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Abstract Techniques for statistical process control (SPC), such as using a control chart,

have recently garnered considerable attention in the software industry. These techniques

are applied to manage a project quantitatively and meet established quality and process-

performance objectives. Although many studies have demonstrated the benefits of using a

control chart to monitor software development processes (SDPs), some controversy exists

regarding the suitability of employing conventional control charts to monitor SDPs. One

major problem is that conventional control charts require a large amount of data from a

homogeneous source of variation when constructing valid control limits. However, a large

dataset is typically unavailable for SDPs. Aggregating data from projects with similar

attributes to acquire the required number of observations may lead to wide control limits

due to mixed multiple common causes when applying a conventional control chart. To

overcome these problems, this study utilizes a Q chart for short-run manufacturing pro-

cesses as an alternative technique for monitoring SDPs. The Q chart, which has early

detection capability, real-time charting, and fixed control limits, allows software practi-

tioners to monitor process performance using a small amount of data in early SDP stages.

To assess the performance of the Q chart for monitoring SDPs, three examples are utilized

to demonstrate Q chart effectiveness. Some recommendations for practical use of Q charts

for SDPs are provided.
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1 Introduction

Some process improvement models, such as the Capability Maturity Model (CMM),

Software Process Improvement and Capability Determination model (ISO/IEC 15504), and

Capability Maturity Model Integration (CMMI) model, have been widely employed by

software organizations to improve the quality of their software development process

(SDP). Quantitative management is commonly utilized to monitor and control process

performance to reduce, eliminate, or prevent deficiencies in software quality. More spe-

cifically, a software product should be developed by a stable SDP that is quantitatively

managed to meet or exceed customer expectations. Consequently, product quality, service

quality, process performance, and other business objectives for a quantitatively managed

process are controlled throughout the software development life cycle (Kulpa and Johnson

2008). However, variation always exists in an SDP, regardless of how carefully processes

are managed. Software measurement data only provide quantitative information about

process performance, not information about process stability. Without systematic methods

for analyzing measurement data, interpreting measurement results for further decision

making is typically difficult. Thus, an effective approach to analyze and control process

variation in SDPs is indispensable for the software process improvement. Statistical pro-

cess control (SPC), a powerful collection of process-improving tools, is an essential

quantitative management technique for measuring, controlling, and reducing the magni-

tude of process variations. Shewhart control charts (Shewhart 1926) are the most com-

monly utilized SPC tools by the manufacturing industry to determine whether a process is

stable. A control chart can be utilized to differentiate between an abnormal signal and noise

(inherent or random variation) using measurement data for reducing process variation and

achieving process stability. For example, X and R (X � R) charts are typically used to

monitor the mean and variability of a process, and the X and MR (X - MR) charts are

commonly used to monitor individual measurements.

Control charts have recently garnered considerable attention in the software industry.

Several studies have identified the benefits of using SPC methods to improve software

quality and have demonstrated the success in using a control chart to monitor SDPs (Chang

and Chu 2008; Diane and Stephen 2007; Florac and Carleton 1999; Jacob and Pillai 2003;

Jalote and Saxena 2002; Komuro 2006; Weller 2000). However, some controversy exists

regarding the suitability of using SPC techniques in the software industry. Particularly,

challenges to the implementation of control charts in SDPs have been discussed in many

studies (Baldassarre et al. 2004; Caivano 2005; Komuro 2006; Manlove and Kan 2007;

Raczynski and Curtis 2008; Radice 1998; Sargut and Demirörs 2006; Tarhan and Demirörs

2006; Weller and Card 2008). Table 1 summaries the challenges identified in these studies

when implementing SPC in SDPs. Accordingly, intensive human activities, diversity

metrics, multiple common causes, and a small amount of process data are software industry

characteristics that cannot be altered easily for specific quantitative techniques. Moreover,

Shewhart control chart requires a large amount of data from a homogeneous source of

variation when constructing valid control limits. But a large dataset is typically unavailable

for SDPs. Therefore, rather than applying conventional control charts (i.e., the Shewhart

control chart) directly to process data from the software industry, modified SPC approaches

are needed to deal with such issues.

