3.48)
[VyGx. p)| + | VxGx. p)| <clx—y|"™ ifx#y,

G, ¥)=G(y,%) ifx#y,

where ﬁy is a unit vector normal to 92, and c is a constant.
For any x € $2y, there is a number d > 0 such that if 0 < |x — y| < d, then

|VxVyG(x, y)| <clx—y|™", (3.49)
where c is a constant independent of x, y.

Proof. If x € ¢, dist(x, 9§2y) > 0. Assume t; — 0 and s; — oo as i — oo. For any s; > dist(x, 082y) >
ti > 0, we define D, 5;(x) ={y e R"| 0 < t; < |x — y| < s;}. From (3.39),

~Vy - (E"1VyGy1(x,y)) =0 inDy 5 (). (3.50)
Since x € 27, by maximal principle (see Theorem 3.1 and Lemma 3.4 [11]) and (3.41),

1Gy 1(x, ')”L”(Df,-,s,-(x)) with fixed t;, s; is bounded independent of v. If j € Z" and the closure
Y — j C Dy, 5 (x), by Lemma 3.3 [24], we see

||g1),1(xa .)“CLO‘(D\Tm—j) + ”g\),1 (X, ) ||C1a(y_m_]) < C||gU,1 (X’ ) ||L00(Dti,5,* ®)’
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where Y, CDC Y (see (3.1)), @ € (0,1), and c is independent of v. So there are f;, 5; satisfying (1)
O<tj<Tti<%i<si (2)t— 0,5 — oo as i — oo, and (3)

|Gv.1(x. ')Hcm(m) + |Gvax. ) ”CLWW) <C (3.51)

where « € (0,1) and c is bounded independent of v but dependent on t;. Therefore for each fixed
ti, Si, there is a convergent subsequence of Gyi(x,+) in C“’(.Qf NDz 3 (x)) for some ad<a<1as
v — 0. By a diagonal process, we can even extract a subsequence of G, 1(x,-) (same notation for
subsequence) such that, for all T, 5; with 0 <T; <5i < oo,

Gv.1(x, -) converges to G(x, -) in Cl*a(ﬂf ND7 5 (X)) asv — 0. (3.52)

If ¢ € C3°(R™) and x ¢ supp(¢) (that is, the support of ¢), there are ti, i such that supp(¢) C
D7, 5 (x). Multiply (3.50) by ¢ to see, by (3.51)-(3.52),

0= 3%/ VyGu 1 (X, YIVEW) Xa; +17VyGy 1 (X, YIVE(Y) X, dy

= [ v nvemay. (353)
2

(3.40), (3.52)~(3.53), and Lemma 3.7 imply, for all T;, 5; and for any x € 27,

—-AyG(x,y)=0 in 25 N D7 5 (%),
VyG(x,y)-n, =0 on 82y, N D7 5, (%),
G, p)| <clx—yP™"  fory e 27 NDg 3 (), (3.54)

[VyG(x, y)| <clx—y|"™ fory e 27 NDg5.(x),
G(x.y)=G(y.%) fory € 27 N D7, 5 (0,

where ¢ is a constant independent of t;, ;.
For any F, Q € C(R") with compact support, there is a unique ¢, ; € DV2(R") satisfying, by Lax-
Milgram Theorem [11], extension theorem [1], and (2.12) for p =2,

—V-(E"'Vgy 1+ QXg) =FXo, inR"

By energy method, (2.12), and Lemma 3.3, we see that there is a subsequence of ¢, ; (same notation
for subsequence) such that (1) ¢, 1 converges to ¢ in DLZ(Qf) NWL-P(B.(0)N ) weakly for any
r>0, pe(n,oo)as v— 0 and (2) ¢ satisfies

-V (Vo+Q)=F ingy,
{ v . ! (3.55)
Vp+Q)-n=0  ond2y,
where 1 is a unit vector normal to 3£2;. By Definition 5.1 and p. 67 [16], (3.42), and (3.43),
o1 (X) = / Gt (%, Y)F(y)dy — f V,Gu1(x, y)Q(y)dy forxeR", (3.56)

Q5 2



1752 L.-M. Yeh/]. Differential Equations 255 (2013) 1734-1783
By Lemma 3.7, (3.52), and (3.56), for any x € 2y and d < w
‘sﬂ(X) - / (G MFY) = VyGx, 1)Q () d)"
£25\Bg(x)

= lim
v—>0

Qv (x) — / (Gv,1(x,y)F(y)—Vygu,l(x,y)Q(y))dy’
£27\Bg(x)

= lim
v—0

/ (Goa(x, F(Y) = VyGu1(x, ¥)Q (V) dJ"
Bq(x)

<cd|Q, Fllre By,

where c is independent of d. So, for any x € £2f and § > 0, there is a d< dist(x, 0§2,) such that if
d <d, then cd||Q, Fllrp,x)) < 8. So we obtain

w(X)sz(x, y)F(y)dy—/VyG(x, »QWy)dy. (3.57)
2f 2f

(3.54), (3.55), and (3.57) imply the existence of G(x, y) and (3.48). The uniqueness of G(x,-) for any
x € 27 is due to (3.48)3 and maximal principle [11].
Let x € 2¢, d < dist(x,02m), y € Bgy4(x) \ {x}, and r = |x — y|. By (3.48),

—Az0y;G(z,y)=0 inB;;(x),

where 9y, is the partial derivative with respect to y; for i € {1,...,n}. By Theorem 210 [11]
and (3.48)4,

c _
|VX8in(xv Y)| < F ”8_)/1'6(" J/) ”Loc(Br/z(X)) < C|X - y| l’!,
where c is a constant independent of x, y. So we prove (3.49). O

Remark 3.1. From (3.55) and (3.57) in the proof of Lemma 3.8, we know that for any F, Q € C(R")
with compact support, the D2(£2f) solution of

-V-(Vo + =F in$2y,
{ ¢ QQ) ! (3.58)
(Vo+Q)-n=0 on 42
exists uniquely and satisfies
ox) = / G, y)F(y)dy — / VyG(x, y)Q(y)dy forxe Qf. (3.59)

Q5 2

Following the argument of Lemma 4.1 [11] and employing (3.48)4 and (3.59), if F € C(R") with com-
pact support, the D!-2(£2y) solution of
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{—A(p:F in £,
Vo -n=0 ond2ny

satisfies

V(p()():/VXG(x, WE(y)dy forxe 2f.
25

Tracing the proof of Lemma 4.2 [11] as well as employing (3.49), we have

Lemma 3.9.If Q € C5°(R™) with support in B (0) for some r > 0, then the D'-2(£2) solution of

{—V-(V§0+Q)=0 in Q2p,
(Vo+Q)-n=0 on 92,

satisfies
Ox;p(X) = — / ax; VyG(x, y)Q(y)dy + Q(x) / O Vy ' (x,y)dy
Bs(0)N$2f Bs(0)N$2f
+ Q) / VyI'(x, y)njdoy, foranyx e Q2p, (3.60)
3(Bs(0)N$2y)
where s > 1+, I' is the fundamental solution of the Laplace equation in R", j € {1, ..., n}, and n; is the j-th
component of i = (ny, . .., N,) which is a unit outward normal vector on 3(Bs(0) N 7).

Moreover, there is a constant ¢ independent of r such that
‘V(p(x) + / ViVyG(x, y)Q(y)dy’ <clQw)| foranyxe ;. (3.61)
25
Proof. Define, for any x € 2y and 6§ < dist(x, 9$2m)/2 < 1,
@s(x) = — / VyGx, y)ns(Ix— yl)Q (y) dy.
Bs(0)N$2f

where 15(x) = n(x/8) and n € C°(R) is an even function satisfying 7 € [0, 1], n(x) =0 in |x] < 1/2,
nx)=11in |x| > 1, and n’(x) > 0 for x > 0. By (3.48), ¢s € Cl(Qf) and @; converges to

X)) =— / VyG(x,y)Q (y)dy
Bs(0)NK2y

in L°°(2f) as § — 0. Define p(x, ) for x € 2 as

pxy)=G6Rx,y)—TI'(x,y) foryey.
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Then Ayp(x,-) =0 in £ and, by Theorem 630 [11] and Lemma 3.8, [p(x, ~)||C2(9—f) and

IVxVypllie (2, x02p) are bounded by a constant depending on dist(x, 382i). If x = (x1,..., %) € 27,
for any je{1,...,n},

Bx; s (X) = — / 3 (VyGx, y)ns(Ix— y1))Q (») dy
B;(0)N82y

=— f 3 (VyGx. y)ns(Ix— y1))(Q(») — Q) dy
B;(0)N2f

—Q® / (8, (Vy Tt )13 (X — 1)) + 3, (Fy %, y)ms (1% — y1))) dy
Bs(0)N2

_ / B, (VyGx. y)ms (1% — ¥1)) (Q () — Q (%)) dy
Bs(0)N$2f

+Q®) / VyI'(x, y)njdoy — Q(x) / A (Vyp(x, y)ns(1x — yl)) dy.
3(Bs(0)N2y) Bs(0)N2f

