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This paper presents a generalized weighted vertex p-center (WVPC) model that represents uncertain
nodal weights and edge lengths using prescribed intervals or ranges. The objective of the robust WVPC
(RWVPC) model is to locate p facilities on a given set of candidate sites so as to minimize worst-case devi-
ation in maximum weighted distance from the optimal solution. The RWVPC model is well-suited for
locating urgent relief distribution centers (URDCs) in an emergency logistics system responding to
quick-onset natural disasters in which precise estimates of relief demands from affected areas and travel
times between URDCs and affected areas are not available. To reduce the computational complexity of
solving the model, this work proposes a theorem that facilitates identification of the worst-case scenario
for a given set of facility locations. Since the problem is NP-hard, a heuristic framework is developed to
efficiently obtain robust solutions. Then, a specific implementation of the framework, based on simulated
annealing, is developed to conduct numerical experiments. Experimental results show that the proposed
heuristic is effective and efficient in obtaining robust solutions. We also examine the impact of the degree
of data uncertainty on the selected performance measures and the tradeoff between solution quality and
robustness. Additionally, this work applies the proposed RWVPC model to a real-world instance based on

a massive earthquake that hit central Taiwan on September 21, 1999.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The p-center model, which aims to locate p facilities to mini-
mize maximum distance (or travel time) between demand nodes
and their closest facilities (e.g., Kariv and Hakimi, 1979; Albareda-
Sambola et al., 2010), has been considered particularly suitable for
emergency applications (e.g., Jia et al., 2007a,b; Huang et al., 2010),
among various facility location models that have been presented in
the literature (e.g., Mirchandani and Francis, 1990; Daskin, 1995;
Altiparmak et al., 2006). This work adapts the p-center model to lo-
cate urgent relief distribution centers (URDCs) in an emergency
logistics network that aims to promptly deliver relief supplies from
URDCs to all relief or medical service stations in affected areas in
the aftermath of quick-onset disasters (e.g., Altay and Green,
2006; Yi and Ozdamar, 2007; Campbell and Jones, 2011).

URDCs play an important role in an emergency logistics net-
work, because they serve as hubs that seamlessly integrate and
coordinate inbound and outbound emergence logistics responding
to relief demands from affected areas. These hubs also have an
inventory management function (i.e., risk pooling)—aggregating
relief demands or their forecasts across several affected areas to
reduce the adverse impact of relief demand variability and uncer-
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tainty on the system. In emergency response to quick-onset disas-
ters, government rescue agencies typically designate existing
public buildings (e.g., schools and stadiums) with little or no dam-
age that can be promptly converted to shelters for survivors and/or
warehouses for relief supplies as candidate sites of URDCs, instead
of establishing new emergency facilities from scratch. Thus, the
problem of locating URDCs can be considered as the vertex
p-center problem which restricts the set of candidate sites to loca-
tions of existing public buildings (i.e., facility nodes). Furthermore,
when relief demands faced by relief or medical stations are taken
into account, the problem becomes a weighted vertex p-center
(WVPC) problem (e.g., Current et al.,, 2002) with nodal weights
reflecting relief demands from relief stations (i.e., demand nodes)
in affected areas and the objective being to minimize maximum
demand-weighted travel time between relief stations and their
closest URDCs.

The proposed WVPC model for locating URDCs explicitly ac-
counts for uncertain relief demands from relief stations and travel
(or delivery) times between URDCs and relief stations, mainly due
to poor measurements based on limited information available
during a disaster’s aftermath or approximations in the modeling
process using aggregated demands and choosing a distance norm.
Two major categories of approaches have been adopted in the
literature to deal with uncertain coefficients in facility location
models (Snyder, 2006), namely, stochastic programming (SP) and
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robust optimization (RO). The former has been used typically to
deal with decision-making for facility locations in risk situations,
in which the values of uncertain coefficients are governed by dis-
crete or continuous probability distributions that are known to a
decision-maker. The SP approach has been widely applied to emer-
gency logistics for short-notice disasters (e.g., hurricanes, flooding,
and wild fires) by assuming that possible impacts of these disasters
can be estimated based on historical and meteorological data. The
common goal of these stochastic location models is to optimize the
expected value of a given objective function. A classical example of
applying SP to disaster relief is the scenario-based, two-stage sto-
chastic model proposed by Mete and Zabinsky (2010), for medical
supply pre-positioning and distribution in emergency manage-
ment. Other examples can be found in, for instance, Chang et al.
(2007) and Balcik and Beamon (2008).

On the other hand, the RO approach attempts to optimize the
worst-case system performance in uncertain situations that lack
any information about the probability distributions of uncertain
coefficients (e.g., Kouvelis and Yu, 1997); hence, the RO approach
generally describes uncertain data using pre-specified intervals
or ranges. Typical robustness measures include mini-max objective
value and mini-max regret in an objective value. The RO approach
may be more appropriate than the SP approach in emergency re-
sponse to quick-onset or no-notice disasters (e.g., earthquakes, tsu-
namis, and landslides). For quick-onset disasters, because of the
difficulty in predicting disaster occurrence and impacts as well as
a lack of historical data, probability distributions and scenario data
are generally unavailable. For example, an extremely large earth-
quake, 9.1 on the Richter scale, which hit the northeastern coast
of Japan on March 11, 2011, was never considered in the nation’s
preparedness planning for earthquakes, even though Japan is
widely regarded as one of the most advanced countries in earth-
quake preparedness. Thus, in responding to such a disaster, deci-
sion-makers may prefer an alternative method for describing
uncertain data (i.e., using intervals to represent uncertain data).