Job-shop and just-in-time (JIT) systems are used in the manufacturing industry in

response to different customer demands and short product life cycles (Castillo et al. 1996;

Castillo and Montgomery 1994). These production runs are called ‘‘short production runs’’
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or ‘‘short runs.’’ With short runs, lot sizes are generally small and the amount of process

data is limited. Consequently, an insufficient amount of data may bias process parameter

estimations when applying a conventional control chart. Even when sufficient data required

for estimating process parameters are available, charting at or very near the start of a short

production run is desirable (Quesenberry 1991c). Several short-run control charts, such as

deviation from nominal chart, the Q chart, Tukey’s chart, and t-chart, are developed to

overcome these issues associated with insufficient data (Alemi 2004; Bothe 1989; Castillo

et al. 1996; Celano et al. 2011; Garjani et al. 2010; Quesenberry 1991c; Torng et al. 2009;

Zhang et al. 2009). Most of these short-run control charts can be constructed with a limited

amount of data. Among these short-run control charts, only the Q chart can monitor

process performance at the start of a process with as few as three observations for real-time

charting and has fixed control limits (i.e., ± 3) for plotting different performance mea-

surements on the same chart. With the Q chart, problems in applying conventional control

charts to situations lacking homogeneous data and maintaining many control charts can be

resolved. Thus, the properties of the Q chart may be more appropriate and useful than

conventional control charts when monitoring SDPs. While the Q chart has proven effective

in short-run manufacturing, the Q chart has not been applied to the SDP. Therefore, the

main objective of this study is to investigate the feasibility of using the Q chart as an

alternative control chart for the SDP. To assess the performance of the Q chart in SDPs,

three examples are utilized to demonstrate the effectiveness of the Q chart. Moreover,

practical recommendations for utilizing Q charts are provided.

The remainder of this paper is organized as follows. Section 2 gives an overview of

conventional and short-run control charts. Section 3 reviews work related to utilization of

Table 1 Summary of challenges identified in the literature when implementing SPC in SDPs

Authors Description

Baldassarre et al. (2004) Fundamental differences exist between software development and
manufacturing processes

Too many attributes and variables exist in the software life cycle

Caivano (2005) Difficulty in choosing suitable indicators for implementing SPC in SDPs

Komuro (Komuro 2006) Characteristics of SDP (e.g., human-intensive and process-centric)
Multiple common causes of variation in SDPs.
Difficulty obtaining a large set of homogeneous data

Manlove and Kan (2007) Software is produced by people, not machines
Too many sources of variability in the software development environment
Multiple common causes of variation in SDPs
Process indicator behavior varies with the development cycle

Raczynski and Curtis
(2008)

Heterogeneous sources of variation
Too few data points exist when constructing valid control limits
Too many control charts must be maintained when disaggregating data by

attributes

Sargut and Demirörs
(2006)

Multiple common causes of variation in SDPs
Selection of metrics for implementing SPC
Trade-off between number of data points and depth of analysis

Tarhan and Demirörs
(2006)

Rational sampling of process data
Difficulty in choosing suitable indicators for implementing SPC in SDPs
Lack of sufficient data

Weller and Card (2008) Few data for constructing control charts
Multiple common causes of variation in SDPs
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control charts by the software industry. Section 4 describes the application of Q charts for

monitoring the SDP. Section 5 utilizes three examples to demonstrate the benefits of using

Q charts in the SDP. Section 6 provides recommendations for utilizing Q charts. Finally,

conclusions are given in Sect. 7.

2 Control charts

2.1 Conventional control charts

The control charts developed by Shewhart (1926) in the 1920 s are regarded as important

tools for SPC, which uses statistical techniques to detect unusual sources of variation in a

production process. Process variation can be classified as common-cause (or chance cause)

variation and special-cause (or assignable cause) variation. Common-cause variation,

characterized by a stable and consistent pattern of measured values over time, is the result

of normal or inherent interactions among people, machines, materials, environment, and

methods of a process (Florac and Carleton 1999). Special-cause variation, characterized by

sudden or persistent abnormal changes to one or more process components, comprises

events that are not part of the normal process. A typical control chart contains a center line

(CL), which represents the average value of the process characteristic and two horizontal

lines, namely the upper control limit (UCL) and lower control limit (LCL) (Fig. 1)

(Montgomery 2009). If a data point falls outside the control limits, an assignable cause is

assumed to exist and the process is suspected to be unstable or out of control; otherwise,

the process is considered to be stable or in control. A number of Shewhart control charts

exist, such as the X � R, X � S, and X - MR charts for variable data, and the p, np, c, and

u charts for attribute data. The X - MR chart and u chart are the most commonly used

control charts in the SDP (Baldassarre et al. 2007; Jacob and Pillai 2003; Kulpa and

Johnson 2008). An X - MR chart is a pair of charts; each data point in the X chart rep-

resents an individual value of a measurable characteristic and each point in the MR chart

represents the moving range of two successive data points. The u chart is typically utilized

to plot individual rates for nonconformities per unit.

Using Shewhart control charts involves two distinct phases, namely phases I and II. The

primary task in phase I is to construct trial control limits to determine whether a process

Fig. 1 A typical control chart (Montgomery 2009)
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has been in control over the period in which process data were collected. Phase II is a

process monitoring phase. Once control limits are determined in phase I, these control

limits are applied to monitor future process performance in phase II. The Shewhart control

chart requires a large number of observations to estimate the process mean and process

variation to establish the control limits in phase I. Many studies have indicated that using

20–30 subgroups with 4 or 5 observations is adequate (Montgomery 2009; Quesenberry

1991c). For practical applications, Quesenberry suggested that 100 initial subgroups with

at least 5 observations is reasonable for estimated control limits to perform as a chart with

known parameters. (Quesenberry 1993; Tsai et al. 2004).