By Lemma 3.8 and arguing as the proof of Lemma 4.2 [11], if § — 0, then 9dy;@s(x) converges to the
right-hand side of (3.60) for any x € £2¢, s> 1+, and je{1,...,n}. So we prove (3.60).
From (2.13) in [11],

y; 0y, " (x, y)doy =0 foranyt>O0andi,je{l,...,n}. (3.62)
0B (x)
If x ¢ B;(0) N £25, (3.61) is obvious from (3.60). If x € B;(0) N £2y and s > 1+ r, Divergence Theo-

rem [11] and (3.62) imply

0x; Vy I (x, y)dy + / VyI'(x, y)njdoy
Bs(0)N%2y 3(Bs(0)NL2y)

= ‘— / dy;VyI'(x, y)dy + / VyI'(x,y)njdoy

Bs(0)N$2 3(Bs(0)N$2y)
< / |V2r(x,y)|dy +¢
Bstix+1 (¥)\Bs—jxj—1 ()

s+r+1

<c |x—y|_"dy~|—c<cln—1+c, (3.63)
S—1—

Bt x+1 (%) \Bs—|xj—1(X)
where c is a constant independent of r, s. We note that (ny,...,ny) is a unit outward normal vector

on d(Bs(0) N £2¢) in (3.63). If s is much larger than r, the right-hand side of (3.63) is bounded by a
constant independent of r. Together with (3.60), we obtain (3.61). O
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If we define

Go(x,¥) =w* "G(x/w, y/w) forany w € (0, 00),

then G, (x, y) satisfies, by Lemma 3.8,

—AyGo(X, y) =8(x—y)

VyGo(x,y) -1 =0

Go(x, )| <clx—y>™"

|VyGao (. Y)| + [VxGu(x, y)| <clx— y|' "
Go(X,y) =Go(y,X)

where 0% is a unit vector normal to 2% and c is a constant independent of w.

3.3. The Green’s function in R" \ Yy,
For v € (0, 1] and w € (0, 00), let us define

1 ifyeR"\wYny,
2

E"C(y) = i

ve ify ewYn.

Let g;ﬂ,e for v, € € (0, 1] denote the Green's function of

{ —Vy (B (NVyGi (. 9)) =8(x — ¥)

be(®y)—0 as|x—y|— oo.

By Theorem 5.4 [16] and remark on pp. 62, 67 [16], we see that G} . (x,-) € H

exists uniquely when n >3 and
i (. ¥) =G} (y.x) forxsy.
A modification of the proof of Lemma 4.3 [24], we have:
If§ > 0and v, € € (0, 1], any solution ¢ of
. v (E“Vgo) =0 inBi(x)

satisfies

[(ﬂ]co,u(m) < C(”(p”]_Z(B](x)\ey_m) + V”(p”LZ(B] (x)meym))a

8

n .
715 X € R", and c is independent of v, €, X.

where u =

s w
1n9f,
on 3823,
forx #y,

forx #£y,
forx #y,

inR",

1

R\ {xhNw

loc

1755

(3.64)

(3.65)

(3.66)

o ()

loc

(3.67)

(3.68)

Employing (3.66)-(3.68) and following the proofs of Lemmas 3.6, 3.7, 3.8, 3.9, we see that there
is a subsequence of g\’qu(x, -) converging to Gf(x,-) in CM(DEE,- (x)\ Ym) as v closes to O for all
0<' <3; <oo and x € R"\ Yy, where « € (0, 1). Here §;, 5j, D7, 5, (x) are defined in a same way as
those in the proof of Lemma 3.8. Also following the arguments of Lemma 3.8 and Remark 3.1, we

know:
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Gy (x, y) defined in (R"\ Yiy) x (R"\ Yp,) satisfies, for any x € R"\ Yy,

—AyGyx, y)=8(x—y)  inR"\Vp,

VyG§(x, y) -ny =0 ondYpm,

|G§(x, y)| <clx—y|*" for x £ y, (3.69)
|VyGi(x, y)| <clx—y'™" forx#y,

Go(x,y) =Gy(y. %) forx#y.

where ﬁy is a unit vector normal to 3Y, and c is a constant.
IfF, Q e C5°(R") with support in B;(0) for some r > 0, the D1-2(R™ \ Yp,) solution of

—V-(Vo+Q)=F inR"\VYp,
(Vo+Q)-n=0 ondYy

exists uniquely and satisfies, for x e R" \ Yy,

px) = / Go(x, y)F(y)dy — / VyGo(x, y)Q (y)dy,
R\ Yy R\ Y
I p(x) = / ax;Go(x, y)F(y)dy — / ax; VyGo(x, y)Q(y) dy

RM\ ¥ BS(0)\
(3.70)

+Q () / VyI'(x, y)njdoy + Q (x) / ox; VyI'(x, y)dy,

3(Bs(0)\Ym) Bs(0\Vm

’

O (%) + / (3x; Vy 3(x,y)Q(y)—ijGS(x,y)F(y))dy‘<C|Q(X)
R™M\ Vi

where s > 1+, c is a constant independent of r, I is the fundamental solution of the Laplace equation in R",
je{1,...,n}, and n;j is the j-th component of n = (ny, ..., n,) which is a unit outward normal vector on

3(Bs(0) \ Ym).
4. The second derivatives of the Green’s function G (x, y)

From Lemma 3.8, we know some estimates for the zero order and the first order derivatives of
the Green’s function G(x, y). This section is to find an approximation for the second order derivatives
of G(x, y) and it consists of two subsections. The first subsection is the approximation of G(x, y) for
|x — y| > 1. The second subsection is the approximation of G(x, y) for [x —y|<n+1.
4.1. Approximation of G(x, y) for |x — y| > 1

Let Go(x, y) denote the Green’s function of

—Vy - (KVyGo(x, y)) =8(x—y) inR",

Go(x,y) >0 as|x—y|— oo,

(41)
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where K is the constant symmetric positive definite matrix in (2.9). By change of variable, the Green’s
function Gg of (4.1) can be transformed to the fundamental solution of the Laplace equation in some
new coordinate system. Together with the results on p. 17 [11], we see that there is a constant ¢ such
that

|Go(x, y)| <clx—y*" ifx+y,

[VyGox, y)| <clx—y['™™  ifx#y, (42)

Go(x, y) = w* "Go(x/w, y/w) forany @ > 0.

Lemmad4l.Ifwe (0,1], |x—y| > % and x, y € 2%, then

|Gw(x, y) — Go(x, y)| < cw?, (43)
where ¢, o > 0 are constants independent of w. See (3.64) for G, (x, y).

Proof. We fix x € .Q;" for w € (0, 1] and define

= sup |Ga)(Xa y)—GO(X,Y)}
1/5<|x—y|

w
yes

By (3.65); and (4.2)1, c1 is a constant independent of w, x. (3.65); and (4.2); imply that G, (x, y)
(resp. Go(x, ¥)) is a uniformly Lipschitz continuous function (independent of w) of y in .(2;’ \ B1/4(x)
(resp. R™\ B1/4(x)). So there is a positive constant c, independent of w, x such that

z€ 27\ B1jax),
|VyGow (X, 2)| + |VyGolx, )| <z for (44)
y € R"\ By/4(x).

Now we define

box= sup |Gu(x,¥)—Go(x, ¥)|.
1/2<x—y|

w
yey

By (3.65)3 and (4.2)1, there is a ypx € .Q?’ satisfying |x — y x| = % and

Ow,x = |Ga)(X, Yox) — Golx, Ya),x)| < 1.

Pick a number B > n so that p, x = %“ézx < 1/4. By (44),

z€Bp, (Vo) NR2F,
|G (%, 2) = Go(x, ¥)| > Oux/5 for (4.5)
Ye€Bp,,(Vox)-

Let F € C3°(Bp,,, (Yo.x)) satisfy
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F €10,1],
F=1 onB,,,,2(Yw.x):
IVFEIL% (B (v < 4/ Porx-

Put F in the right-hand side of (2.13) with € = w and (2.14) to obtain U,, Up. Since w € (0, 1], there
is a constant c3 independent of w satisfying, by Lemma 3.2,

=
o = Uolli=@y) < €301 00.x| ™7 - (4.6)

We also note, by (2.13), (2.14), (4.4), (4.5), Remark 3.1, and Taylor expansion,

|Uw(®) — Ug(®)| =

/Gw<x, y)F(y)dy—/co<x, y>|Yf|F<y>dy‘

1) n
Qf R

/(Gw—Go)(x,y)F(y)dy+fGo(x,y)F(y)dy—/Go(x,y)lYle(y)dy

1) 19} n
Qf Qf R

>capihl = > @"Y5l|Gox. yF(y)) — Go(x. 2j)F(zj)| foryj.zj e (Y — j)
jezn

> capiy (1= cs0pg%). (4.7)

-8

where cq4, ¢5 are independent of w, x. If 1 — csa)paj,zx > 1/2, Eqs. (4.6)-(4.7) imply pt! < copyy .

