
594 IEEE TRANSACTIONS ON RELIABILITY, VOL. 43, NO. 4, 1994 DECEMBER 

A ‘liub(log,(N))-2’ Resilient Decentralized Commit Protocol 

Shyan-Ming Yuan, Member IEEE 
National Chiao Tung University, Hsinchu 

Key Words - Distributed database system, commit protocol, 
decentralized algorithm, resilience, hypercube, message complexity 

Reader Aids - 
General purpose: Present a new commit protocol 
Special math needed for explanations: None 
Special math needed to use results: None 
Results useful to: Distributed-database designers 

Summary & Conclusions - In distributed database systems, 
commit protocols are used to ensure the transaction atomicity. In 
the presence of failures, nonblocking commit protocols can 
guarantee the transaction atomicity without blocking the transac- 
tion execution. A (resilient) decentralized nonblocking commit pro- 
tocol (RDCP) is proposed for distributed database systems. This 
protocol is based on the hypercube network topology and is 
‘liub(logz(N))-2’ resilient to node failures (N = number of 
system-nodes). The number of messages sent among the N nodes 
is O(N.log;(N)) which is only a factor of logz(N) over the message 
complexity lower bound O(N-logz(N)) of decentralized commit 
protocols. Furthermore, RDCP is an optimistic nonblocking pro- 
tocol. It aborts the transaction only when some nodes want to abort 
or some nodes fail before they make local decisions. 

1. INTRODUCTION 

In a distributed database system, maintenance of database 
consistency usually requires a transaction to be atomic, viz, all 
actions of a transaction successfully complete or none of them 
does. Commit protocols ensure this behavior, and are needed 
to maintain the logical atomicity of a transaction. 

Several commit protocols have been proposed [ 1 - 71, of 
which the simplest is 2-phase commit protocol in which [ 11 one 
node which starts the protocol is coordinator and others the are 
slaves. In phase 1, upon receiving a transaction request from 
a user, the coordinator sends a start message to all slaves, and 
waits for responses from them. If all slaves and the coordinator 
agree to commit the transaction then the coordinator sends a 
commit message to all the slaves; otherwise it sends an abort 
message. Since there is 1 coordinator in the 2-phase commit 
protocol, it is centralized protocol. 

A decentralized implementation of the 2-phase commit pro- 
tocol requires that every node, at each phase, communicate with 
all other nodes in the system. Thus, N .  (N- 1)  messages are 
sent among the N nodes. Lakshman & Agrawala [4] proposed 
a decentralized commit protocol that requires O(N’.5) 
messages. Their solution is based on finite projective planes [8], 
and requires 2 rounds of message exchanges. Yuan & Agrawala 

[5] proposed a family of decentralized commit protocols that 
requires O(k.N’ + messages in k rounds of message ex- 
changes. In these algorithms, there is no central coordinator 
and all nodes are considered to be coordinators. They all ex- 
ecute an identical program. This type of protocol is decentralized 
and is characterized by successive rounds of message 
interchanges. 

Although the algorithms [4,5] have smaller message com- 
plexities than the decentralized 2-phase commit protocol 
(DTPCP), both of them and the DTPCP guarantee the transac- 
tion atomicity by blocking the execution of transactions in the 
presence of failures. Once some nodes fail, all other nodes have 
to block the transaction execution until failed nodes recover. 
Because a blocked transaction can hold some shared resources 
which are needed by other transactions, the resource availability 
is appreciably affected. Therefore, commit protocols which do 
not block transactions in the presence of failures are desirable. 
The firs. nonblocking commit protocol was introduced by Skeen 
[6]. It is 3-phase commit protocol (3PCP) which extends the 
centralized 2-phase commit protocol. The major advantage of 
nonblocking commit protocols is that the resource availability 
is not affected by failures. The decentralized version of 3PCP 
requires twice the messages of DTPCP. Similarly, in [4,4], the 
messages needed for the nonblocking versions are twice the 
blocking ones. 