2.2 Short-run control charts

Mass production lot sizes are generally large and, therefore, constructing a control chart is

not difficult (Castillo et al. 1996). However, a recent trend in manufacturing industries is to

produce small lot sizes or use short production runs for flexible manufacturing using JIT or

job-shop systems. Such manufacturing systems involving start-up processes and short runs

are characterized by high varieties and low production volumes (Castillo et al. 1996;

Quesenberry 1991c). Short production runs cause problems when constructing a Shewhart

control chart, as the amount of data is insufficient for estimating process parameters to

establish valid control limits. That is, operators typically encounter a situation in which a

production run may end before they can determine whether the process was in or out of

control. Therefore, some adjustments to conventional control charts are needed for SPC for

short production runs.

2.2.1 DNOM charts

Cullen and Bothe (1989) introduced a control chart called the deviation from nominal

method (DNOM) for short production runs. For instance, consider a particular part A, let

Mi be the actual measurement for the ith sample and TA be the nominal or target value of

part A. Deviations from the nominal value for the ith sample can be expressed as

xi ¼ Mi � TA ð1Þ

Thus, each xi can be plotted in a time order on an X � R chart with its center line at zero.

When using the DORM chart, process variances are assumed equal for all parts. When this

assumption is violated, a standardized chart is typically employed (Montgomery 2009).

Assuming r is the process standard deviation for part A, let zi be defined as follows:

zi ¼
Mi � TA

r
ð2Þ

where zi is the standardized value for the measurement of the ith sample. Thus, each zi can

be plotted in a time order on a standardized X � R chart with its center line at zero.

2.2.2 Q charts

With short production runs, process mean and variance cannot be known before the pro-

duction run begins, and data for estimating process parameters to establish valid control

limits are lacking. To deal with problems encountered while constructing a control chart

for short production runs, Quesenberry developed a series of Q charts for cases in which

Software Qual J (2013) 21:479–499 483

123



process parameters are known or unknown (Quesenberry 1991c). Suppose a sequence of

observations, X1;X2; � � �f g, drawn from a process is normally distributed with mean l and

variance r2. Quesenberry (1991c) defined the following four Q statistics based on indi-

vidual observations for cases in which l and r2 are known or unknown:

Case I: Both l = l0 and r = r0 are known,

QrðXrÞ ¼
Xr � l0

r0

r ¼ 1; 2; � � � ð3Þ

Case II: l is unknown, and r = r0 is known,

QrðXrÞ ¼
r � 1

r

� �1
2ðXr � Xr�1Þ

r0

r ¼ 2; 3; � � � ð4Þ

Case III: l = l0 is known, and r2 is unknown,

QrðXrÞ ¼ U�1 Gr�1

Xr � l0

S0;r�1

� �� �
r ¼ 2; 3; � � �

ð5Þ

where S2
0;r ¼ 1

r

Pr
j¼1

ðXj � l0Þ2

Case IV: both l and r2 are unknown,

QrðXrÞ ¼ U�1 Gr�2

r � 1

r

� �1
2 Xr � Xr�1

Sr�1

� �" #( )
r ¼ 3; 4; � � � ð6Þ

where S2
r ¼ 1

r�1

Pr
j¼1

ðXj � XrÞ2

where Xr in Eqs. (3)–(6) represents the sample mean estimated from the first r obser-

vations (i.e., Xr ¼ 1
r

Pr
j¼1

Xj); and U�1ð�Þ and Gmð�Þ denote the inverse of the standard normal

distribution function and the Student’s t-distribution function with m degrees of freedom,

respectively.

Unlike conventional control charts, Q charts are comprised of Q statistics, which are the

transformations of original observations. The Q statistics for each of these four cases are

normally distributed with mean l = 0 and variance r2 = 1. Thus, Q statistics can be

plotted on an X - MR chart with its center line at zero and control limits at ± 3. Other

Q statistics are also developed for cases in which quality variables follow a binomial or

Poisson distribution (Quesenberry 1991a, b, c).

2.2.3 Other short-run control charts

Alemi (2004) introduced an application of Tukey’s control chart, a method for analyzing

data based on the Boxplot developed by Tukey (1977), to calculate confidence intervals for

medians to monitor individual observations. The control limits of Tukey’s control chart can

be established for a small number of observations by calculating the first quartile (Q1) and
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third quartile (Q3). The upper and lower control limits of Tukey’s control chart are

obtained, respectively, as follows:

UCL ¼ Q3 þ k � IQR

LCL ¼ Q1 � k � IQR
ð7Þ

where IQR is the inter-quartile range (i.e., IQR = Q3 - Q1), and k is a parameter for

determining the width of control limits. The value of parameter k is usually set at 1.5.