In the proposed RWVPC model, uncertain relief demands at
relief stations in affected areas and travel times between URDCs
and relief stations are represented using prescribed intervals (or
ranges), rather than probability distributions. The objective of
locating p URDCs is to minimize worst-case deviation in maximum
demand-weighted travel time between URDCs and relief stations
from the optimal solution. This work proposes a theorem that facil-
itates identification of the worst-case scenario for a given set of
URDC locations, thereby reducing complexity of solving the prob-
lem. Since the problem is NP-hard (Averbakh, 2003), a local
search-based algorithmic framework incorporating the theorem
for identifying the worst-case scenarios is developed to find robust
solutions within a reasonable amount of computational resources.
Then, a specific framework implementation based on simulated
annealing (SA) is developed to conduct numerical experiments,
including a case study based on the Jiji Earthquake, which hit cen-
tral Taiwan on September 21, 1999.

The p-center problems with interval-represented uncertain data
tend to be very difficult because of the mini-max structure. There-
fore, analytical results and exact algorithms for the p-center prob-
lems with interval data have only been attained in special cases,
such as locating a single facility on general networks or multiple
facilities on tree networks (e.g., Averbakh and Berman, 2000;
Burkard and Dollani, 2002). To the best of our knowledge, only
Averbakh and Berman (1997) reported analytical results for an
absolute weighted p-center problem with interval-represented
nodal weights. No study has addressed absolute or vertex multi-
center problems with both interval-represented edge lengths and
nodal weights.

This study contributes significantly to the literature by (i) mod-
eling the URDC location problem as the WVPC problem with inter-

val-represented edge lengths and nodal weights on general
networks; (ii) providing an effective and efficient algorithmic
framework for solving the problem; and (iii) shedding light on
the applicability and potential benefits of the proposed model to
real-world instances.

The remainder of this paper is structured as follows. Section 2
describes the RWVPC problem, the representation of data uncer-
tainty, and the property of worst-case scenarios. Section 3 presents
the generic heuristic framework and a specific implementation
using SA. This is followed by the numerical experiments in Section
4, Section 5 provides a case study demonstrating the applicability
of the proposed model to real-world instances. Concluding remarks
are given in Section 6.

2. Weighted vertex p-center problem with data uncertainty
2.1. The deterministic problem

Consider a connected, undirected network G = (N, A), where N is
the vertex set and A the arc (or edge) set. Let U be the set of candidate
sites (i.e., facility nodes) for URDC locations and V be the set of relief
stations (i.e., demand nodes) in affected areas; UU V=N, and U # V.
Each possible pair of relief station i € Vand URDCj € U is connected
by an arc (i, j) € A that is associated with a positive (real or integer)
number, t; representing travel (or delivery) time between relief
station i and URDC j. Although t;; denotes the travel time, it can also
be used for other measures of utility/disutility, such as distance or
travel cost. Each relief station i € V faces relief demand ¢; and is ser-
viced by a single URDC. For a given set of predetermined candidate
sites, U, the WVPC problem is to locate p (p < |U|) URDCs and assign
relief stations to these centers, thereby minimizing maximum de-
mand-weighted travel time between relief stations and URDCs. A
mixed integer linear programming (MILP) formulation of the prob-
lem is as follows (e.g., Current et al., 2002).

(WVPC) Minimize z, (1)
Subject to z > Zjcyéityyy, VieV, (2)

Ziewy; =1, VieV, (3)

Vi—%<0, VieV, jeU, (4)

D (5)

x€{0,1}, VYjeU, (6)

y;€1{0,1}, VieV, jeU. (7)

The decision variables are binary variables x;, Vj € U and y, Vi€V,
JjeU. x;=1Iif candidate site j is selected; otherwise, x; = 0. Addition-
ally, y; =1 if relief station i is serviced by URDC j; otherwise, y;; = 0.
The objective function (1) minimizes maximum demand-weighted
travel time between relief stations and URDCs. Constraint (2)
defines the lower bound of maximum demand-weighted travel
time, which is being minimized. Constraint (3) requires that each
relief station be assigned to exactly one URDC. Constraint (4)
restricts relief station assignments only to selected URDCs. Con-
straint (5) stipulates that p URDCs are to be located. Constraints
(6) and (7) indicate that location and allocation decision variables
are binary. The WVPC problem is also known as the minimum k-
supplier problem (Ausiello et al., 1999).

2.2. Representation of data uncertainty and the robust WVPC problem

Uncertain relief demands at relief stations and travel times be-
tween relief stations and URDCs are described using intervals or
ranges. Specifically, An interval [&l, Euy], O < €l < Eu;, represents
uncertain relief demand at station i, and an interval [tly, tuy],
0 < tl< tuy, captures the uncertainty of travel time between station
i and URDC j. Let W be the Cartesian product of intervals [&l;, cuyl,
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VvieV, and [tly, tug], VieV, jeU. A scenario w € W represents a
realization of relief demands at relief stations (i.e., &(w) e [¢&l, &
u;], Vi e V, where ¢{(w) denotes relief demand at station i in sce-
nario w) and travel times (or distances or costs) between relief sta-
tions and URDCs (i.e., t(w) € [ tly, tug], Vie V, je U).

Let T=(x,y), where x={x;, je Uy and y={y;, icV,je U}, be a
feasible solution to the WVPC problem (i.e., satisfying Constraints
(3)-(7), and let 2 be the set of feasible solutions. In this study,
T € Q is called a location plan of URDCs. For a plan 7 and a relief
station i € V, this work defines travel time between i and 7 in sce-
nario w as

d(w,i,7) = Min{t;(w)lx; = 1,Vj € U}. (8)

For a plan 7 and scenario w, the maximum demand-weighted travel
time between plan 7 and relief stations in scenario w, Z(w, t), is
determined as follows:

Z(w,T) = Max &(w)d(w,,7) 9)

Thus, for a given scenario w, the deterministic WVPC problem (1)-
(7) can be written as

WVPC(w) = Min Z(w, 7). (10)

This work defines the robust deviation of plan 7 in scenario w,
DEV(w, 1), as the difference between maximum demand-weighted
travel time and that of the optimal plan, t*(w), in scenario w.