WX
So (4.3) holds. If 1 — csa)paj_zx < 1/2, then pg,x < ¢/, which also implies (4.3). So this lemma
holds. O

Lemma4.2.[fwe (0,1], [x—y| > 2/3,andx,y € Q’jf’ then

|VyGo(x, ¥) — (I + VX(y/@))VyGo(x, y)| < cw?, (4.8)
where I is the identity matrix, X is defined in (2.8), and the constants c, o > 0 are independent of w.

Proof. For i1, iy €{1,...,n}, find T@2)(y) e Hper(825) satisfying, in the cell Y,

ATE2) g X0 = g, 0 — 9, X in vy,

vTi2) .5y, + X@ny, =0 on dYy,
[ray =0
Yy

See (2.7) for X® and see (2.10) for &, ,, ny, . Let T(y) = (TG122)(y)) be an n x n matrix function
and Ty (y) = w*(T12) (L)), Note T@1:12) is a special case of (2.10). As (2.11),
1Tl 2 g, <€ forae©1), (4.9)

where c is a constant. Define ¢, in Q‘f" \ B1,2(x) as, for any fixed x € 2¢,
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90(¥) = Go(x. ¥) — Go(X. ) — X () VyGo(x, ¥) — To(¥)V;Go(X, ¥).
where X, is defined in (2.8). Then function ¢,, satisfies

—V - (V9o + TuV;Go) = Xy VyAyGo + VT, VyGo  in 2\ B12(),

(V¢ + TwV;Go) -1 =0 on 2% \ B1/2(x).

By Lemma 3.4, Lemma 4.1, (2.11), and (4.9), ||V¢w||LOO(Q?)\BZ/3(X)) <cw?. So (4.8) holds. O

For any fixed y € 29, we define

forx e Q}" \ B2/3(¥).

{o(X) =VyGo(X,y)
o) = (I + VX(y/®)) VyGo(x, ¥)

By (3.65), we see
~Alp=0  in27\Bys(y),
Vi -0?=0 ondR2%\ By3(y).

By Lemma 4.2, ||¢p — §o||Lm(Q?)\BZ/3(y)) < cw?. Tracing the argument from (2.13) to (2.14), we see that
Lo satisfies

—V - (KV%) =0 inR"\ By;3(y),
where /C is the matrix in (2.9). Following the proof of Lemma 4.2, we obtain

Lemma43.[fwe (0,1], [x—y| >3/4,andx,y € SZ}” then

|VaVyGo(x, y) — (I + VX(x/@)) (I + VX(y/@)) VaVyGo(x. )| < co”
where ¢, o > 0 are constants independent of w.
Lemma 4.3 then implies

Corollary 4.1. There are constants ¢, 0 > 0 so that, forx,y € Q7 and 1 < |x — y|,

|VxVyG(x, y) — (I + VX®) (I + VX(y)) VxVyGo(x, y)| < | ¢ (4.10)

x—ymto

Proof. G, (x,y) = @*™G(%, %) and Go(x,y) = @*™"Go(%, %) for w € (0,1] by (3.64) and (4.2).

Hence if % =x, 1=y, and |&§ — n| =1, then, by Lemma 4.3,

|VxVyG(x, y) — (I + VX)) (I + VX()) VxVy Go(x, y) |
= iVxVyG(f;'/a), njw) — (I + VX(%_/(U))(I + VX(n/w))vayGO(s/a)’ 77/50)|
=|VeVyGuwE, ) — (I + VXE /o)) (I + VX(1)/0)) Ve Vy Go (€, )| 0" < ca™7.

If we take w = |X1—y‘ then w € (0, 1] implies |x — y| > 1. So we prove (4.10). O
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4.2. Approximation of G(x, y) for [x —y|<n+1

Define y (x, y) = G;(x, y) — I'(x, y), where G§, is the Green’s function in (3.69) and I' is the fun-

damental solution of the Laplace operator in R". By (3.69), y is a function in (R"\ Ym) x (R™\ Y)
satisfying, for any x e R" \ Yp,,

—Ayy(x,¥)=0 inR"\ Y,

VY, y)-ny=—V,(x,y) -0, ondYpm,

yY X, y)-my yI'(x,y)-ny m 411
lyx. »)| <clx—y*" forx £y,

vy =yy,x) forx£y,

where c is a constant. .
Also note, for each j e Z", ij(x, N=rxy +yx+jy+j is defined in (R"\ Yy, — j) x

(R™\ Y, — j) and satisfies

—AyGi(x,y)=8(x—y) inR"\¥Ym—j,

VyGj(x,y) -0y =0 onaYm—j,
(4.12)
|G5(x, )| <clx—ylP™" forx#y,
Gix, ») =Gj(y, %) forx#y.
Let us use notation in (3.1). (4.11)3 implies
1y &) gy, + 17 %) [ caagay,, <€ ifxe R\ Do,
(4.13)

Hvyr('vw“czﬂ(aym) S¢ if y € R" \ Do,
where o € (0, 1) and c is a constant independent of x, y. By (4.11), (4.13);, and Theorem 3.1 [11],

|y &)o@ gy <€ ifx R\ Do, |
(4.14
|¥ ) oz, <€ ify €RT\ Dy,

where c is independent of x, y. By (4.11), (4.14)1, and Corollary 6.3 and Theorem 6.30 [11], we obtain
Iy %) cowumgmy <€ ifx €R™\ Dy, (4.15)

where o € (0,1) and c is independent of x. By (4.11), (4.14), and Corollary 6.3 [11],
[y x| cra@mpy <€ ifx€Do\ Y, (4.16)

where c is a constant independent of x. By (4.11), for any y = (y1, ..., ¥n) € R"\ Ypm,
—Axdyy(.y)=0 inR"\Dy, (417)

where 9y, is the partial derivative with respect to y; for i € {1,...,n}. (4.15), (4.17), and Corollary 6.3
[11] imply
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”8}’1“}/('7 y)”cZ,ot RM\D <C lf.y ER”\Y_mv (418)
(RM\D)

where ae©,1) and c is independent of y = (y1,..., ¥n). . .
Let ¢ € C3°(R™) be a bell-shaped smooth function and satisfy ¢ € [0,1], ¢(x) =1 in x € D,

supp(¢) C A. Then /’PA(X, y) = dX)$(y) is a smooth function in R" x R" satisfying

Xax,y) =Xa(y,x) €[0,1],
1 ifx,yeD, (419)

XAx, y) =
A ) {O ifx¢ Aory ¢ A.

For any fixed x € 27, we define, for y € 2 \ {x},

CXN=TEY)+ Y y&+j.y+DXax+j.y+ 1)
jeznr

=TI y)(l - > Aax+jy+ j)) + ) G NXAR+ Y+ 1) (420)
jezn jezn

Because of (4.12), and (4.19)4,

G*'(x,y)=G*(y,x) in2yx 27\ {x=y). (4.21)
Define, in 2 x 2% for w [#, 00),
Gh(x,y) = wz—”c*<f, X). (4.22)
o o
Lemma 4.4.
(1) There is a constant c such that
(1= Zax. )y y)|<c forx,y eR"\ V. (4.23)

(2) Forw e [#, 00), there is a constant c independent of w such that

|GEx, y)| <clx—yl*™ forx,ye Q¢ andx#y. (4.24)

Proof. Let ¢ denote a constant independent of w € [%, 00). By (4.14), [y(x,y)|<cifx¢Dor y ¢ D.

If x,y €D, (419); implies 1 — XL(X, y) =0. So we see that (4.23) holds. (4.24) is from the definition
of G} and (411). O

1

Lemma4.5.Ifw e [

), x—y| > % andx,y € .Q?’ then

|Go(x,y) — Gi(x, y)| < co® ™", (4.25)

where c is a constant independent of w.
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Proof. Fix x e .Q}’ and define

a= sup  [Gu(X. ) —Ghx, ¥l
ye:?‘f"
1/5< x|

By (3.65); and (4.24), we see that c; is independent of w, x. (3.65), (3.69), and (4.22) imply that
Go(x,y) and G} (x, y) are uniformly Lipschitz continuous functions (independent of w) of y in Q)‘?\
B1,4(x). So there is a positive constant ¢, (independent of w, x) such that

[VyGo @, ¥)| +|VyGo(x, )| <ca fory € 27\ Bija(x). (4.26)

Let us define

Oox= sup [Gu(x,y)—GhH(x y)|
yeQ‘f’
1/2<|x~y|

Clearly, 0, x < c1. By (3.65)3 and (4.24), there is a y, x € .(wa such that

1/2<1x = Yox| and Oy x=|Gu(X, Yox) — G X, Yox)|-

Take a number S > n so that

0,
Pox = —2% < min{1/4, do}. (4.27)
2
See (3.1) for do. Then we see, by (4.26),
Go(x, ¥) = G (%, ¥)| = 0wx/5 fory € By, (Yox) N2F. (4.28)