Tukey’s control chart can be implemented easily by calculating quartiles from individual

observations without estimating the process mean and variance. Torng et al. (2009), who

evaluated the performance of Tukey’s control chart in monitoring short-run processes,

indicated that Tukey’s control chart has good detectability in mean shift when process data

follow a normal distribution. They also noted that a large k should be utilized (i.e., k [ 1.5)

for a non-normal distribution to reduce the type I error (Torng et al. 2009).

Zhang et al. (2009) developed a new chart, the t-chart, based on the Student’s t statistic

as an alternative to the Shewhart X chart for monitoring the process mean when process

standard deviation r s not estimated well or when process standard deviation varies.

Suppose that the sequences of subgroup observations Xi;1;Xi;2; � � � ;Xi;n

� �
from a process at

time point i ¼ 1; 2; � � � are normally distributed with a mean l and variance r2, where n is

subgroup size. The statistic ti is defined as follows:

ti ¼
Xi � l
Si=

ffiffiffi
n
p i ¼ 1; 2; � � � ð8Þ

where Xi ¼ 1
n

Pn
j¼1

Xi;j and Si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n�1

Pn
j¼1

ðXi;j � XiÞ2
s

denote the subgroup mean and subgroup

standard deviation, respectively. In Eq. (8), ti follows a Student’s t-distribution with n-1

degrees of freedom. The control limits of the t-chart can then be set as follows:

UCLt ¼ G�1
n�1 1� a

2

	 


LCLt ¼ �UCLt

ð9Þ

where G�1
m ð�Þ is the inverse distribution function of the Student’s t-distribution with m

degrees of freedom, and a is the false alarm rate and is often set at 0.0027. Thus, each

statistic ti can be plotted in a time order on a chart with its center line at zero and control

limits at UCLt and LCLt. Notably, Eq. (9) does not require an estimation of process mean l
and standard deviation r. That is, the control limits of the t-chart can be obtained as soon as

subgroup data are collected, rather than estimating l and r using a sufficient amount of

data. Celano et al. (2011) evaluated the suitability of using the t-chart in short-run man-

ufacturing. They demonstrated that the t-chart can monitor a short-run process

successfully.

3 Related work

3.1 Utilization of the conventional control chart in the software industry

Numerous studies have identified the benefits of using a control chart in the software

industry. Florac and Carleton (1999) provided practical guidelines for SPC with the goal of
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improving the SDP. They provided extensive software process metrics and fully worked-

out examples, demonstrating how to manage, control, predict, and improve process per-

formance to achieve business and technical goals using control charts. Weller (2000) used

an X - MR chart of the code inspection rate to assess product quality during testing and

used an u chart constructed with defect density data to predict post-shipping product

quality for a major software release. They also indicated that applications of the SPC

method provide a positive cost-benefit return.

Jacob and Pillai (2003) used an X chart for the code review process to monitor and

control process-performance metrics such as preparation speed, review speed, and defect

density. They summarized the benefits of applying SPC to the code review process and

demonstrated that control charts can help manage, control, and improve coding and code

review performance. Komuro (2006) shared experiences in applying SPC techniques to

SDPs at Hitachi Software Engineering (HSE), Japan’s largest software development

company. Komuro also analyzed the characteristics of SDPs and their influence on SPC.

In CMMI, the control chart is used to establish process-performance baselines for a

standard SDP of an organization. Moreover, the control chart is utilized to quantitatively

manage the defined process of a project to achieve established quality and process-per-

formance objectives (CMMI Product Team 2010; Sargut and Demirörs 2006).

3.2 Difficulties in applying a control chart to the software development process

Although several studies have assessed the effectiveness of using a control chart to monitor

and control an SDP, some controversy surrounds the suitability of utilizing control charts

directly in the software industry. In practice, software processes differ markedly from

manufacturing processes (Baldassarre et al. 2007). The SDPs are more heavily dependent

on human activities and require more creativity than manufacturing processes (Caivano

2005; Komuro 2006). For instance, software engineering inspections differ fundamentally

from manufacturing inspections. The former is usually conducted by peers or experts, who

use their knowledge and experience to identify errors in software products (e.g., documents

or codes). The latter is generally examined by a machine, instruments, or operators

according to standard operating procedures to identify defects. Moreover, unlike a man-

ufacturing process, software process performance is often affected by many sources of

variation such as software engineering tools, development models, coding language, skill

of engineers, and the development environment (Florac and Carleton 1999). Consequently,

multiple common causes are mixed when constructing a control chart for monitoring SDPs.