DEV(w,7) =Z(w,T) — Z(W,T"(W)). (11)

Robustness cost (i.e., regret in the worst-case scenario) of a plan ©
can be obtained by solving the following sub-problem:

RC(r) = Max DEV(w, ). (12)

The RWVPC problem can be stated formally as
(RWVPC) Minilgrzlize RC(7). (13)
TE

This is equivalent to finding T,opus: = argMin;.o RC(7); that is, the
RWVPC problem is to find a robust solution 7,,p,s that minimizes
the largest (worst-case) deviation of maximum demand-weighted
travel time from the optimal solution.

2.3. Evaluation of robustness cost

Because the (continuous) interval representation of uncertain
demands and travel times may lead to an infinite number of possi-
ble scenarios, evaluation of robustness cost RC(t), which involves
identifying the worst-case scenario of plan 7, is a major challenge
of solving the RWVPC problem. To efficiently evaluate RC(z), this
work reformulates the sub-problem of R((t), defined in Eq. (12),
according to Theorem 1 below, indicating that although uncertain
relief demands and travel times are described using continuous
intervals, the solution to the sub-problem, RC(t), can be found in
a finite subset of scenarios, each of which corresponds to an ex-
treme case. This reformulation increases the tractability of the
problem from a combinatorial perspective.

Let wy(7) be the scenario induced by plan t and associated with
relief station k, such that (i) demand of station k equals its upper
bound (i.e., & = ¢uy); (ii) demand of any other station i equals its low-
erbound (i.e., & = &l;, Vi € V,i # k); (iii) travel time between station k
and its associated URDC j* (i.e., k is serviced by j*) equals its upper
bound (i.e., ty = twy, for y, = 1); and (iv) travel time between
any other pair of stations and URDCs equals its lower bound (i.e.,
ti=tly, Vv(i, j) €A, i#k, j#j). Suppose w = {¢(w), VieV; tj(w),
V(i, j) € A} is the worst-case scenario of plan 7; that is, @ is an opti-
mal solution to sub-problem RC(z). Let relief station k = argMax;.y.
&(m) x d(w, i, 7). Then, by definition, Z(w@, 1) = &(w)d(®, k, 1)

Additionally, denote j* as the URDC servicing relief station k in plan
7 and scenario @ (i.e., y,; = 1;d(w, k, 1) = t; (m)). For simplicity,
wy and wy(t) are used interchangeably as follows.

Lemma 1. With the above definitions of scenarios wy and @, for a
plan 1, R((t)=Z(w, 1) - Zw, t"(w))=Z(Wwi, T)—Z(W, T (W),
where t*(w) and t*(wy) are the optimal plans in scenarios @w and
wy, respectively.

Proof of Lemma 1. Let t*(w) be an optimal solution to the deter-
ministic problem WVPC (@) defined in Eq. (16), and (@, t*(®)) is an
optimal solution to sub-problem R((t).

Main claim: (wy, t°(w@)) is also an optimal solution to sub-
problem R((t); this is equivalent to claiming that wy is also a
worst-case scenario of plan t, and t*(w@) is also an optimal solution
to WVPC (wy). Therefore,

Z(Wie, T) — Z(Wk, T°(Wk)) = Z(Wi, T) — Z(Wy, T (D))
=Z(w,7) - Z(w, v (w)) = RC(1),

which implies the statement of Lemma 1. The main claim is proved
by transforming @ into w;, via the following two steps.

Step 1: Replace &(w) and ¢ () with upper bounds ¢uy and tuy,
respectively.
Prior to this transformation of @, since (@, t*(w)) is an
optimal solution to sub-problem RC(t), Z(@, t) - Z(w,
7*(@)) = 0. Therefore, d(w, k, t) > d(w, k, t%(w)). In the
first transformation step, value Z(w, T*(w)) cannot increase
by more than (¢éuy — &(@)) x d(@, k, T°(@)) < (Sup — E(@
)) x d(@, k, ). Moreover, in Step 1, the value of Z(wm,
T) — Z(w, T°(w)) cannot decrease because ¢Euy > & (@)
and tu; > tiy (@), and cannot increase because (@, t%(@
)) is an optimal solution to sub-problem R((t). Therefore,
this value does not change in Step 1. We can conclude that
the modification in Step 1 does not change the optimality
of (@, t(w)) to sub-problem R((t).

Step 2: Replace ¢(w) with the lower bound ¢ [, Vi€ V, i # k, and t;
(w) with the lower bound tly, V(i, j) €A, i # k, j # j*.
In Step 2, replacing &(w) with &I, VieV, i#k, and t(wm)
with tly, (i, j) € A, i # k, j # j* does not change the values
of Z(w, 1) and Z(w, t*(w)). Therefore, the modification in
Step 2 also does not change the optimality of (w, T%(@))
to sub-problem R(C(t). Thus, the main claim is proven, as
is lemma 1. O

Lemma 1 leads to the following theorem, which significantly
simplifies the formulation of sub-problem R((7).

Theorem 1. For any t €€,
RC(7) = Max{cu; x tuy — Z(wi, T"(wi))}, (14)
1€

where j* is the distribution center associated with station i in plan t.

Proof of Theorem 1. The theorem follows in a straightforward
manner from the proof of Lemma 1. O

3. Solution algorithm
3.1. A local search-based algorithmic framework
Since the RWVPC problem is NP-hard, to obtain robust solutions

with a reasonable amount of computational resources for problem
instances with practical sizes, heuristics or meta-heuristics are
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typically adopted. Based on Theorem 1, the following local search-
based algorithmic framework is proposed.