Wolfson & Segall [ 141 discussed the communication com- 
plexity of blocking & nonblocking centralized commit protocols, 
and proposed a Tree-commit protocol which performs better 
than other centralized commit protocols. Ramarao [7] propos- 
ed distributed commit protocols for ring & tree networks with 
message complexity of O(N). However, these protocols are 
not truly decentralized because the initiator node (for ring) and 
the root (for tree) know the final decision first then the final 
decision is propagated to other nodes. Yuan & Agrawala [15] 
extended their decentralized commit protocol [5] to tolerate 
some special cases of multiple node failures. 

This paper presents a truly decentralized nonblocking com- 
mit protocol with O(N-log;(N)) message complexity. It 
guarantees the transaction atomicity without blocking the ex- 
ecution of a transaction in the presence of all kinds of multiple 
node failures as long as the number of failed nodes is not greater 
than ‘liub(log2 (N)) -2’. The protocol is based on the hyper- 
cube network topology in [8]. Ref [13] showed that the lower 
bound of message complexity for any truly decentralized pro- 
tocol is O(k-N’ + l’k) for k rounds of message exchanges. 
Since the lower bound of message complexity for log2(N) 
round decentralized protocol is 0 ( N .  logz (N)), the proposed 
commit protocol is sub-optimal with respect to the message com- 
plexity because it is based on the hypercube and requires 
k=log2 (N) rounds of message exchanges. 

Section 2 describes the system model. Section 3 summarizes 
the hypercube architecture. Section 4 describes the communica- 
tion scheme used by the new protocol. The communication scheme 

001 8-9529/94/$4.0 01994 IEEE 



YUAN. A [LOG2(N)]-2 RESILIENT DECENTRALIZED COMMIT PROTOCOL 

~ 

595 

considers the nodes of a distributed system as vertices in 
a hypercube. Section 5 presents the ‘liub(log2(N)) -2’ 
resilient decentralized commit protocol (RDCP). All proofs 
are in the appendix. Standard notation is given in “Informa- 
tion for Readers & Authors” at the rear of each issue. 

Acronyms 

CPS communication partner set 
FSA finite state automaton 
RDCP resilient decentralized commit protocol 

2. SYSTEM MODEL 

Assumptions 

1. The distributed system consists of a set of autonomous 
processing nodes connected by a hypercube network which 
provides error free, in sequence, and guaranteed message 
delivery. 

2. The message delays are bounded. It is impossible 
for any system to maintain consistency even under 1 node- 
failure if the message delay is unbounded [lo]. 

3. A node detects a timeout when the messages it is 
waiting for are guaranteed not to arrive because of node failures. 

4. Nodes fail by stopping [ll],  ie, a node does not 
receive or send any message after it fails. 

5 .  Local transition is atomic whether in the absence 
or presence of failures. 

6. Each node has an internal timer; message delays be- 
tween any two nodes are bounded. 

7. The underlying communication protocol can detect 
the node failure and append the timeout message to the normal 
message such that all receivers of the failed node receive 

The model used to formalize commit protocols and node 
failures in this paper is based on the Skeen model [12] wherein 
the execution of a commit protocol at each node is modeled 
as a FSA. Each vertex in the FSA represents a local state. 
Local state transition of each FSA consists of receiving and/or 
sending of zero or more messages and is represented by 
a labeled edge. Each label contains a numerator and a 
denominator where the numerator represents the received 
messages and the denominator represents the sending messages 
during the state transition. This implies that nodes have the 
capability to send any number of messages in each local 
state transition. Each FSA has 2 final states: commit & abort. 

If a commit protocol is correct, then either all FSA 
reach their commit states or all reach their abort states. When 
no failure occurs, the final decision is commit if all nodes 
want to commit. If at least one node wants to abort, then 
the final decision is abort. If some nodes fail before announc- 
ing their local decisions (yes or no) then the final decision 
is abort. Otherwise, if all failed nodes have announced their 
local decisions, then their local decisions are used for the 
final decision. 

a timeout message. 4 

Example 1 

Coordinator 

S t a n  

commit 6 
Figure 1. FSA of 2-Phase Commit Protocol 

Figure 1 shows the FSA of the 2-phase commit protocol 
in a 2-node system. The FSA to express the commit protocol 
has been simplified. In figure 1, the coordinator proceeds to 
state a l  if it receives at least one no message, and to state c1 

4 
In general, a node failure can be detected by the absence 

of an anticipated message. Therefore, when the timer expires, 
the node has timed out and can take appropriate actions such 
as declaring the failure of the anticipated sender. In [ 121, it is 
modeled by a timeout message that is received like any other 
normal message and can cause a state transition. 