Therefore, control limits are usually too wide to detect assignable causes in a software

process (Raczynski and Curtis 2008; Sargut and Demirörs 2006; Weller and Card 2008).

Conventional control charts require data to be drawn independently from a homoge-

neous source of variation. However, data from a software process may easily violate this

requirement due to a lack of rationally subgrouped measurements (Florac and Carleton

1999; Raczynski and Curtis 2008). To avoid this problem, software organizations often

segregate or disaggregate data into groups with similar characteristics to reduce the effect

of mixed multiple common causes and obtain a reasonable set of control charts, typically

with narrow control limits. Tarhan and Demirörs (2006) applied a novel systematic

approach to identify rational samples of a process as well as to select process metrics.

However, segregating data into groups may generate another significant problem—insuf-

ficient data points to establish valid control limits at the organizational or project level

(Raczynski and Curtis 2008; Tarhan and Demirörs 2006). To obtain additional data points,

software organizations aggregate data to meet the requirements for constructing
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conventional control charts. Consequently, this may lead to wide control limits due to

mixed multiple common causes. This has resulted in difficulties in applying a conventional

control chart to SDPs. Sargut and Demirörs (2006) identified a trade-off between the

number of data points and depth of analysis, making SPC difficult to apply to SDPs. Rather

than using conventional control charts, an alternative control chart is needed to overcome

this dilemma.

4 Applying Q charts to monitor the software development process

Quality engineers in the software industry usually need to produce high-quality software

products within a limited period. Therefore, they must begin monitoring process perfor-

mance using limited data in the early stage of the SDP. The properties of high variety and

low volume (HV/LV) in short-run manufacturing are similar to the properties of SDPs. As

mentioned in Sect. 2.2, short-run control charts (i.e., the Q chart, Tukey’s chart, and t-

chart) have early detection capability for monitoring process performance with a limited

amount of data, and estimations of process parameters are not needed in phase I when

constructing a control chart. However, among these short-run control charts, Tukey’s chart

does not perform well in detecting process shifts when a dataset is small and parameter k

for control limits must be determined in advance according to data type (Torng and Lee

2008). The t-chart is often utilized to replace the X chart; however, application of a t-chart

for individual measurements has not been examined in the short-run environment.

Conversely, the Q chart has been utilized for over a decade, such that several Q statistics

have been proposed for cases in which process parameters (i.e., mean l and variance r2)

are known or unknown. Because process parameters are usually unknown before a process

starts, Case IV of the Q statistic is recommended for constructing a Q chart to monitor

SDPs. Notably, Eq. (6) for Case IV can be applied as few as three observations acquired.

That is, the Q statistic can be plotted in a Q chart immediately after three observations are

collected. This is useful to the software industry, because practitioners always desire to

begin charting at or very near the start of a process to detect process shifts early. Moreover,

because Q statistics follow a standard normal distribution, Q charts allow practitioners to

plot different performance measurements on the same chart using the same control limits

(i.e., ± 3). This reduces the number of control charts and simplifies maintenance efforts for

an excessive number of control charts. Therefore, this study considers that the Q chart is

more applicable than conventional control charts for monitoring the SDP. The benefits of

Q charts for monitoring the SDP are summarized as follows (Quesenberry 1991c):

(1) A large dataset is not required to estimate process parameters. Conventional Shewhart

charts require a sufficient number of data points (i.e., generally 20–30 subgroups with

4 or 5 observations) to estimate process parameters to establish valid control limits.

However, this amount of process data is often unavailable in software development

environments. Unlike conventional control charts, the upper and lower control limits

of Q charts are set at ± 3, and Q statistics can be acquired and plotted on the Q chart

in a time order without prior knowledge of process parameters.

(2) Real-time charting. Statistic Qr in Eq. (6) is defined for r C 3, that is, Q charts can be

constructed with only three observations. In other words, Q charts have an early

detection capability to detect a process mean shift while using only the first few

observations.
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(3) Plotting different performance measurements on the same chart. All Q statistics

proposed by Quesenberry (1991c) follow the standard normal distribution, meaning

that the Q chart is a standardized chart with a center line at zero and control limits

at ± 3. Therefore, process performance with different characteristics can be plotted

on the same chart and practitioners can monitor different performance measurements

simultaneously.

5 Examples of applying the Q chart to the SDP

To demonstrate the effectiveness of applying the Q chart to the SDP, three examples are

presented, and Q chart results are compared with those of conventional control charts.