Step 1: Initialization
1.1. Generate randomly an initial solution to; let 7 = 7,.
1.2. Evaluate the robustness cost of t, RCost(t), based on
Theorem 1.
Step 2: Local search
2.1. Generate a new solution, Tyew, from the neighborhood of
T.
2.2. Evaluate the robustness cost of Tpew, RCOSt(Tpew), based
on Theorem 1.
Step 3: Solution acceptance or rejection
3.1. If the rules (or aspiration rules) of solution acceptance
are adopted, then let T = Tpew.
3.2. Otherwise, decline the new solution, Tpew-
Step 4: Convergence check
4.1. If convergence criteria are satisfied, stop.
4.2. Otherwise, go to Step 2.

In this framework, each candidate solution has more than one
neighbor solution, and the choice of which neighbor solution to
move is determined using only the information about the neigh-
borhood of the current solution (i.e., local search). When no
improvement mechanisms are designed for the neighborhood
search, a local search may be stuck at local optima. This issue
can be resolved by applying, for instance, restarts with different
initial solutions or relatively more sophisticated schemes based
on iterations (e.g., iterated greedy) or memory-less stochastic mod-
ifications (e.g., SA) in Step 3 of the proposed framework.

3.2. A Specific Implementation based on simulated annealing (SA)

This subsection presents a specific implementation of the pro-
posed framework based on SA, which can escape from being
trapped into a local optimum by accepting, with a small probabil-
ity, worse solutions during iterations. Suman and Kumar (2006)
comprehensively reviewed SA-based optimization algorithms. Let
To be the initial temperature, Tr the final temperature, Ite;q, the
maximum number of iterations between two different tempera-
tures, Num;,,x the maximum number of temperature reductions,
and p the temperature reduction ratio (0 < <1). The SA-based
heuristic is presented as follows.

Step 0: Input data and set parameters values Ty, Tr It€max,
Numy,qy, and B;
Step 1: Initialization
1.1. Randomly generate the initial solution to; 7 := 7o;
1.2. Initialize Temp:=T,, Ite:=0, Num:=0,
RCost(Tropust) := RCost(T);
Step 2: Generate a solution Tpew, and evaluate its robustness
cost, RCost(Tpew); Ite :=1Ite +1;
Step 3: AE := RCost(Tnew) — RCost(t); if AE<O0, go to Step 3.1;
otherwise, go to Step 3.2;
3.1. Let T:= Thew;
3.2. Generate a random number rand ~ U(0,1);
If rand < (Temp/(Temp? + AE?)), then T := Tpew;
Step 4: 1f RCost(t) < RCost(Trobust), then Tropust := T, RCOSt(Tropust) -
:= RCost(t), Num := 0;
Step 5: If Ite=Iteyax,  then
Num:=Num + 1;
Step 6: If Temp < Tr or Num := Nump,.x, then stop; otherwise, go
to Step 2.

Trobust := T,

Temp :=Temp x f, Ite:=0,

Note that the SA-based heuristic is provided only as a specific
implementation for the framework, presented in Section 3.1. Any

Randomly select two relief stations
............ ’ ¥ and swap their associated URDCs.

(a) Illustration of type 1 neighborhood

Randomly select two URDCs and swap their
associated groups of relief stations.

RN

(b) Tllustration of type 2 neighborhood

Bl Open URDCs [ Closed URDCs O Relief stations

Fig. 1. Illustrations of different neighborhood types.

other local search-based heuristic can be adopted in the proposed
framework, such as iterated greedy. Moreover, while SA is not a
new approach, this work demonstrates a successful application of
SA (or meta-heuristics) to solve robust combinatorial optimization
problems, which is rarely seen in existing literature.

3.3. Neighborhood description and evaluation of robustness cost

In Step 2 of the SA-based heuristic, a new solution T, is gener-
ated in each iteration from the neighborhood of the current solution
7. This work defines two neighborhood types. The first is called the
allocation neighborhood, and involves only changes in allocation
decision variables (i.e., y, i € V, j € U). Both location and allocation
decision variables (i.e., x;,j € U,and y;, i € V, j € U) change in the sec-
ond type, called the location-allocation neighborhood. Specifically,
the allocation neighborhood consists of feasible solutions obtained
by randomly selecting two relief stations serviced by different
URDCs in the current solution, and swapping their associated
URDCs (Fig. 1a). The new solutions in the location-allocation neigh-
borhood are generated by randomly choosing two URDCs and
swapping their associated groups of relief stations. In this neighbor-
hood type, at least one chosen URDC must be an open facility. More-
over, if only one chosen URDC is open, this swap is equivalent to
moving a group of relief stations from an open facility to another
facility that was closed but is now open after the swap (Fig. 1b).

In each iteration of the SA-based heuristic, a new solution Tey
is generated from either the allocation (with probability p;) or
location-allocation (with probability p,) neighborhood of current
solution 7. Selection between the two types of neighborhood is
based on probabilities p; and p,, and p; +p, = 1.

4. Numerical experiments
4.1. Experimental design

A set of numerical experiments was conducted on a set of test
instances, to examine the algorithmic performance of the SA-based
heuristic, the tradeoff between robustness and optimality, and the
impact of data uncertainty on the solutions. The algorithm was
coded using C++ computer language and tested on a personal com-
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puter with a Pentium Core 2 Duo 2.4 gigahertz CPU and 2 gigabytes
RAM.

To examine the performance of the SA-based heuristic, this
work also implemented an enumeration approach and compared
the effectiveness (solution quality) and efficiency (computational
time) of the SA-based heuristic with those of the enumeration ap-
proach. This approach enumerates all possible plans and identifies
the plan with minimal objective value. In spite of its computational
inefficiency, this enumeration approach guarantees to find exact
solutions that serve as the benchmark for evaluating the solution
quality of the heuristic.