Node failures are modeled by a failure transition. A failure 
transition begins at the failed node on the instance of node failure 
and ends when the failed node recovers. Since the local state 
transition is atomic in the presence of failures, a failure cannot 
occur in the middle of a transition and interrupt the sending of 
messages. Thus, a failure transition is defined as reading all 
outstanding messages and sending a timeout message to all 
desired receivers. Although, in real systems, local state transi- 
tions are not atomic and nodes can fail after sending only some 
of the associated messages, [12] argued that by allowing a failure 
transition to send the normal messages followed by the timeout 
messages is sufficient to model the behavior of nonatomic state 
transitions; see assumption 7. Therefore, a real nonatomic local 
state transition can be modeled as an atomic action. 

if it receives N-1  yes messages. 

3. HYPERCUBE TOPOLOGY 

Notation 

HD (u,v) Hamming distance between any 2 binary sequences, 
U & v: number of positions where the bit values of U 
& v differ. 

An m-dimensional hypercube can be considered as an un- 
directed graph containing k=2” vertices labeled from 0 to 
2“ - 1 in such a way that there exists an edge between any 2 



596 IEEE TRANSACTIONS ON RELIABILITY, VOL. 43, NO. 4, 1994 DECEMBER 

vertices A & B iff the Hamming distance between the two binary 
representations of A & B is 1. 

An important property of the m-dimensional hypercube is 
that it can be constructed recursively from lower dimensional 
hypercubes. An m-dimensional hypercube can be derived from 
2 (m - 1)-dimensional hypercubes by connecting every vertex 
of the first (m - 1)-dimensional hypercube to the corresponding 
vertex of the second (m - 1)-dimensional hypercube. The labels 
of all vertices x, o I x I 2"-'- 1 in the first (m- 1)- 
dimensional hypercube are unchanged and the labels of all ver- 
tices y, 0 I y I 2"-'- 1 in the second (m- 1)-dimensional 
hypercube are renamed to ~ + 2 ~ - ' .  

The following properties of the hypercubes [9] are 
necessary to establish correctness of the RDCP. 

fieorem 3.1 The node connectivity of an m-dimensional hyper- 
cube is m. 

fieorem 3.2 The diameter of an m-dimensional hypercube is m. 

Theorem 3.3 There exist at least m- 1 disjoint paths whose 
lengths are at most m between any 2 nodes in an m-dimensional 
hypercube. 

Theorem 3.4 There exist m disjoint paths whose lengths are at 
most m+ 1 between any 2 nodes in an m-dimensional hyper- 
cube. 4 

4. COMMUNICATION STRUCTURE 

Notation 

S,! CPS for node j in round i 
N number of physical nodes 
k liub(log2 (N)): number of rounds 
M 2k:  number of logical nodes. 

Communication phase: exchange information 

Computation phase: do local computations 

Communication phase: exchange information 

Computation phase: do local computations 

Round ( i -1)  - - - - - - - - - - - - - - - - 

Round i - - - - - - - - - - - - - - - - 

if a node j exchanges information with a set of nodes Sj, then 
Si is the CPS of node j .  In general the CPS for a node j can 
be different in every round. 

The complete specification of message exchanges for a pro- 
tocol is defined by: 

S', for all i E [ l ,  k] and j E [0, N-11. 

Ref [4,5] used the finite projective planes and the k-dimensional 
array as basic structures to define the CPS of each node in every 
round of message exchanges. Here, the CPS of each node is 
defined according to the hypercube network topology. Choose 
M = 2k; then add M- N virtual nodes into the system. In prac- 
tice, randomly select M- N physical nodes to act as 2 logical 
nodes; then, 

%M = 2k-' < N I 2k = M. 