5.1 Example 1

A code review process is a formal and efficient way to examine a program in detail to

identify errors (Fagan 1999). A software program can be checked and corrected through a

review process before release. Several indicators, such as preparation rate, inspection rate,

and total faults observed per thousand lines of code (KLOC), are commonly used to

monitor the performance of the code review process (Barnard and Price 1994). In this

example, control charts are utilized to monitor inspection rate. Inspection rate is defined as

the number of lines of code (LOC) examined per hour during a review meeting. The

individual moving range (X - MR) control chart is frequently utilized to monitor the

review process (Florac and Carleton 1999; Weller 2000). Inspection rates are collected and

plotted in a time order on an X - MR chart to determine whether all data points are within

control limits. When an inspection rate of a review meeting exceeds the upper control limit

on the X chart (i.e., inspection rate is faster than expected), the ability to identify errors

decreases and a re-inspection activity is needed. Conversely, when an inspection rate is

lower than the lower control limit (i.e., inspection rate is slower than expected), too many

errors exist in the code or a reviewer did not prepare well before a meeting. Some factors,

such as reviewer knowledge, programming languages, and code complexities, impact

inspection effectiveness (Barnard and Price 1994). Consequently, mean inspection rates

differ among these factors. Therefore, to illustrate the code review process, a set of sim-

ulated inspection rates with three code complexity levels is used to demonstrate the dif-

ficulty in identifying process instabilities using the conventional control chart and the

benefits of utilizing a Q chart.

Table 2 shows the simulated records for code inspection rate (LOC/h) and code com-

plexity levels (i.e., high, medium, and low) from each code review meeting. The code

inspection rates are simulated from normal distributions with various parameters (Table 3)

for each complexity level. Notably, the inspection rate of 225 LOC/h for review sequence

No. 24 is markedly larger (i.e., five standard deviation from the mean of 150) than others at

the high complexity level. This data point is utilized to test the ability of control charts to

detect an abnormal signal. Figure 2a shows an X - MR chart constructed for 28 inspection

rates in each review meeting. No out-of-control points exist in both the X chart and moving

range chart. Thus, the process is stable or under control. Additionally, three X charts

(Figs. 2b–d) are constructed for each of the three complexity levels, and analytical results

demonstrate that the no instability exists at each complexity level in the review process.

For comparison with X charts, three Q charts are constructed (Figs. 3b–d). The Q statistics
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in Q charts are obtained using Eq. (6), as both process mean and variance are unknown.

The analytical results (Fig. 3b) reveal that an out-of-control signal exists in review

sequence No. 9 for high complexity level (i.e., sequence No. 24 for all levels). Thus, the

process is likely unstable.

In this example, an extremely high inspection rate is used to test the ability of the

X - MR chart and Q chart to detect an abnormal signal. When observations at all com-

plexity levels are plotted in a time order, control limits are too wide (range, 63–351 LOC/

h) to identify instabilities in process performance, such as the inspection rate of 225 LOC/h

for the high complexity level (Fig. 2a). Thus, mixing data from different attributes on the

same chart is inappropriate for monitoring process performance. The general solution is to

construct a control chart for each complexity level to separate variation sources. The

analytical results (Fig. 2b) indicate that the X chart cannot detect the extremely high value

of observation (i.e., inspection rate of 225 LOC/h for the high complexity level). The

reason is that when one constructs the X - MR chart with a small number of observations,

Table 2 Code inspection rate
(LOC/h) and code complexity
level from each code review
meeting

Review
sequence

Inspection
rate

Code complexity
level

1 165 High

2 135 High

3 293 Low

4 167 High

5 240 Medium

6 223 Low

7 256 Low

8 277 Low

9 233 Medium

10 142 High

11 218 Low

12 282 Low

13 242 Low

14 209 Medium

15 200 Medium

16 244 Low

17 156 High

18 210 Medium

19 146 High

20 134 High

21 192 Medium

22 195 Low

23 150 High

24 225 High

25 280 Low

26 220 Medium

27 226 Medium

28 145 High
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the extreme value(s) will inflate the average of moving range and bias estimations of

process parameters. Consequently, practitioners obtain a wide set of control limits.

Therefore, if control limits (Fig. 2b) are utilized in phase II for monitoring future data

points, the X chart would typically fail to detect abnormal signals in the review process at

the high complexity level.

On the other hand, three Q charts are constructed for the three complexity levels.

Compared with X charts (Figs. 2b–d) and Q charts (Fig. 3b–d), Q charts have patterns

resembling those of X charts; however, the Q charts for the high complexity level (Fig. 3b)

detects an unusual point in review sequence No. 9. The comparison results indicate that the

Q chart detects abnormal signals better than the X chart when the sample size is small.