The test instances have different sizes, represented by the trip-
let (|V], |U|, p), where |V, |U|, and p denote the numbers of relief sta-
tions, candidate URDC sites, and open URDC sites, respectively.
Fifteen different sizes of instances were considered. For each prob-
lem size, 30 instances were generated, so there were 450 problem
instances. For each instance, the two-dimensional coordinates of
relief stations and candidate URDC sites were generated from the
intervals (0,100) and (40,60), respectively. The nominal travel time
t;; between each pair of relief station i and candidate URDC site j is
given as the Euclidean distance rounded to the nearest integer. Be-
cause of the likely degradation of road condition in the aftermath
of disasters, the travel time interval [tly, tu;] is generated as [t
tij + oq x t], Vi, j. The relief demand interval [¢l;, ¢u;] is generated
as [& — o x &, &+ op x &, Vi, since the actual demand at station
i could be more or less than the nominal demand (e.g., the relief de-

Table 1
Comparison of algorithmic performance for the RWVPC instances with [V| = 10.

Problem (otq, 0t2) SA-based heuristic Enumeration
size
Ave. CPU Ave. CPU
RC(Trobust) time RC(Trobust) time
(10, 4, 2) (0.5, 0.2) 2309.90 (4) 6.33 2101.68 29.59
(0.5, 0.4) 2799.12 (4) 2561.58
(0.5, 0.6) 3263.04 (5) 2927.52
(1.5,0.2) 7422.80 (3) 7259.52
(1.5, 04) 8676.60 (3) 8469.44
(1.5, 0.6) 9930.40 (3) 9679.36
(25,02) 1261256 (3) 12482.52
(2.5,04) 14731.32 (3) 14562.94
(2.5, 0.6) 16950.08 (3) 16643.36
(10, 4, 3) (0.5, 0.2) 2138.78 (1) 8.92 2105.16 492.57
(0.5, 0.4) 2598.36 (2) 2498.58
(0.5, 0.6) 2855.52 (0) 2855.52
(1.5,0.2) 7355.40 (0) 7355.40
(1.5, 04) 8623.86 (1) 8401.30
(1.5, 0.6) 9807.20 (0) 9807.20
(2.5,0.2) 12612.12 (1) 12575.64
(2.5,04) 14371.58 (0) 14371.58
(2.5, 0.6) 16816.16 (1) 16767.52
(10, 5, 2) (0.5,0.2) 2234.48 (5) 9.77 1887.96 57.40
(0.5, 0.4) 2619.82 (6) 2252.18
(0.5, 0.6) 2997.12 (6) 2573.92
(1.5,0.2) 6857.34 (3) 6506.58
(1.5, 04) 7900.23 (3) 7591.01
(1.5, 0.6) 8843.12 (2) 8675.44
(2.5,0.2) 11408.26 (3) 11288.48
(2.5,04) 13442.97 (3) 13169.87
(2.5, 0.6) 15277.68 (3) 15051.28
(10, 5, 3) (0.5,0.2) 2071.70 (1) 12.37 1972.14 2989.96
(0.5, 0.4) 2390.06 (3) 2200.83
(0.5, 0.6) 2529.52 (0) 2529.52
(1.5,0.2) 6399.54 (0) 6399.54
(1.5, 04) 7933.17 (3) 7816.13
(1.5, 0.6) 9120.08 (3) 8932.72
(2.5,0.2) 11265.18 (1) 11161.98
(2.5,04) 13542.97 (2) 1337231
(2.5, 0.6) 15420.24 (3) 15082.64

mand estimated by search-and-rescue teams). The parameters o
and o, are used to control the degree of data uncertainty; the larger
the values of oy and a;, the higher the degree of uncertainty for the
data. Each problem instance was tested for nine combinations of
(crq, o2), where o =0.5, 1.5, and 2.5 and o, = 0.2, 0.4, and 0.6, so
there were 4050 (= 450 x 9) tests.

In addition to the objective values (robustness cost), defined in
Eq. (12), the price of robustness #(Topust) and hedge value H(T;obust)
are the other two performance measures. #(Tyobust) iS equal to the
price that the decision-maker needs to pay for employing the ro-
bust plan Topust, instead of the optimal nominal plan Tyominal, iN
the scenario of nominal travel times, Wyominal (i-€., without consid-
ering data uncertainties). Specifically,

W(Trobust) = Z(Wnominale Trobust) - Z(Wnuminaly tnominal)~ (1 5)

In Eq. (15), Z(Wnominal» Tnominal) iS the minimum of maximum de-
mand-weighted travel time between URDCs and relief stations in
the nominal scenario, Wyominal. H(Trobust) 1S defined as the value
gained from implementing the robust plan Topust, instead of the
optimal nominal plan 7Tyomina, iN the worst-case scenarios.
Specifically,

H(Trobust) = RC(Tnominal) - RC(Trobust)- (16)

In the definitions, 7(Topus:) represents the tradeoff between robust-
ness and optimality, while H(Topust) can be viewed as the regret of
employing the plan Thominar in the worst-case scenario.

Table 2
Comparison of algorithmic performance for the RWVPC instances with |V| = 15.