Because of A1, one can take Fy, x € C3°(Bp, ,(Yo.x) N 9}") such that

[Fw,xe [0, 1], (4.29)

Fpx=1 on Bpwﬁx/ﬁ Yox+ j’w,x)-

The point Y, x + Jw.x is chosen so that By, ,/p(Vo.x + Jwx) C BpyxYox) N Q;’
If yox € a)(Y_f — j) for some j € Z", then we consider the following problems:

—AUy =Fpx infR9, ~AUp=Fpx nR"\(Ym—j
[ ) w,x f and { 1) ,x \w(Ym — Jj), (430)

VU, -i®=0 ondQRY, VU, -0°=0 onw(@Ym— Jj).
By Lax-Milgram Theorem [11], extension theorem [1], and (2.12), both U,,, U, are solvable uniquely
in D12 space, and
~AWUy—Up) =0 in 27,
0 onw(dYm — j), (4.31)

VU, —Ugy) -0” = -~
©eone VU, -i° ondR:\w@Ym — j).
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1

We claim that, for any w € [m,

00),

1Uo = Tolli o) < € I Foxllyi g < co? 00 . (4.32)

where c is independent of w, x. .
Proof of the claim: Because of y,x € w(Yy — j), there is a smooth domain B, such that, for

1
w € [m,oo),

(S1) By D w(Ym — j) Usupp(Fo.x), By Nw(Yim — 1) =0 for i # j,
(S2) dist(dBy,, supp(Fy x)) is greater than wdy (see (3.1) for dp).

By (S1) as well as Theorem 3.1 and Lemma 3.4 in [11], we see, from (4.31),

Wo = Uollix®,ney) < 1Uo = Uollie@s,)- (4.33)

By Remark 3.1, (3.65), (3.70)1, (4.12), and (4.30), we have, for z € 52?’ \ B,

CllFoxll 1 (RM)
dist(z, supp(Fe x))" =2’

|Uw(2)| = ‘/ Gu(z, }’)Fw,x(J’)dY‘ <

w
$2f

U2 =

snrsf Z Y CllFo.xllp1@mn
G¥ =, = )F dy| < ;
/ © ’(w w) wx () y‘ dist(z, supp(Fe x))" 2

RN\ (Vi —J)

where c is independent of w, x, and F x. By (52),

e = Unllie @, < 0 "Foxllpign < c® "0 (434)
i ®RM)

where c is independent of w, x. (4.33)-(4.34) imply (4.32).
By (4.28)-(4.30) and Remark 3.1, we see that, for some j € Z",

6,
Pkl <c / ”;”‘ dz < / (Go (X, ¥) — G5 (%, ¥)) Fox(¥) dy‘

Bpwx/p Vo x+Twx) .Q’f

< |Up®) = Up®)|

X . ) .(x .
/ wHV(— + 17, Y +1) (1 — XA(- +Js Y +]>>Fw,x(J’)dy
w w w w

w
$2f

+c . (435)

where c is independent of w, x. By (4.23), (4.32), and (4.35),

So (4.25) holds and we prove the lemma. O
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1

Lemma4.6.Ifw e [m,

), |x—y|>2/3,and X,y € .Q}’ then
|VyGo(x,y) — VyGh(x, y)| < co*™, (4.36)
where c is a constant independent of w.
Proof. If x€ 29\ ¥ jczn (A — J), G, ) = '(x,-) in 2\ {x} by (4.19), (4.20). So
{—Ay<cw—cz>=o in 27\ {x},
Vy(Gp — G -0®? =-V,'(x,)-01” ondRy.
Since the distance from x to 9527 is of order w (see (3.1)),

|VyI(x, ')ch(mg} <co' ™,

where « € (0, 1) and c is independent of x, w. By Theorem 6.30 [11] and Lemma 4.5, we obtain (4.36).
If xe w(A\ Yy — j) for some jeZ", then

Ghx,¥) =* "Gi(x/w+ j,y/w+ )+ > "y x/o+ . y/o+ D(Xa/o+ j,y/o+ j) - 1),
for y € Q;’ \ {x}. By (4.11),
4 {.Q‘f”\a)(A—j), or
in _
oD\ Y — j),

~Ay(Go = G) = 2af“(vyyvy)éf\)(i Ny R j)
w w

o X Lo . . .
+(U_n(VAyXA)(5 +J, > +J) in w(A\D — j),

—(1 - q)(% + j))vyr(x, 3-0? onw®@Ym — Jj),

—Vy I (x,-) - B® ondRE\ w(@Ym — j).

Vy(Go — G}y -0 =

Because the distance from x to 925\ w(dYm — j) is of order w (see (3.1)), by (4.13);, (4.15), and (4.16),

_ oo (x . -
Ha) n(vyVVyXA)(— +J,—+ J)
@ w CO.% (o(A\D—j))
<co™,
0% (w(A\D—j))

_ - X .o .
+ Hw n(VAyXA)<5 +i— +1>
sup | Vy I'(x, || L™
g > (@Y —i) S ’

(2o

where a € (0, 1) and c is independent of x, w. We get (4.36) by Theorem 6.30 [11] and Lemma 4.5. O

CL%(@@Ym—)))
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1

Lemma4.7. Ifw e [m,

), X —y|>3/4,andx,y € .(2]2’ then

[ViVyGo (X, ¥) = VaVy Gl (x, y)| < c? ™, (437)
where the constant c is independent of w.

Proof. To show (4.37), we modify the argument for (4.36) and use the facts G, (x, y) = G, (y,x) and
Gh(x, y) =Gk (y,x) (see (3.65)5 and (4.21)). Define @y, (x) = 9y, G, (x, ¥) and @, (x) =y, G% (x, y) for
ke{l,...,n}. Ifye 52}" \ Zjezn w(A— j), then G} (-,y)=I(,y) in 52}" \ {y} and

—A@o — P0) =0 in 27\ Ba/3(¥).
V(@o = @) -0 = =Vidy [ (-, y) -0” onds2y \ By3(y).

Because the distance from y to 927 is of order w (see (3.1)),

||anYkF(" y) ”Cl.a(a(2$) < Ca)in,

where « € (0, 1) and c is independent of y, w, k. By (4.36) and Theorem 6.30 [11], we have (4.37).
If yew(A\ Yy — j) for some jeZ", then

Gh(x, y) =* "Gi(X/w+ j, y/w + )

+ oy X+ j,y /o + D(Xax/o+ j,y/o+ ) —1),

for x e Q;" \ {y}. Note (4.11)14 imply Axy(% +J, % +j)=0forx,ye .Q}" So

2P\ (@A =) UBz3(y),
0 in { or
@D\ Ym — j) \ B2/3(y),
—A(Qy — &w) = 1 o . .y .
26()_”_ ayk(nyvaA)(_ + ], — + ])
) 1)
£ a0 (540 24 T) e\ D= )\ B0,
Y . =19
v —®,) -n% = o . - .
(@0 = Yo) +w‘1¢>’<% _H)VXF(-, y)-n® onw(@Ym — j) \ B2/3(y),
—Vydy, [ (-, y) -B® on a3\ w(@Ym — j).

Since the distance from y to 32% \ w(dYm — j) is of order w (see (3.1)), by (4.13); and (4.18),
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-n—1 ¥ ) -y i
dy, (Vxy Vi X — , =
Ha) v (Vxy Vi A)<w+J a)"‘])

€O (@(A\D-}))

<co™™

CO% (@ (A\D~-}))

—n—1 - ° . y .
+H0) " 8yk(VAxXA)<5+J’5+J)

supn ||anykr(', y)||C1,u(w(3ym,,~)) < Caf",
ieZ

i#]

652+ sonric

+ Hw‘%(l +j>vxr(-,y>
w

CL*(@(@Ym—1)))

-n
Scw™,

CL(@(@Ym—]))

where o € (0, 1) and c is independent of y, w, k. We get (4.37) by (4.36) and Theorem 6.30 [11]. O
By Lemma 4.7 and tracing the argument of Corollary 4.1, we have

Corollary 4.2. There is a constant ¢ > 0 so that, forx, y € Q7 and [x — y| <n+1,

[VxVyG(x, y) — ViV, G*(x, y)| <c [x — y| 2.
5. Proof of main results

In this section, we prove the main results. Theorem 2.1 is in Section 5.1, Theorem 2.2 is proved in
Section 5.2, Theorem 2.3 is proved in Section 5.3, and Theorem 2.4 is in Section 5.4.

5.1. Proof of Theorem 2.1

Lemma 5.1.If Q € [C3°(R™)]", then

<cllQllwe(y) forany p € (1, 00),
LP(2))

/ VeV, Glx ¥)Q () dy

2
where c is a constant.

Proof. Let 7 be a bell-shaped function in C3°(R) satisfying n € [0, 1], n(z) =1 for |z| <n and 1(2) =0
for |z] >n+1, and set V4V, G(x, y) = L£0(x, y) + LE(x, y), where

L0, y) =n(1x = y)VxVyG* + (1 — n(lx — y1)) (I + VX)) (I + VX(¥)) ViV, Go.