Moreover, inspection rates for each complexity level can be plotted on the same chart

(Fig. 3a). Therefore, the Q chart can reduce the number of control charts and simplify

Table 3 Simulated parameters for inspection rate for each complexity level

High level (excluding No. 24*) Medium level Low level

Observations 9 8 10

Mean (LOC/h) 150 200 250

Standard deviation (LOC/h) 15 20 25

* Inspection rate of 225 LOC/h for No. 24 is designed as five standard deviation from the mean of 150

Fig. 2 Conventional control charts for inspection rate during a review process: a the X �MR chart for all
observations; b X chart for the high complexity level; c X chart for the medium complexity level; and
d X chart for the low complexity level. Notably, no signs of instability exist in the moving range charts. To
simplify this figure, moving range charts are not shown in b, c, and d

490 Software Qual J (2013) 21:479–499

123



maintenance efforts for an excessive number of control charts. Furthermore, the Q chart

can be constructed as few as three observations collected in a time order. Figure 4 shows

the process of using the Q chart in a review sequence at the high complexity level. That is,

when each review meeting finishes and inspection data from the meeting are collected, the

corresponding Q statistics can be plotted on the Q chart immediately. Once an out-of-

control signal exists on the Q chart, investigative and corrective actions can be undertaken

immediately to return the process to normal as early as possible.

5.2 Example 2

The second example illustrates the implementation of Q charts for decomposing process-

performance data. In this example, the dataset of component defects used by Florac and

Carleton (1999) on pp. 150–152 is considered. The dataset consists of the number of

defects identified during the inspection process for each of the 21 components, and the

defect data are classified based on eight defect types. Therefore, an X - MR chart can be

constructed by plotting the total number of defects aggregated from each defect type for

each component to determine whether the process is in or out of control. The analytical

results of the X - MR chart obtained by Florac and Carleton (1999) on p. 151 indicate that

all data points plotted on the X - MR chart lie within control limits and reveal no

assignable cause. However, causes of variation of each defect in each defect type are

heterogeneous in most situations. Thus, when plotting aggregated data (i.e., total defects in

this example) on a control chart, control limits lack the ability to detect unusual signals in

the inspection process. Therefore, Florac and Carleton (1999) suggested that individual

X charts be constructed for each of the eight defect types. Consequently, these X charts

Fig. 3 The Q charts for inspection rate during a review process: a the Q chart for each complexity level;
b Q chart for the high complexity level; c Q chart for the medium complexity level; and d Q chart for the
low complexity level
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obtained by Florac and Carleton (1999) on p. 152 differ from the X - MR chart for total

number of defects: several points in the X charts exceed the upper limit, indicating that the

process is unstable.

To compare X chart results, Q charts are constructed for each of the eight defect types

(Fig. 5). The Q statistics in the Q charts are obtained using Eq. (6), as both process mean

and variance are unknown. The Q chart results indicate that several data points lie outside

control limits and have patterns resembling those in the X charts. The analytical results of

Q charts also reveal that the process is out of control or unstable. Additionally, unlike the

X chart—for which one must collect a sufficient number of observations to establish

control limits—the Q chart can be constructed with as few as three observations, that is, to

monitor process performance, practitioners can utilize the Q chart to begin identifying an

unusual performance level at an early stage in the SDP. For instance, by constructing the

Q chart from the start of a process (Fig. 5a), the out-of-control data point can be identified

before component No. 9 is inspected. Therefore, corrective and preventive actions for the

assignable cause can be initiated immediately.

5.3 Example 3

Schedule and cost control are essential when evaluating the progress and performance of

an SDP. Earned value management (EVM), which has been adopted by many software

organizations, is a well-known system introduced by the U.S. Department of Defense for

project monitoring. Earned value management uses two indicators, namely the Schedule

Performance Index (SPI) and Cost Performance Index (CPI), which are directly related to

project execution efficiency (Lipke and Vaughn 2000). The SPI represents the rate of

Fig. 4 The process of using the Q chart in a review sequence at the high complexity level
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achieving earned value with respect to the schedule baseline, and the CPI represents the

rate of achieving earned value with respect to actual cost. If an SPI value is greater/less

than 1.0, the project is ahead/behind schedule. Likewise, a CPI value greater/less than 1.0

indicates that the project is under/over budget. In practice, the SPI and CPI are collected

once every 15 days or once a month during the development life cycle to assess project

performance. A well-performing project should keep its SPI and CPI values as close to 1.0

as possible. However, variances between earned value and planned value (or actual value)

are very common when executing a project in an SDP. Thus, defining the amount of

deviation from 1.0 that is considered abnormal performance is difficult. Fortunately, sta-

tistical theory provides methods based on random variation in process performance to

calculate the upper and lower limits for detecting abnormal performance. Consequently,

several studies have applied conventional control charts (e.g., the X - MR chart) to the SPI

and CPI to monitor schedule and cost performance of software projects (Leu and Lin 2008;

Lipke 2002; Lipke and Vaughn 2000; Wang et al. 2006).