Thus, the number of virtual nodes needed is always less than 
N. In the worst case, where N=2k-' + 1, N-2 virtual nodes 
are needed. Let the logical M-node system be a k-dimensional 
hypercube: 

Sk = {YIHD(X,Y) = l}, for all logical nodes X E 

[0, M- 11, and all rounds i E [ 1, k], 

Since the Skare the same for all i E [ l ,  k], let S, represent 
the set of logical nodes with which logical node X exchanges 
information in all rounds. In other words, every logical node 
X exchanges messages with all logical nodes which are adja- 
cent to X in the corresponding logical k-dimensional hypercube 
at each round of message exchange. 

Example 2 

Consider a 7-node system (N=7). Then k = 3 = 
liub(log2(7)), and M = 23 = 8. Add 8 - 7 = 1 virtual node 
into the system to form a logical 3-dimensional hypercube. 
Without loss of generality, let physical node 0 act as 2 logical 
nodes: 0 & 7. Since M=8 and k=3, 

So = {1,2,4}, SI = {0,3,5}, 

5'2 = {0,3,6}, S3 = {1,2,7}, 

Communication phase: exchange information 

Computation phase: do local computations 
Round (i+l) - - - - - - - - - - - - - - - - 

Figure 2. General Structure of Rounds for Decentralized 

The operation of a decentralized protocol requires that each 
node exchange information and do computations. A general 
structure of a decentralized algorithm is defined in terms of 
rounds. Each round consists of communication & computation 
phases as in figure 2. The computations at each node in round 
i are based on the information available at that node up to and 
including the communication phase of round i .  In a protocol, 

S6 

It is easy to check that the local information of any logical node 
can reach all other logical nodes after k=3 rounds of message 
exchanges and there exist at least k- 1 disjoint paths whose 
lengths are at most k between any 2 logical nodes; eg, the local 
information of logical node 1 can reach, 

{2,4,7}, S7 = {3,5,6}. 



YUAN: A [LOG2(N)]-2 RESILIENT DECENTRALIZED COMMIT PROTOCOL 597 

logical nodes 0, 3, 5 after round 1 ,  

logical nodes 2, 4, 7 after round 2,  

logical node 6 after round 3. 

There exist 2 disjoint paths with length I 3 between nodes 0 
& 3: 

0-1-3 and 0-2-3. 4 

Lemma 4.1 For an M-node system, let every node exchange 
information with all nodes in its CPS set (see beginning of sec- 
tion 4). The local information of all nodes can reach all other 
nodes after k rounds. 4 

Lemma 4.2 For an M-node system, if every node exchanges 
information with all nodes in its CPS set (see beginning of sec- 
tion 4) by removing any k-2 nodes from the system, lemma 

4 

Lemma 4.3 The total number of messages sent among Mnodes 
in k rounds of message exchanges, according to the CPS set 

4 

4.1 is still true among operational nodes. 

(defined in beginning of section 4), is M -  log; (M). 

5. RESILIENT COMMIT PROTOCOL 

This section describes RDCP. Since the communication 
structure described in section 4 is used in this discussion, the 
following phrases are defined: 

send messages: messages are sent to all logical nodes in Sx for 

receive all messages: the receipt of messages from all logical 

receive a message: the receipt of a message from one of the 

node X 

nodes in Sx 

logical nodes in Sx for X .  

5.1 Description of RDCP 

in each state for an M-node system are listed here. 
The FSA for the RDCP is shown in figure 3. The actions 