By (4.20), we define

4
fvxvyc(x, VA dy =Y F(Q)®, (5.1)
25

i=1

where
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-Fl(Q)(X)E/n(|x_y|)Q(Y)vay( > GS(X+k,y+k)2?A(X+k,y+l<)> dy,
Qf kezn

fz(Q)(X)Efn(lx—yl)Q(y)VxVy<F(x, y)<1 -> Q?A(X+k,y+k)>>dy,

& kezn

F3(Q)x) = /(1 —n(lx=y)) QW (I + VX)) (I + VX)) VxVyGo(x, y) dy,
2

Fa(Q)(x) = / £50 y)Q () dy.

2

From (4.19), we know QEA(X+I<, y+k)#£0 forany ke Z" only if [x— y| <+/nand x+k, y+keY.If
xe Yy — j for some j e Z", by change of variable and the definition of 7,

Fi1(Q)(x) = f QN VaVy (G +j, y + No(x + Ny + j))dy
Yf—j

=Vo(x+j) / Q(y — N(VyGyx+ j, () + Gi(x + j, y)Vp(y)) dy
Yg

+Ex+ ) / QY — NEW) YV, Cax + j. y)dy
Yy

+d3(><+j)/Q(y—j)VxGé(XJrj,y)Vd?(y)dy- (5.2)
Yy

Define V]O)(z) = fo Giz,»Q(y — HVe(y)dy for z € R" \ Y. By (3.70), Vj(.]) is the unique
DV2(R™\ Y, solution of

-

—AVV = Q(— )V InR"\ T,
VV](,U -n=0 ondYp.

Define V' (2) = Jy, VyGi@ »Qy — DP(y)dy for z e R\ V. By (3.70)1, V{? is the unique
DV2(R"\ Y, solution of

—V- (VWP = Q( = )VP)=0 inR"\ Yy,
(vv](.z) —Q(—j)VP)-H=0  onaYp.
By Lemma 3.3,
“ V]('U’ VJ(‘Z) ||W1-P(Yf) < C(“ V](‘l)’ V]('Z) ”LP(DZ\V) + ” Q-1 ”LP(Yf))’ (53)

where p € (1, 00) and c is a constant independent of j. See (3.1) for D,. By (3.69),
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Vi@ + VP @) <cf|Q<y —D(lz=yP " +1z—y|"")dy forzeD,\V,
Yr

where c is independent of j. Tracing the proof of Lemma 712 [11], we see

IV V2 b onm <clec =] vy forpe(l.oo). (5.4)

where c is a constant independent of j. By (3.70)s,

(5.5)

<|vvi?.ac

LP(Y§) - ])”Lp(yfy

H / V.V, Gi. 1) Q(y — D) dy
Yg

where p € (1,00) and c is independent of j. Since supp(¢(x + j)) N supp(J)(x +i) =0 if i #j,
(5.2)-(5.5) imply

|7 [T,y < DUV VP s, +1QC= DT,
jezn
<cllQlip () (5.6)
where p € (1, 00) and c is a constant. So there is a constant ¢ such that

||-7:1(Q)H,_p(9f) <cllQlieriep forpe(1,00). (5.7)

By (4.19), /2(Q) can be written as F2(Q) = F21(Q) — F22(Q) — F23(Q), where

]"21(Q)(X)=fQ(y)VxVyF(X, y)dy,

25

J’-'zz(Q)(X)Z/(1 —n(Ix=y1) Q) VxVy I (x, y)dy,

2

Fz3(Q)(X)=/n(IX—yI)Q(y)VxVy<F(x, y) Z??A(X+I<,y+k)> dy.

‘Qf keZn
It is not difficult to see, by Theorem 3 on p. 39 [23] and (2.13) in [11],

”‘7_—21(Q)”L‘7(R”) + H]:ZZ(Q)HLp(Rn) < C”Q”LP(Qf) forp € (1’ oo)s

where ¢ is a constant. By Lemma 7.12 and Lemma 4.2 [11] and repeating the argument from (5.2)
to (5.6), we obtain

||f23(Q)||Lp(_Qf) <cllQlier(ep forpe(1,00),

where c is a constant. Therefore,
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|72 15, <cllQliriy forp e, oo, (5.8)

where c is a constant. Since K is a constant symmetric positive definite matrix (see (2.9)), we do
change of variable as the remark before Lemma 4.1 as well as use both Theorem 3 on p. 39 [23] and
(2.13) in [11] to obtain

||J’3(Q)||Lp(gf) <cllQlier(ey forp e (1,00), (5.9)

where c is a constant. Finally,

f4(Q)(x)E/n(|x—y|)£§(x, VAW + (1 —n(lx—y1))L5x. y)Q (y)dy,

25

where

1, ¥) =VkVyG(x, y) — VxVy G (%, y),

L5(x, ) = ViVyG(x, y) — (I + VX)) (I + VX(¥)) VxV, Go(x, ¥).
Define
n(x—yDL{x, Q) dy ifxe 2y,
P1(Q)(x) = { o, ! ! (5.10)
0 ifxeR"\ 2.

Clearly, P; is a linear map. For any & > 0, by Fubini Theorem [21], Corollary 4.2, and change of
variable,

S|{xeR" | |P1(Q)x)| > 8}
</|7>1<Q)|dx<//n(|x—y|)}£§(x,y>Q<y>|dydx

25 2f

//’7(' |y2')ng<x>|Q(y)|ng<y>dxdy<c||Q||u<gf>, (5.11)

R" R"

where c is a constant. By (5.10) and Corollary 4.2, if x € £2¢,

P1Q) )] < f (Ix— y)|£5x »QW)|dy < cll Qe (5.12)

i25
where c is a constant. By (5.11)-(5.12) and Theorem 5 on p. 21 [23], we see

[P1(Q) 1y geny < €llQUILr(2y) for p € (1, 00), (513)

where c is a constant. Similarly, if we define
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Jo, A =n(x—yML5x, »)Q(dy ifxe 2y,
ifx e R"\ £y,

P2(Q)x) =
as well as employ Theorem 5 on p. 21 [23] and Corollary 4.1, then

[ P2(Q) 1o geny < CllQlILr(2y) for p e (1, 00),

where c is a constant. Together with (5.13), we have

|74 1p(g;) <cllQlirgy) forp e, 00), (514)

where c is a constant.
The lemma follows from (5.1), (5.7), (5.8), (5.9), and (5.14). O

Lemma5.2.Ifp € (1, 00) and Q € [LP (R™)]" with supportin B;(0) forsomet > 0, thena W,L’f(fzf) solution
of

-V-(VU+Q)=0 in£y,
(VU+Q)-n=0  ondfm, (5.15)
[U|(x) =0(1) for large |x|

exists uniquely. The solution of (5.15) satisfies

IVUIllr2p) <cllQllre)) ifpe(1,00),

IUllLe Bsong2y) < Cesll Qe  ifp € (1,00), (5.16)
Ul = <c ifpe,n),

I ||L%(Qf) 1Qlce(2p) fpe(1,n)

where s > 0, 1t is a unit vector normal to 32m, ¢ is a constant independent of t, and c; s is a constant dependent
ont,s.

Proof. By Remark 3.1, we know that the D12 solution of (5.15) exists uniquely if Q € [CEC@RM]".
Lemma 5.1 and (3.61) imply (5.16);. By Remark 3.1 and Lemma 3.8, the solution of (5.15) satisfies

IUI(X)z‘/VyG(x,y)Q(y)dy‘<c/Ix—yll‘”lQl(y)dy forx € 2. (5.17)
2 2

By Lemma 7.12 [11] and (5.17), we have (5.16),. So a W,;'Cp solution of (5.15) for p € (1, c0) exists.
By Theorem 1 on p. 119 [23] and (5.17), we obtain (5.16)3. The uniqueness of the wLP solution of

loc
(5.15) for p € (1, 00) is due to the maximal principle (see Theorem 3.1 and Lemma 3.4 in [11]). So we
prove Lemma 5.2 for Q € [C5°(R™)]" case. If Q € [LP(R™)]" with compact support, the lemma can be
proved by a limiting argument.

Theorem 2.1 is a direct result of Lemma 5.2. O
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5.2. Proof of Theorem 2.2

Assume F¢ € C5°(B;(0)) for some t > 0. By Remark 3.1 and (2.12), the Dl’z(ch) solution of (2.1)
exists uniquely and

IUe ||LHZTn2 @ <cll FEXBt(O)ﬁ.Q; l5-1 @) (5.18)
¥

where c; is independent of € but dependent on t. Let & € C3°(Bs(0)) and s > 0. By Remark 3.1, (3.64),
and Fubini Theorem [21],

/ VUe Edx = / / VxGe (X, y)Fe(¥)E(x) dy dx
BS(O)O.Q; BS(O)OQ; B[(O)QQ;

= / / ViGe (X, y)E(X)dx Fe(y)dy. (5.19)
Bt(0)N25 Bs(0)N25

If we define
Ye(y) = / ViGe(x, ¥)§(x) dx,
B5(0)N$2§
then, by Remark 3.1 and (3.64)-(3.65),
~V-(Vge —£)=0 in ],
(Ve —€)-n°=0 on a2y,
lel(¥) =0(1) for large |y|.