Problem (o1, 012) SA-based heuristic Enumeration
size
Ave. RC(Trobust) CPU Ave. CPU
time RC(Trobust) time
(15,4, 2) (0.5,0.2) 2354.78 (3) 13.39 2140.12 223.60
(0.5, 0.4) 2882.44 (5) 2547.37
(0.5, 0.6) 3389.68 (6) 2911.28
(1.5,0.2) 7439.98 (3) 7229.58
(1.5, 0.4) 8861.39 (4) 8434.51
(1.5, 0.6) 10001.04 (3) 9639.44
(2.5,0.2) 12529.88 (1) 12447.00
(2.5,0.4) 14572.10 (2) 14521.50
(2.5,0.6) 16639.84 (1) 16596.00
(15, 4, 3) (0.5,0.2) 2304.34(N/A) 16.05 2395.22* 5 days
(0.5,0.4) 2987.46(NJA) 3315.89"
(0.5, 0.6) 3480.88(N/A) 3579.16*
(1.5,0.2) 7161.56(N/A) 7545.24*
(1.5,04) 8808.94(N/A) 8983.92*
(1.5, 0.6) 10039.84(N/A) 10558.04*
(2.5,0.2) 12629.88(N/A) 13114.62*
(2.5,04) 14334.86(N/A) 15392.12*
(2.5, 0.6) 16299.84(N/A) 17105.38"
(15,5, 2) (0.5,02) 2386.24(2) 18.36 2112.30 3169.21
(0.5,0.4) 2747.72(3) 2470.65
(0.5, 0.6) 3215.12(4) 2823.60
(1.5,0.2) 7215.10(2) 7085.70
(1.5, 0.4) 8676.81(3) 8266.65
(1.5, 0.6) 9753.04(3) 9447.60
(2.5,0.2) 12691.92(4) 12120.58
(2.5,0.4) 14377.39(2) 14148.54
(2.5,0.6) 16333.52(2) 16169.76
(15,5, 3) (0.5,0.2) 2636.82(N/A) 23.60 2955.48* 5 days
(0.5,0.4) 3126.76(N/A) 3205.80"
(0.5, 0.6) 3535.04(N/A) 3987.15*
(1.5,0.2) 7182.54(NJA) 7514.44"
(1.5,0.4) 8608.07(N/A) 8796.94"
(1.5, 0.6) 9929.52(N/A) 11783.20*
(2.5,0.2) 12339.54(N/A) 12975.36*
(2.5,0.4) 14395.29(N/A) 16003.50*
(2.5,0.6) 16282.72(NJA) 16549.72*

* The incumbent solution obtained by the enumeration approach in 5 days.
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4.2. Numerical results of solving the RWVPC problem

4.2.1. Effectiveness and efficiency of the SA-based heuristic

The computational results of solving the RWVPC problem in-
stances with the number of relief stations |V| =10 and 15 are dis-
played in Tables 1 and 2, respectively. In the tables, Ave. RC(Topust)
denotes the average robustness cost, over 30 instances, for each
problem size and uncertainty level. For each problem size and each
uncertainty level, the number of instances (out of 30 instances)
where the SA-based heuristic fails to obtain optimal solution is re-
ported inside the parenthesis in the third column of the tables. As
shown in the third and fifth columns of the tables, for most problem
sizes and uncertainty levels, the Ave. RC(T.opust) Obtained using the
SA-based heuristic is close to that obtained using the enumeration
approach. The difference in Ave. RC(T obust), between the SA-based
heuristic and the enumeration approach is less than 10% in all in-
stances, implying that the SA-based heuristic is able to find close-
to-optimal solutions. Note that, since the estimated computational
time for the enumeration approach to optimally solve one instance
of problem size equal to (15,4,3) or (15,5,3) is more than 1 week, a
maximum computational time (5 days) was set and the incumbent
solution obtained within the maximal computational time was re-
ported. As shown in Table 2, for the tests on these larger instances,
the solution obtained using the SA-based heuristic is significantly
better than that obtained using the enumeration approach.

Regarding the computational efficiency of the proposed heuris-
tic, as shown in the fourth and sixth columns of these tables, the
SA-based heuristic requires much less computational time than
the enumeration approach in all the conducted tests. In particular,
although the computational time of the enumeration approach in-
creases dramatically as the problem size gets larger, the increase in
computational time of the SA-based heuristic is not significant. For
instance, for the tests with the same numbers of |V|=10 and
|U] =5, when p increases from 2 to 3, the computational time of
the enumeration approach increases by more than 60 times, but
the SA-based heuristic requires an average of 2.6 more seconds.
In summary, the SA-based heuristic obtains optimal or near-
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optimal solutions using much less computational time than the
enumeration approach.

4.2.2. Impacts of data uncertainty

The tests conducted on the problem instances of larger size, i.e.,
(30,5,3), (40,8,4), and (50,10,5), aim to examine the impact of
data uncertainty on the performance measures of interest. The test
results in Table 3 show that both robustness cost and hedge value
increase as the uncertainty level becomes higher. Because of the
larger relief demand and travel time intervals (i.e., larger o and
o), the worst-case scenario deviates further from the nominal sce-
nario, resulting in larger robust deviations and the increase in
hedge value, which highlights the advantage of implementing ro-
bust solutions in the presence of data uncertainty. The robustness
price is less than 15% of the optimal nominal objective value (i.e.,
Z(Wnominal» Tnominal) Feported in the sixth column of Table 3), imply-
ing that the robust plans determined by the proposed method do
not tradeoff much optimality for robustness.

5. Numerical example

This numerical example demonstrates the application of the
proposed RWVPC model to locate URDCs in a relief supply distribu-
tion network responding to the massive earthquake which hit cen-
tral Taiwan on September 21, 1999—the 921 Jiji Earthquake. This
earthquake, which measured 7.3 on the Richter scale, mostly af-
fected Taichung and Nantou counties, causing more than 2500
deaths and 8000 injuries and destroying (completely or partially)
39,000 buildings. A three-tier relief supply distribution network
was established in Nantou County immediately after this earth-
quake. Specifically, relief supplies were collected from six unaf-
fected counties (Taipei, Taoyuan, Hsinchu, Changhua, Tainan, and
Kaohsiung), transported to two URDCs at Nantou Stadium and Jiji
Town Hall, and then delivered to the 51 relief stations in the 11
townships in Nantou County. In this numerical example, in addi-
tion to Nantou Stadium and Jiji Town Hall, five other candidate
sites for URDCs were selected based on an earthquake prepared-

Table 3
Computational results of solving larger RWVPC problem instances.