State ak (abort): On receiving a recovery (Z) message, send 
an abort message to node Z. 
State c (commit): On receiving a recovery (Z) message, send 
a commit message to node Z. 
State r (recovery): Send recovery(X) messages and move to 
state r- w, where X is the address of the recovered node. 
State r - w (recovery-waiting): On receiving a commit 
message, move to state c. On receiving an abort message, 
move to state ak. 
State q: Upon receiving a transaction, unilaterally decide to 
commit or abort the transaction. If abort is decided, send no 
messages and move to state al. If commit is decided, send 
yes' messages and move to state wl. For virtual nodes, com- 
mit is always decided because any abort decision leads to the 
abortion of the whole transaction. If failed, send timeout 
messages and move to state ak on recovery. 
State wl: If all yes' messages are received, send yes' 
messages and move to state w2. If a no message or a timeout 

message is received, send no messages and move to state a'. 
If failed, send timeout messages and move to state r on 
recovery. 
State w;, i E [2, k-  11: If all received messages are either 
yes' or timeout, send yes'+' messages and move to state 
wi+'. If a no message is received, send no messages and 
move to state a;+'. If failed, send timeout messages and 
move to state r on recovery. 
State wk: If all received messages are either yesk or timeout, 
move to state c.  If a no message is received, move to state 
ak If failed, move to state r on recovery. 
State ai, i E [ 1 ,  k - 11 : Send no messages and move to state 
ai+l. If failed, send timeout messages and move to state ak 
on recovery. 

- .-.-.-. + 
Failure Trasition 

Figure 3. FSA for the RDCP Protocol 

5.2 Properties of RDCP 

Definition 5.1 A protocol is p-resilient to node failures if it works 
correctly even in the presence of at most p node failures. 4 

Theorems 5.1 - 5.3 establish the correctness of the RDCP 
in the absence of node failures. 

L e m  5.1 If a node is in one of the a states, it eventually aborts. 

L e m  5.2 If a node decides to abort, all nodes eventually abort. 

Lemma 5.3 If no nodes decide to abort, all nodes eventually 
commit. 4 



598 IEEE TRANSACTIONS ON RELIABILITY, VOL. 43, NO. 4, 1994 DECEMBER 

Theorem 5.1 In the absence of node failures, the RDCP ensures 
that all nodes are either all aborted or all committed. 4 

Lemma 5.4 RDCP is (k-2)-resilient to node failures if some 
nodes fail in state q. 

L e m  5.5 RDCP is (k-2)-resilient to node failures if no nodes 
fail in state q. 4 

meorem 5.2 RDCP is (k-2)-resilient to node failures. 

If N is not a power of 2 and some virtual nodes are added 
to form an M-node logical system, then for N=2k-' + 1 (the 
worst case), N-2 virtual nodes are needed. Since each physical 
node at most acts as 2 logical nodes, each physical node failure 
can lead to at most 2 logical node failures. Therefore, the 
resilience of the RDCP is at least %k-  1. Thus, theorem 5-2 
can be modified to: 

Corollary 5.1 For an N-node system where N is not a power 
of 2, the RDCP is p-resilient to node failures, p E [ %k - 1, 

Theorem 5.3 For an N-node system, the total number of 
4 

Since the resilience of RDCP is based on the existence of 
at least k- 1 node disjoint paths of length I k between any two 
nodes in a k-dimensional hypercube, if the number of rounds 
can be increased to k +  1, from theorem 3-4, there exist k node 
disjoint paths of length I k +  1 between any two nodes. RDCP 
with k +  1 rounds is (k- 1)-resilient when N=2k. 

k-21, k = liub(log2(N)). 4 

messages required for RDCP is 0 (Nelog; (N)). 

APPENDIX 

A. 1 Proof of Lemma 4.  I 

Since every node X ,  0 I X 5 M- 1 , exchanges informa- 
tion with all nodes in S, for all rounds and Sx is defined ac- 
cording to the neighboring nodes of X in the k-dimensional 
hypercube, from theorem 3-2, the local information of node X 
reaches all other nodes after k rounds. Q. E. D. 

A.2 Proof of Lemma 4.2 

Since there exist at least k- 1 node disjoint paths whose 
lengths are at most k between any 2 nodes in a k-dimensional 
hypercube (from theorem 3.3), removing any k-2 nodes can 
only destroy at most k-2 paths between any two nodes. 
Therefore, there still exists at least one path whose length is 
at most k between any two nodes. Thus, by removing any k-2 
nodes in the system, the remaining nodes can still propagate 
their local information to all other nodes after k rounds of 
message exchanges. Q. E. D. 