By Theorem 2.1, we see

llpe ||W1vr(35(o)mg;) <cesllé ||LT(.Q;) foranyr € (1, 00), (5.20)

where ¢ > 0 and ¢, s is independent of € but dependent on ¢, s. By (5.20), extension theorem [1], and
Holder inequality,

/ VUe Edx = / e Fe d}’:/ne(ﬂsFeXBt(O)mQ; dy
Bs(0)NR5 B (0)N2§ Rn

< M e@ellwrr a0y ”FEXB[(O)OQ; lw—1.p (rmy

S Cesll§llir s 1 Fe X ongs llw-1p@n).» (5.21)

where % + % =1 and ¢ is independent of € but dependent on ¢, s. Since C§°(Bs(0)) is dense in
L"(Bs(0)) for r € (1, 00) and s > 0, we know

IVUellr By 0)n2¢) < CtsllFe Xpoynge lw-1p@ny forany p € (1, 00). (5.22)
I I
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If p €[2,00), then

IFe Xp, nes ln-1@n) < Cell FeXp 0)nee lw—1p ey, (5.23)

where ¢; depends on t. (5.18), (5.22), and (5.23) imply that a Wllo‘cp(Q)i) solution of (2.1) for p €
2 %] exists and (2.2) holds. That is,

’n
IUe ||W1vp(35(o)m97) < Ct.s||FeXBt(0)m(2; lw-1.p @n) (5.24)

where ¢ s is a constant independent of € but dependent on ¢, s. If p € (HZT”Z, HZT”“], we know

IFe Xp, 0)ne2s ||W_1,nzTn2 - S CellFe X ongg llw-1p @)

where ¢; depends on t. By Theorem 7.26 [11], (5.24), and a similar argument as (2.12), if nzTnz <n and
pe (2, 2L, then

IUell 2n <Gl Uell

< Crsl||[Fe X, ellw-1, , 5.25
L=4 (Bs(0)N£2§) W]‘”ZTHZ(Bs(O)ﬂ.Q;) < usliFe BrOnsy =2 n ( )

where ¢ is independent of € but dependent on ¢, s. Theorem 7.26 [11], (5.22), and (5.25) imply
that, if ,,2Tn2 >nand p € (2%, 00) or if nzTnz <nandpe (nzT"z, ,127"4], then a W,lo’cp(.Q;) solution of (2.1)

n—2°
exists and (2.2) holds. Repeating the same process, we see that a Wllo’c'J (.(2;) solution of (2.1) exists
and (2.2) holds for p € [2, c0).

Since (2.2) holds for p € [2, 00), a modification of the argument from (5.19) to (5.21) shows

IWUellpas0ine2s) < CesllFeXp, nes llw 10 ey for p € (1,2], (5.26)

where ¢ s is a positive constant independent of € but dependent on ¢, s. (5.22) and (5.26) imply that
a W1'p(.(2;) solution of (2.1) exists and (2.2) holds for p € (1, 2]. So (2.2) holds for p € (1, c0).

loc

Remark 3.1 and (3.65) imply

|U€|(x><c/|x—y|2‘"|Fe|<y>dy

25
forx e .Q;,

|vue|(x><c/|x—;v|1*"|Fe|(y>dy

€
§2;

where c is a constant independent of €, Fc. By Theorem 1 on p. 119 [23], we obtain (2.3). Uniqueness

of the WIL’CP(.Q;) solution of (2.1) for p € (1,00) is due to Theorem 3.1 and Lemma 3.4 [11]. So

Theorem 2.2 holds for Fe € C°(R") case. If Fe € W—1-P(R") with compact support, Theorem 2.2 can
be proved by a limiting argument.
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5.3. Proof of Theorem 2.3

By Lax-Milgram Theorem [11], extension theorem [1], and (2.12), we know that the Dl’z(s’?;)
solution of (2.4) exists uniquely and satisfies

IUell < c(llQellp2rmy + IFell, ), (5.27)

2n_
[n-2 Z(Rﬂ)

@2

where c is independent of €. For any x € 2¢, by Lemma 3.1 and (5.27),

|Ue(x)|<‘Ue(X)— ][ Ue(}’)dY“F’ ][ Ue()’)d)"

31/2()()09; B]/z(X)ﬂ.Q;

< [Ue]co.u(m) f |Y|Md.Y+ ‘ f Ue()’)d}/‘
B2 (X)QQ; B]/z(X)ﬁ.Q;

<cllQe, Fellpnvs gy,

where ©,8 > 0 and c is independent of €, x. So we prove (2.5). (2.6) follows from (2.5) and
Lemma 3.4.

5.4. Proof of Theorem 2.4

Lemma 5.3. Suppose

Q € LP(R"), FGL%(R”) forpe(nnTz,oo>,

(5.28)
QI =0(x""""),  [Flc=0(x"""),
then a W1-P(82y) solution of
-V-(Vo+Q)=F in&y,
(Vo+Q)-n=0 on 92, (5.29)
lpl(x) =0(1)
exists uniquely and satisfies
ol <c1Ql g, o +IFI o).
(5.30)

):

\% F
V@l < QOmﬂHHmwm)

where c is a positive constant independent of Q , F. |¢|(x) = O(|x| ™™ 1) for ¢ € {Q, F} means that when |x|
is large, |¢|(x) < c|x|~"~1 where c is a constant.

Proof. The uniqueness of the solution of (5.29) is from maximal principle (see Theorem 3.1 and
Lemma 3.4 [11]). If Q,F € Cg°(R"), by Remark 3.1 and Lemma 3.9, the solution of (5.29) exists
uniquely in D!2(£2y) and satisfies, for x € 2y,
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<p(x)=/G(x, y)F(y)dy—/VyG(x, »Qy)dy, (5.31)

25 2

‘V(P(X)_/VXG(X, Y)F(Y)dY+/VxVyG(X YQ(dy| < (532)

2 2

where ¢ is a constant independent of Q, F. By Theorem 1 on p. 119 [23], (3.48), and (5.31), we
get (5.30)1. By Theorem 1 on p. 119 [23] and (3.48),

where c is a constant. Together with Lemma 5.1 and (5.32), we obtain (5.30); for Q, F € Cg°(R") case.
For general case, (5.28) implies Q, F € L' (R"). We can find Q,, Fin € C5°(R™) such that

<clFl g
LP(2)) P ($25)

/ VxG(x, y)F(y)dy
Q5

Qm— Q inLP(R")NL'(R")
w asm — oQ. (5.33)
Fm— F  inL# (R") N LT (R")

Let ¢, be the solution of (5.29) corresponding to Q. and Fy,. Then (5.30) implies

lomller2p) < (”Qm” Tp + I m“Ln+2p @ ))

),

(5.34)

IVomllir (2 < (IIlelLP(rzf)+IIlelLHp(_Q)

where c is independent of Qp,, Fpy. There is a subsequence @p, of ¢, such that, by Theorem 7.26 [11]
and (5.33)-(5.34),

@m — ¢ weakly in Wl*p(.Qf) and pointwise in £25 asm — oo, (5.35)

and ¢ satisfies (5.29);, and (5.30).
Next we claim ¢, Q, F satisfy (5.31) almost everywhere in £2y. For any fixed x € £2f,

f Gx, ¥)(Fm — F)(¥) dy‘

2
< G(x, .V)(Fm_F)(Y)dY"I" / G, y)(Fm — F)(y)dy|. (5.36)
£2p\B1(x) 2¢NB1(x)
By (3.48) and (5.33),
lim / G, ¥Y)(Fm — F)(¥) dy‘ < lim c[|Fin = Fllp1 g, =0. (5.37)
m—o0o m—oQ
2\B1(x)

By Fubini Theorem [21] and (3.48),
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lim
m—oQ

/ / G, y)(Fm — F)(y)dy dx

Qf QfﬁB](X)

< lim c/ / X — y[* ™| Fm — FI(y)dy dx

m— o0
R™ By (x)

= lim c/ / 1212 | Fi — Fl(x — 2)dzdx < _lim c||Fp — Fll1(,, =0.
m— oo m—oo f
R™ B1(0)

This means that there is a subsequence of

G, y)Fn(y)dy converging to / G, y)F(y)dy (5.38)
.QfﬁB](X) .QfﬂB](X)

pointwise almost everywhere in £f. By (5.36)-(5.38), we prove fo G(x,y)Fm(y)dy converges
to fﬂf G(x, y)F(y)dy pointwise almost everywhere in £f. By a similar argument, we also have
fo VyG(x, y)Qm(y)dy converging to fo VyG(x, y)Q (y)dy pointwise almost everywhere in £f. To-

gether with (5.35), we prove the claim. That is, functions ¢, Q, F satisfy (5.31) almost everywhere
in 2f.