Problem size (o1, 02) RC(Trobust) n(frobust) H(Trobust) Z(Wnominals Tnominal) CPU time

(30,5, 3) (0.5,0.2) 3236.86 349.80 1503.68 4988.70 138.24
(0.5,0.4) 3874.71 425.07 1655.71
(0.5, 0.6) 4461.44 421.45 1859.04
(1.5,0.2) 8836.26 527.37 2826.24
(1.5,0.4) 1043047 570.95 3175.78
(1.5, 0.6) 11920.80 590.95 3629.20
(2.5,0.2) 14780.04 779.02 3860.34
(2.5,04) 17203.55 762.19 4543.56
(2.5,0.6) 19661.20 792.19 5192.64

(40, 8, 4) (0.5,0.2) 3652.00 542.16 816.92 4917.40 1266.10
(0.5,04) 4398.24 553.75 855.82
(0.5, 0.6) 5026.56 553.75 978.08
(1.5,0.2) 9212.00 683.41 1720.90
(1.5,04) 10855.53 746.37 1899.52
(1.5, 0.6) 12406.32 766.33 2170.88
(2.5,0.2) 15033.64 827.84 2522.42
(2.5,04) 17605.63 825.92 2876.44
(2.5,06) 19020.72 845.92 4387.36

(50, 10, 5) (0.5,0.2) 3886.10 511.13 1000.90 4633.40 13438.63
(0.5,04) 4648.07 598.65 1053.43
(0.5, 0.6) 5298.56 526.32 1217.44
(1.5,0.2) 9593.28 663.76 1888.68
(1.5,0.4) 11303.74 694.54 2091.88
(1.5, 0.6) 12918.56 704.54 2390.72
(2.5,0.2) 15480.96 759.06 2595.96
(2.5,04) 18076.80 779.06 3012.94
(2.5,06) 20659.20 795.36 3443.36
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Table 4
Travel times (minutes) between URDC candidate sites and relief stations.

Township Relief URDC candidate sites
stations
Nantou Puli High Caotun Middle Jhushan Elementary Jiji Town Guoshing Shueili Middle
Stadium School School School Hall Town Hall School
Nantou (104,000)? (26,000)° NT-A 4 68 22 33 33 57 43
NT-B 3 65 19 35 35 56 45
NT-C 6 67 20 35 37 56 47
NT-D 2 66 20 32 33 56 43
Puli (84,000) (10,500) PL-A 65 7 54 80 77 38 60
PL-B 56 4 54 80 78 40 62
PL-C 69 7 57 84 80 42 64
PL-D 65 9 53 80 76 38 60
PL-E 71 20 59 85 91 40 75
PL-F 61 9 49 76 72 34 56
PL-G 65 7 53 79 76 38 60
PL-H 67 6 55 82 78 40 62
Caotun (99,400) (14,200) CT-A 18 59 6 37 43 42 53
CT-B 32 42 13 51 57 25 67
CT-C 36 50 16 55 56 33 71
CT-D 27 53 8 46 52 35 62
CT-E 39 54 20 58 60 37 75
CT-F 48 41 28 67 72 24 85
CT-G 39 41 20 58 64 25 74
Jhushan (58,000) (29,000) JS-A 23 71 33 12 22 61 34
JS-B 27 74 36 6 27 64 40
Jiji (11,700) (3,900) JJ-A 36 79 50 36 4 78 17
JI-B 36 77 50 35 5 75 15
J-C 27 79 41 30 19 67 29
Mingjia (41,000) (8,200) MJ-A 15 67 29 21 19 57 29
M]J-B 13 64 32 34 32 64 42
MJ-C 17 73 35 31 28 63 39
MJ-D 18 75 37 34 32 65 42
MJ-E 23 75 37 31 29 62 39
Lugu (19,200)(6,400) LG-A 41 88 50 19 37 78 44
LG-B 50 97 59 28 46 87 54
LG-C 58 103 73 42 34 101 42
Jhongliao (16,000) (8,000) JL-A 28 65 35 54 38 47 53
JL-B 21 72 35 39 18 62 33
Yuchih (18,000) (3,000) YC-A 76 29 65 84 57 49 41
YC-B 61 47 75 62 35 68 19
YC-C 91 39 79 98 72 64 55
YC-D 84 27 72 98 73 56 56
YC-E 68 40 76 69 43 61 26
YC-F 92 51 86 93 66 71 50
Guoshing (20,800) (5,200) GS-A 57 41 38 71 77 1 72
GS-B 71 37 52 85 60 26 46
GS-C 75 43 56 89 95 18 90
GS-D 62 28 42 76 70 17 56
Shueilli (21,000) (3,000) SL-A 49 61 63 50 24 67 10
SL-B 71 58 85 72 45 64 31
SL-C 57 58 71 57 31 64 17
SL-D 72 86 86 73 46 102 30
SL-E 65 85 79 66 39 96 24
SL-F 58 82 72 57 33 91 21
SL-G 51 65 65 52 25 81 9

4 Number of survivals in each township.
b Relief demand faced by each relief station in a township.

ness report prepared by Taiwan’s Ministry of the Interior (Ministry
of the Interior, Taiwan, 2000). The triplet (|V], |U|, p) =(51,7,2) de-
notes the problem size of this numerical example, where |V, |U|,
and p denote the numbers of relief stations, candidate URDC sites,
and selected URDC sites, respectively.

Table 4 lists the travel times between the seven candidate sites
and 51 relief stations. For instance, the travel time between Nantou
Stadium and relief station NT-A in Nantou township was 4 min-
utes. These travel time data were collected by Sheu (2007, 2010)
to evaluate an emergency logistics distribution approach. In addi-
tion, because it is very difficult to precisely estimate relief demand

faced by each relief station, this work divided number of survivals
(provided in the leftmost column of Table 4), equal to population
minus number of deaths, by number of relief stations of each
township, to obtain an approximate estimate of relief demand
faced by each relief station in that township. For example, the
number of survivals in Nantou was 104,000 and there were four re-
lief stations in this township, so each relief station faced a relief de-
mand 26,000.