A.3 Proof of Lemma 4.3 

Since the node degree of a k-dimensional hypercube is k 
and there are k rounds of message exchanges, the total number 
of messages sent among the M nodes is M . k 2  = Melog; (M). 

Q. E. D. 

A.4 Proof of Lemma 5.1 

If a node is in one of the a states, then it can perform only 
the transition of sending no messages and move to the next a 
state. Thus, eventually, the node moves to state ak. Q.E.D. 

A S  Proof of Lemma 5.2 

Let node X decide to abort the transaction. Since each node 
sends its local decision to nodes which are adjacent to itself in 
the corresponding hypercube in every round, nodes in S, 
should receive a no message from node X in round 1 and send 
120 messages in round 2. Because the diameter of a kdimensional 
hypercube is k = log2 (M) after k rounds, all other nodes should 
receive at least one no message and move to one of the a states. 
From lemma 5-1, all nodes abort the transaction eventually. 

Q. E. D. 

A.6 Proof of Lemma 5.3 

If no nodes want to abort the transaction, they send yes' 
messages in round 1 and move to state wl. Since all messages 
are eventually delivered, each node receives all yes' messages, 
send yes2 messages, and move to state w2 in round 2, etc. 
Therefore, eventually each node receives all yesk messages and 
moves to state c .  Q. E. D. 

A.7 Proof of Theorem 5.1 

The proof follows from lemmas 5.2 & 5.3. Q.E.D. 

A.8 Proof of Lemma 5.4  

Let node X fail in state q. From the actions defined in states 
w1 & a l ,  nodes in Sx receive a timeout message due to the 
failure of node X. Thus, they send no messages in round 2 and 
move to state a2. Because there exist at least k- 1 disjoint paths 
whose lengths are at most k between any two nodes in the k- 
dimensional hypercube, if there are no more than k-3 nodes 
other than node X which can fail, then every operational node 
receives at least one no message within k rounds and eventual- 
ly aborts the transaction. 

For the failed nodes, they recover to state ak directly if 
they fail in state q or in one of the a states already. Otherwise, 
they recover to state r ,  send recovery messages and wait to 
receive an abort message, then move to state ab There are k 
nodes in its CPS, so at least one operational node replies with 
an abort message. Q. E. D. 

A.9 Proof of Lemma 5.5 

Since no nodes fail in state q,  all nodes have successfully 
sent out their local decisions in round 1 , viz, failures can only 
occur after round 1. There are 2 cases: 

All Nodes Want to Commit the Transaction. All nodes make 
a commit decision, send yes' messages, and move to state 
w1 in round 1. Because messages are guaranteed to be 
delivered, all operational nodes after round 1 receive either 
yes messages or timeout messages (if some nodes fail after 

r 



YUAN: A [LOG2(N)]-2 RESILIENT DECENTRALIZED COMMIT PROTOCOL 599 

round 1). According to the RDCP protocol, these timeout 
messages produce no no messages if the timed out nodes are 
in a w state. Since no no messages are generated, all opera- 
tional nodes eventually move to state c. For those nodes fail- 
ed after round 1, they recover to state r, send recovery 
messages and wait to receive a commit message (at least one 
operational node in its CPS), then move to state c. 
Some Nodes Want To Abort the Transaction. If no more than 
k-2 nodes can fail and there are at least k- 1 disjoint paths 
whose lengths are at most k between any 2 nodes, all opera- 
tional nodes receive at least 1 no message and eventually move 
to state uk Similar to lemma 5-4, all failed nodes eventual- 
ly abort. Q. E. D. 

A.10 Proof of Theorem 5.2 

The proof follows from lemmas 5-4 & 5-5. Q.E.D. 

A.l l  Proof of Theorem 5.3 

Since the M logical nodes are obtained by adding M-N 
virtual nodes into the system and M = 2 k ,  k=liub(log2(N)), 
then M E [N, 2N]. From theorem 4-3, the total number of 
messages sent among the M logical nodes is M . k 2  I 
2N-liub(log2(N)) = O(N-logz(N)). Q. E. D. 