Because (5.28); holds and because ¢, Q, F satisfy (5.31), it is not difficult to see that ¢ satis-
fies (5.29)3. Then uniqueness of the solution implies the lemma. O

If Ug solves (2.14) and F in (2.14) is in W1"P(R") with compact support for p € (725, 00), then,
by Definition 5.1 and p. 67 [16],

Uo(X)=/Go(x,y)|Yf|F(y)dy forxeR",
]Rn

where Gy is the Green’s function in (4.1). By change of variable, Gy can be transformed to the fun-
damental solution of the Laplace equation in some new coordinate system. By Lemma 4.4 [11], (2.14)
in [11], and Theorem 3 on p. 39 [23], we know

2 _ n :
|V2Uo| wir@n < CIFllwir@n forpe <m oo) andie{1,2}, (539)
|ViUo|(x) = O (Ix>") forie{0,1,2,3},

where c is a constant dependent on n, p, K. Define
Pe(X) =Uc(X) — Up(x) — Xe(x) VU0 (%) — Se () V2Up(x) forx € .ch

where Ug, Uy are the solutions of (2.13) and (2.14), X¢ is defined in (2.8), and S¢ is defined in (2.10).
As in the proof of Lemma 3.2,

—V - (Vge +5eV2Uo) =X VAUg + VSe VU in 2,
(Vge +ScV2Ug) - 1€ =0 on 9£2¢, (5.40)
[l (x) = 0(1).
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(5.40)3 is due to (2.11), Remark 3.1, (3.48), and (5.39),. By Lemma 5.3, (2.11), and (5.39), the solution
of (5.40) satisfies

< ce||F n
Igellinia < CelFl o o .
forp e —2’00 ,

n_

\% <
IV@ellir26) < C€||F||W1,F(Rn)mw1,%(w)

where ¢ is independent of €. So if p € (-1, 00), then

n-2-

— <
IUe = Uollircep) < CEHFHWL% ®AW " T2 (Rn)’ (5.41)
[VUe = (I + VX)) VU Hm;) SCENFI o 1 iy’
where c is independent of €.
Similarly, by (2.11), (5.39)-(5.40), Lemma 3.2, and Lemma 3.4, we have
1Ue = Uolliiagy S CENFN v oo
(5.42)

|VUe — (1 + VXe)VUo “LOO(.Q;) S cellFll 2 (R 2+ (R

where c is independent of €. By (5.41) and (5.42), we prove Theorem 2.4.
6. Proof of Lemmas 3.1, 3.4

From Remark 2.1, we know the WZ2P norm of the solutions of (3.2) in B1,2(0) N .Q; in general
is not bounded uniformly in € even if ||Q¢ ||W1,,,(_Q;), ||F€||Lp(9;) are bounded independent of €. But

Lemma 3.1 and Lemma 3.4 prove that the Hdlder norm and the Lipschitz norm of the solutions
of (3.2) in B1,2(0) N .(2; are bounded uniformly in e.

6.1. Proof of Lemma 3.1

Lemma 6.1. For any § > 0, there are 61,6, € (0, 1) (dependent on 6, Y ¢) with 61 < 922 and €g € (0, 1) (de-
pendent on §, 61, 62) such that if U, Q,, F, satisfy

{—V-(VUAJer):Fx in B1(0) N 2, 61)
6.1
(VU, +Q)-0*=0  onB1(0) N3},
and
-1
maX{HU)L”]_Z(B](O)m_Q}), 60 ”Q}w F)L”Ln-%—E(B](O)m_QI&)} < 17

then, forany 0 < A < €g and 0 € [61, 62],

][ |IT,U, — (IT, U300 |2 dx < 6% (6.2)

By(0)
where u = m, n* is the unit vector normal to 8.(2A and IT, is the extension operator in [1] (or see (2.12)).
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Proof. Consider the following problem LU = —V - (JCVU) = 0, where K is the constant matrix in (2.9).
Then U satisfies, by Theorem 9.11 [11],

” U ||W1'T(B1/2(0)) < C” U||L2(B3/4(0)) fOl‘ anyr >n,
where ¢ depends on /C, r. If ' satisfies © < ' < 1, then
][ |U - (U)o,0|2dx <o ][ U? dx (6.3)
By (0) B3/4(0)
for 6 sufficiently small (see p. 70 [10]). Fix 61,6, € (0, 1/2) with 6; < 922 such that (6.3) holds for
0 €161,02].
We claim (6.2). If not, there is a sequence {6y, U, Q,, F,} satisfying (6.1) and
05 € [01, 621,
||U)»||L2(B1(o)mg}) <1,
}!er}) 1Qax, F}\”LTH’(S(B](O)QQ}) =0, (6.4)

2 2
|H)LU)\ — (H)LU)‘)0,9A| dx > 9;\”.

Bs, (0)

By compactness principle [3], we can extract a subsequence (same notation for subsequence) such
that

9)\ - 9*
MU, - U in L?(B3/4(0)) strongly 45 _s 0. (6.5)
Xg: VU, — KVU i L?(B3/4(0)) weakly

Here XQ-} is the characteristic function on Q’f\ and K is the constant positive definite matrix in (2.9).

Moreover, U satisfies LU =0 in B3/4(0). If 6, is small enough (dependent on §, Y), Egs. (6.3)-(6.5)
then imply

62" = lim 62" < lim ][ \,U, — (IT,U,)0.0, | dx
A—> 1—0

0
B, (0)
2 2
- ][ Uzdx—‘ ][ de’ - ][ U = U)o, | dx <62
B, (0) B, (0) B, (0)

2

So we get 971 < Gf“, which is impossible. Therefore we prove (6.2). O

Lemma 6.2. Let §, €, 61, 62, 1 be same as those in Lemma 6.1. For any € < €g, 6 € [01, 6], and k with
€/6% < eq, if Ue, Qe, Fe satisfy

[—V-(VUG-‘:-QG):FG in Bl(O)ﬂ.Q;, (66)

(VUe+Qe) -0 =0  onB1(0)NINS,
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then

][ [MeUe — (IMeUe)g g \2 dx < 621 J2, (6.7)

Bk (0)
-1
where Je = ||Ue||L2(B](o)nQ;) +¢€y 11Qe, Fe ||L"+5(B1(0)n9;)~

Proof. We only consider J¢ < oo case and this is done by induction on k. For k =1, we define
U= % O0c = % Fe= F_Z Then U, Q, Fe satisfy (6.6) and

-
. 1A 8
max{ || Ue 28, 0ne5)- €0 I Qe Fe ||Ln+5(31(0)nrz;)} <1
By Lemma 6.1 (in this case A =€),
N N 2
][ |MeUc — (TeUe)o | dx < 6.
By (0)

This implies (6.7) for k=1 case. Suppose (6.7) holds for some k satisfying € /6% < €, we define

Ue=J'07 (U (6%%) — (ITeUe)g o)
Qe = JZ10KI=1 @ (6*x) in B1(0) N £2§/6%.
Fe= 710" F (0%x)

Then they satisfy

—V-(VUe + Qo) =Fe inB1(0) N £25/6%,

(6.8)
(Ve + Q) -0 =0 on By(0) N 825, /6%,
where 1i€/?" is the unit vector normal to 9525 /6%. By induction,
. A
max{||U€||L2(B1(0)mszj/0’<)v € Qe Fe ||L"+5(Bl(0)n:2;/0’<)} <L
Since € /6% < €, by Lemma 6.1 (in this case 1 = €/6%), we obtain
~ . 2
][ | jgeUe — (I sk Uc)o|” dx < 62 (6.9)
Bg(0)
Note, by [1],
> I 2 |H6U€—(175U€)0 9k+1|2
f ‘Hé/gk Ué - (HG/Qk UE)0,0| dx = f J2 GZkM : dx. (610)
Bs(0) Byis1 (0) ¢

Egs. (6.9)-(6.10) imply the inequality (6.7) for k 4+ 1 case. O
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Lemma 6.3. For any § > 0, there is a (. € (0, ) such that the solutions of (6.6) satisfy, for any € € (0, 1],
[Ue]co.u* (31/2(0)(\(7;) < C]E s

where c is a constant independent of €. |, J¢ are same as those in Lemma 6.2.