In the earthquake’s aftermath, the maximum demand-weighted
travel time between the two URDCs (i.e., Nantou Stadium and Jiji
Town Hall) and the 51 relief stations was 783,000 persons-minutes
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Table 5
Computational results of the numerical example based on Jiji earthquake.
Problem size (o, 02) RC(Trobust) Selected URDCs Max. weighted travel time
(51,7,2) (0.5,0.2) 93,619 Nantou Stadium, Puli High School 837,800 = 59 x 14,200 (between Puli High School and CT-A)
(0.5, 0.4) 587,837 Nantou Stadium, Puli High School 783,000 = 27 x 29,000 (between Nantou Stadium and JS-B)
(0.5, 0.6) 1,477,709 Puli High School, Jhushan Elementary School 910,000 = 35 x 26,000 (between Jhushan Elementary School and NT-B)
(1.5,0.2) 940,858 Nantou Stadium, Puli High School 783,000 = 27 x 29,000 (between Nantou Stadium and JS-B)
(1.5,04) 1,859,069 Nantou Stadium, Guoshing Town Hall 783,000 = 27 x 29,000 (between Nantou Stadium and JS-B)
(1.5, 0.6) 2,934,605 Puli High School, Jhushan Elementary School 910,000 = 35 x 26,000 (between Jhushan Elementary School and NT-B)
(2.5,0.2) 1,883,309 Nantou Stadium, Puli High School 783,000 = 27 x 29,000 (between Nantou Stadium and JS-B)
(2.5,04) 3,400,291 Puli High School, Jhushan Elementary School 910,000 = 35 x 26,000 (between Jhushan Elementary School and NT-B)
(2.5, 0.6) 4,356,480 Nantou Stadium, Puli High School 783,000 =27 x 29,000 (between Nantou Stadium and JS-B)

(fromeither one of the two URDCs to relief station JS-B with relief de-
mand equal to 29,000 persons and travel time equal to 27 min).
Without considering relief demand and travel time uncertainties,
this work solved a deterministic WVPC problem based on the data
in Table 4. In the solution, Caotun Middle School and Jhushan
Elementary School are selected as the URDCs, with a maximum de-
mand-weighted travel time equal to 619,500 persons-minutes
(from Caotun Middle School to relief station PL-E with relief
demand equal to 10,500 persons and travel time equal to 59 min-
utes). Setting up the URDCs at this two sites significantly reduces
the maximum demand-weighted travel time (783,000 — 619,500 =
163,500 persons- minutes), which indicates a potential improve-
ment in relief distribution efficiency by locating URDCs at the sites
suggested by the deterministic WVPC model.

To represent data uncertainty in the RWVPC problem, travel
time interval [tly, tu;] was generated as [ty t; + oy x tj], Vi, j, while
relief demand interval [&l;, ¢u;] was generated as [& — o x &, &+
oy x &, Vi. This numerical example was tested for nine combina-
tions of (o, o), where o; =0.5, 1.5, and 2.5 and o, = 0.2, 0.4, and
0.6. The average CPU time for the SA-based heuristic to solve one
instance was 73 seconds. Table 5 presents the computational re-
sults of solving the nine RWVPC problem instances. As expected,
the robustness cost increases as the uncertainty level, (o4, o), in-
creases. The URDCs selected in the RWVPC model differ signifi-
cantly from those in the deterministic WVPC model. Particularly,
while an URDC is located at Caotun Middle School in the WVPC
model, this site is not included in the RWVPC model for different
levels of data uncertainty. Moreover, Puli High School is selected
in the RWVPC model for different levels of data uncertainty, but
not in the WVPC model. The difference in selected URDCs high-
lights the importance of considering data uncertainty in choosing
URDC sites. The results also suggest that Puli High School is an
appropriate site for locating an URDC while considering uncertain
relief demands and travel times.

6. Concluding remarks

With particular emphasis on supporting the decision of locating
URDCs in an emergency logistics network responding to quick-
onset natural disasters, this work developed the RWVPC model
and its solution algorithm. The model aims to minimize the
worst-case deviation in maximum demand-weighted travel time
between URDCs and relief stations from the optimal solution.
Rather than using probability distributions to describe data uncer-
tainty, the model represents uncertain relief demands and travel
times using prescribed fixed intervals. A reformulation was pro-
posed in Theorem 1 to facilitate identifying the worst-case scenario
among an infinite number of possible scenarios, and evaluating
robustness costs. The generic algorithmic framework, which incor-
porates the reformulation in Theorem 1, was developed to obtain
robust solutions in a reasonable amount of computational time.

A large number of problem instances, with various problem
sizes and different degrees of data uncertainty, were generated

and solved using the SA-based heuristic. The numerical results
show that the proposed heuristic is able to efficiently obtain opti-
mal, or near-optimal, solutions. It was also found that the robust
solutions determined by the proposed method do not trade off
much quality (or optimality) for robustness. To demonstrate the
applicability of the proposed RWVPC model to real-world in-
stances, a case study based on Jiji Earthquake, which hit central
Taiwan on September 21, 1999, was conducted. In this case study,
the URDCs selected in the RWVPC model differ from those in the
deterministic WVPC problem, highlighting the importance of con-
sidering data uncertainty when choosing URDC sites.

This work contributes significantly to the growing body of liter-
ature developing robust optimization approaches to emergency
logistics. A number of interesting studies can be conducted based
on the developed robust emergency facility location model and
algorithm. First, one can compare the effectiveness and efficiency
of the proposed SA-based heuristic with those of other meta-heu-
ristics (e.g., Genetic Algorithm and Tabu Search). Second, some
practical constraints (e.g., capacity and budget constraints on facil-
ities) can be considered when determining emergency facility loca-
tions. Moreover, a convex combination of pessimistic and
optimistic decision making can provide a sensitivity analysis on
different degrees of utility or satisfaction for the WVPC problem
with interval weights on transportation networks under general
conditions (e.g., Majumdar and Bhunia, 2011).
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