REFERENCES 

[l] J.N. Gray, “Notes on database operating systems”, Operating Systems: 
An Advanced Course, 1979; Springer-Verlag. 

[2] M. Hammer, D. Shipman, “Reliability mechanisms for SDD-1: A system 
for distributed databases”, Technical Reporr, 1979 Jul; Computer Cor- 
poration of America. 

[3] C. Mohan, B. Lindsay, “Efficient commit protocols for the tree of pro- 
cesses model of distributed transactions”, Proc. 2“d ACM 
SIGACT/SIWPS Symp. Principles of Distributed Computing, 1983, pp 

[4] T.V. Lakshman, A.K. Agrawala, “Efficient decentralized consensus pro- 
tocols”, IEEE Trans. Soffware Eng’g, vol SE-12, num 5, 1986, pp 
600-607. 

[5] S. Yuan, A.K. Agrawala, “A class of optimal decentralized commit pro- 
tocols”, Proc. 8” Int’l Con$ Distributed Computing Systems, 1988, pp 

76-80. 

234-241: IEEE. 

D. Skeen, “Nonblocking commit protocols”, Proc. ACM SIGMOD &n$ 
Manugement of Data, 1982, pp 133-147. 
K.V.S. Ramarao, “Design of transaction commitment protocols”, In- 
formation Sciences, vol 55, 1981 Jun, pp 129-149. 
A. Albert, R. Sandler, An Introduction to Finite Projective Planes, 1969; 
Holt, Rinehart & Winston. 
H. Sullivan, T. Bashkow, “A large scale homogeneous, fully distributed 
parallel machine”, Proc. 41h Symp. Computing Architecnrres, 1977 Mar, 

M.J. Fischer, N.A. Lynch, M.S. Paterson, “Impossibility of distributed 
consensus with one faulty process”, J. ACM, vol 32, 1985 Apr, pp 

R.D. Schlichting, F.B. Schneider, “Fail-stop processor: An approach 
to designing fault-tolerant computing systems”, ACM Truns. Computer 
systems, vol 1, 1983 Aug, pp 222-238. 
D. Skeen, M. Stonebraker, “A formal model of crash recovery in a 
distributed system”, IEEE Truns. Soffware Eng’g, vol SE-9, 1983 May, 

S. Yuan, “The communication complexity for decentralized evaluation 
of functions”, Information Processing Letters, vol35, num 4, 1990, pp 

0. Wolfson, A. Segall, “The communication complexity of atomic com- 
mitment and of gossiping”, SIAM J. Computing, vol20, 1991 Jun, pp 

S. Yuan, A.K. Agrawala, “Fault-tolerant decentralized commit pro- 
tocols”, J. Parallel & Distributed Compuring, vol 13, 1991, pp 299-31 1. 

pp 105-117; ACM. 

374-382. 

pp 219-228. 

177-182. 

423-450. 

AUTHOR 

Dr. Shyan-Ming Yuan; Dept. of Computer & Information Science; National 
Chiao Tung University; 1001 Ta Hsueh Road; Hsinchu 30050, TAIWAN - 
R.O.C. 
e-mail (Internet): smyuan~tiger.cis.nctu.edu.tw 

Shyan-Ming Yuan (M’89) was born 1959 July 11 in M a d ,  Taiwan ROC. 
He received the BSEE (1981) from National Taiwan University, the MS (1985) 
and PhD (1989) both in Computer Science from University of Maryland. He 
joined the Electronics Research and Service Organization, Industrial Technology 
Research Institute as a Research Member in 1989 Oct. Since 1990 Sep, he has 
been an Associate Professor at the Institute & Department of Computer & In- 
formation Science, National Chiao Tung University. His research interests in- 
clude distributed system design, fault-tolerant computing, computer supported 
cooperative works, and multimedia application environments. Dr. Yuan is a 
Member of IEEE. 

Manuscript received 1994 February 23. 

IEEE Log Number 94-01523 4 T R b  

1995 International RELIABILITY PHYSICS Symposium 

I 3-6 
Riviera Hotel Las Vegas, Nevada USA 

For further information, write to the Managing Editor. Sponsor members will receive more information in the mail. 