Proof. Let €g, 61, 6, be same as those in Lemma 6.2, define €, = €¢62/2, and let € < €,. Denote by
¢ a constant independent of €. Because of 6; < 022, for any r € [¢/€g, 0], there exist 0 € [01,6,] and

k € N such that r = 6. Lemma 6.2 implies that the solutions of (6.6) satisfy, for any r € [¢/€g, 62],

€

][ |I'1€UE—(HEUG)o,r|2dx<cr2“j2 (6.11)
B:(0)
Since 2¢/€q € [€/€p, 02], we define, for any I € (0, ),
Ue(0) = J7 e P (Ue(ex) — (ITeUe)o2¢ /o)
Qe =J ' Qe(ex) in Ba/ey (0) N 82§ /€. (612)
Fe() = J71e> P Fe(ex)
Then they satisfy
—V - (VU + Qo) = Fe  in By (0) N 25 /e,
R R (6.13)
(VUc+ Q) -0 =0 on Bye, (0) N 3825 /€,

where 0€/€ is the unit vector normal to 92, /e. Take r = 2¢/€g in (6.11). We see

lUe ||L2(32/€0 ONQ§/€) + 11 Qe, Fe ||Ln+3(32/€0(0)m9;/e) <C,
where c is independent of fi. Tracing the proof of Theorem 8.24 [11], there is a i, € (0, i) such that

Welcos sy nagre) S (6.14)

where c is independent of fi. If the i in (6.12) is taken to be the . in (6.14), by Theorem 1.2 on
p. 70 [10], we see that (6.11) with w replaced by . also holds for r < €/€p. So (6.11) holds for
r € (0,6;]. We then shift the origin to any point x € B1,2(0), repeat above argument, and see that
(6.11) with O (resp. ) replaced by x (resp. i) also holds for r > 0. By Theorem 1.2 on p. 70 [10], we
see:

Forany 8 > 0, there is a 4 € (0, ) and an €, € (0, 1) (dependent on 8, Y ) such that if € € (0, €,.), then
the solutions of (6.6) satisfy

[UG]CQH*(B]/Z(O)QST;) SCe. (6.15)

From the proof of Theorem 8.24 [11], we also see:

Forany § > 0, thereis a i1« € (0, i) such that if € € [€,, 1], then the solutions of (6.6) satisfy
[UG]CO'V’*(BUZ(O)QQ_;) < C.]€~ (616)

Combining (6.15) and (6.16), we prove this lemma. O
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By shifting the coordinate, we see that Lemma 3.1 is a direct consequence of Lemma 6.3.
6.2. Proof of Lemma 3.4

For convenience, let us assume 0 € .Q}f

Lemma 6.4. For any § > 0, there exist a constant 6 € (0, 1) (dependent on 8, Y ¢) and a constant €g € (0, 1)
(dependent on 0, §) so that if

-1
max{”UA”Lw(B](O)nQ})y €y 1Qs, F)\,||Ln+5(Bl(0)nQ}~)} <1,
then the solutions of (6.1) satisfy, for any 0 < A < €,

sup |I1,U5(x) = MU;.(0) — (x+ IG5 (0)by | < 61FH4/2, (617)
x€By(0)

where (L = % b, = w’g—;(;)‘ f39<0)m.<2} VU, dx, K~ is the inverse matrix of the positive definite matrix KC
in (2.9), and X, is defined in (2.8).

Proof. If U is a solution of —V - (KVU) =0 in B3,4(0), then, by Theorem 6.2 [11],

10Nl c2+u (57 50y) S MU N (B3/a0)-

By Taylor’s expansion, if i’ satisfies u < u’ < 1, then, for # small enough,

w
sup |Ux) —U(0) —x(VU)o,0| <02 [U]l1(B34(0))- (6.18)
xeBy(0)

Fix a value 6 such that (6.18) holds. We claim (6.17). If not, there is a sequence {U;, Q,, F,} satisfying
(6.1) and

U, ”LOO(B](O)(‘]_Q}) <1,

)%I_I;%”Q)u F)L“LHM(B](Q)Q_Q’}) =0, (619)

sup iHAU)L(X) — I U3 (0) — (x+ H)LX)L(X))b)J < glHm/2.
xeBy(0)

After extraction of a subsequence (same notation for subsequence), we have, by [1] and Lemma 3.1,

MU, - U in L>°(B3/4(0)) strongly

2 as 1 — 0. (6.20)
Xgy VUi > KVU inl (B3/4(0)) weakly

Here X_Q} is the characteristic function on Q} Egs. (6.19) and (6.20) imply that U satisfies —V -

(KVU) =0 in B3/4(0). By (6.18), (6.19)3, and (6.20), we get
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pl+H/2 < xlimo sup | IT,.U;.(x) — I, U (0) — (x + IT,X;.(x)) by |
—YBy(0)

= ;u(g)]U(x) —U(0) —x(VU)og| < 91+ 2 ||U llLo0(B3,4(0))-
6

If 6 is small enough, the right-hand side of above inequality is less than 01+ for some we(u, ).
Then we get contradiction. So (6.17) holds. O

Lemma 6.5. Let §, 0, €g, . be same as those in Lemma 6.4 and let U¢, Qe, Fe satisfy (6.6). For any € < €g and
k with € /6 < e, there are ay, by such that
|ak| + |b | cTe,

I3
sup |[MeUc(x) — MeUe(0) — €af — (x + MeXe (x)bE | < 0¥ T2 7,
xeBHk(O)

(6.21)

where J. = |U¢ (81 0nes) + €0 lle 12 Q, Fe IIL,Ha(Bl(O)mQ;) and c is a constant independent of €.

Proof. This is done by induction on k. Take aj =0, by = \B(-)(O)I fBg(o)m_Qe VU¢dx and define U6

0= %—E F.= 76 Then U, Qc, Fe satisfy (6.1) and

max{”Ue”Lw(B](O)m(z <), €y ||Qey Fe ||L"+5(31(0)m,rz )} 1.

By Lemma 6.4 (A = € in this case), we obtain (6.21) for k = 1. If (6.21) holds for some k satisfying
€/6% < e, then we define, in B1(0) N £2¢ /9"

Ue(x) =0 FIH1/D 771(U (6%x) — M Ue(0) — €af — (6%x + X (6°%))b5),
Qe (x) = 94{#/2;7671 Qe (ekx) )
Fe() =" 1=1/2 771F ().

Then UE, Qe, F6 satisfy (6.1) in B1(0) N £2¢ /0" (or see (6.8)) by (2.7). By induction,
max{ “Ue ”LOC(B](O)HQ;/Gk)? 60_1 || Qg, ﬁe ”L”*‘s(B](O)(‘IQ;/Q")} S 1. (622)
By Lemma 6.4 (A = €/6% < &g in this case), we have

A A ©
BSUg)|HE/0k U€ (X) - HG/Gk UE (O) - (X + Hé/gkxe/ek (X))b€/9k| § 01+ 2, (623)
o
where be/ek = % fBg(O)nﬂi/ek Vﬁg dx. Rewrite (6.23) in terms of U to obtain, by [1],

sup | [T Ue (6%%) — MU (0) + € T X(0)bE — (8%x + ITe X (6%x) )b
Bo(0)

— T2 (x + 071X (0°X))b i | < Teo® DA/, (6.24)
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Define

af,,=—ILX(Obf and bf ; =bf+ T b, . (6.25)

By (6.22) and (6.23), |b€/9k| is bounded uniformly in €, k. So we get (6.21);. Substituting (6.25) into
(6.24) and making the change of variables 6¥x to x, we obtain (6.21),. O

Lemma 6.6. Let €q, 1, Je be same as those in Lemma 6.5. For any € < €y, the solutions of (6.6) satisfy
— —n/2 _
”VUG ”LOQ(B]/z(O)ﬂ.Q;) < CJ*,E = C(jé +e€ “ Q€ (GX) ”Co.a(g;/e))9

where o > 0 and the constant c is independent of €.

Proof. Let ¢ be a constant independent of €. Let k € N satisfy € /6% < g < €/6Xt1, where 6 is same
as that in Lemma 6.5. By Lemma 6.5,

1+5
sup |[[TeUe(x) — MeUe(0) — €af — (x + IMTeXe (x))b | < ¢ Trre- (6.26)

Be/eo (]

Define, in B1/¢,(0) N Q;/e,

Ue(x) = 6—(1+M/2)j*_,61 (Ue(ex) — MU (0) — €aj — (ex + X (€x))by),
Qe) =€ 271 Qc(ex).
Fey=€""M2 7 Fe(ex).

Then Ue, Qe, Fe satisfy (6.1) in By, (0) N £2§ /e (or see (6.13)) by (2.7). By (6.26),

IUelloe (B1/ep @025 /€) F I Fellints By 02 /e) T “Qénco.a(W) <c.

By Theorem 6.30 and Theorem 9.19 [11],

IUellw.o0 (B, 5y @25 /) < C-

VU (0)—(I+VX(0))by,

Since VL?E(O) = PN ,

[VUe(0)| = |(I + VX(0))bf + €27, VU (0)] < e (6:27)

Since one can shift the origin to any point in S?fc and gets the same result as (6.27), we conclude
IVUe ||L°°(Bl/2(0)mz;) <cTye. O

By Lemma 6.6, we know that for any § > 0, there is a constant € € (0, 1) such that, for € € (0, €p),
any solution of (3.2) satisfies (3.28). By (3.8)2, we also know that for any § > 0 and € € [¢p, 1], any
solution of (3.2) satisfies (3.28). So we prove Lemma 3.4.
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