When control charts are used to monitor the SPI and CPI, practitioners may encounter a

general problem in that the number of data points of the SPI and CPI for constructing a

control chart is insufficient in a short- or medium-term project. In this example, instead of

utilizing conventional control charts, the Q chart is applied to a real case to monitor the SPI

and CPI simultaneously. The case is a software development project with a maxi-

mum duration of 12 months. This case is provided by Information and Communications

Fig. 5 The Q charts for each defect type (note: as the first two observations have the same value, the
Q statistic for the third observation will be invalid. Therefore, Q charts in b, c, d, and e initiate from the
fourth data point.)
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Research Laboratories (ICL) of the Industrial Technology Research Institute (ITRI),

Taiwan, and is a nonprofit software organization that achieved CMMI Level-4 in 2010.

According to the ICL’s policy of process-performance measures, the SPI and CPI

(Table 4) are collected once every 15 days during a project. However, the number of SPI

and CPI data points is too few for constructing an X - MR chart within the first few

months of this project. Consequently, the calculated control limits with small amounts of

data are unreliable to detect abnormal performance in the early stages of this project.

Therefore, the Q chart is utilized in this case to monitor the SPI and CPI. Figure 6 plots the

SPI and CPI values on a Q chart every 15 days. Unlike the X chart, the SPI and CPI values

can be plotted on the same Q chart, which helps project managers evaluate schedule and

cost performance simultaneously. Additionally, project performance can be monitored

using the Q chart in the early stages of this project from February 15. The analytical result

of the Q chart indicates that cost performance is in control, but an unusual schedule

performance is detected on June 15. Thus, the Causal Analysis and Resolution (CAR)

process must be initiated immediately by project stakeholders to identify causes and then

take actions to prevent future schedule delays.

6 Recommendations for utilizing Q charts

Section 5 discussed the benefits of using Q charts, that is, Q charts can be utilized to

monitor effectively a SDP with a limited number of observations in the early stages of a

project. However, like other conventional control charts (e.g., the X � R or X - MR

charts), some assumptions are needed for process data. When utilizing the Q chart and Eqs.

(3)–(6) monitor SDPs, process observations or indicators are assumed to be independently

normally distributed (Quesenberry 1991c). The limitation of this study is its inability to

determine whether all metrics or indicators in SDPs satisfy Q chart assumptions. If these

assumptions are severely violated when utilizing Q charts to monitor SDPs, the detection

capability of the Q chart is reduced. In this situation, the data transformation method (e.g.,

logarithmic or square root transformations) should be applied to transform the original

indicator into a new variable that is approximately normally distributed. Moreover, while

Table 4 The dataset of SPI and
CPI provided by the Information
and Communications Research
Laboratories (ICL)

Date SPI CPI

Jan. 15 1.37 1.05

Jan. 31 1.46 1.02

Feb. 15 1.20 1.00

Feb. 28 1.09 0.99

Mar. 15 1.20 0.86

Mar. 31 1.20 0.93

Apr. 15 1.20 0.97

Apr. 30 1.20 0.90

May 15 1.20 1.05

May 31 1.28 1.03

June 15 0.77 1.00

June 30 0.65 0.96
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the Q chart has an early detection advantage over conventional control charts, some

recommendations for utilizing Q charts in practice are summarized as follows.

(1) Compared with conventional control charts, a sufficiently large number of

observations in phase I for estimating process parameters are not needed when

constructing Q charts and control limits of Q charts do not need to be recalculated.

While the control limits of the Q chart do not need to be updated or revised, we

suggest that a new Q chart be constructed when processes change. Once processes

have changed, the degree of process variation may be altered accordingly.

Consequently, data collected previously are no longer applicable for an ongoing

Q chart. For instance, if a process has been improved due to the effect of corrective

actions, practitioners should start a new Q chart with new observations collected from

the improved process to reflect the current state of the process.

(2) When an out-of-control point exists in the Q chart, the process is likely unstable and

efforts should be made to determine the cause of this unusual data point.

Additionally, when utilizing Q charts, we do not recommend that one postpones

investigative actions until a second signal is received, because the out-of-control

value will affect calculations of subsequent Q statistics. When the abnormal

observation is included in the calculations, the updated Sr-1 in Eq. (6) will be inflated.

Consequently, the calculated subsequent Q statistics is pulled toward zero and the

abnormal signal is unable to be detected (Zantek and Nestler 2009). Therefore, once

assignable causes have been identified for the out-of-control point, this point should

be removed from the data sequence and not used in subsequent computations. For

instance, if the out-of-control signal at the seventh data point (Fig. 5h) has assignable

causes after investigation, this point should be removed from the data sequence

before plotting the eighth point. The subsequent Q statistics can then be calculated

and plotted on the chart to reflect the most recent process state. Figure 7 shows the

Fig. 6 The Q charts for the SPI and CPI
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outcome of removing an out-of-control signal from the Q chart for documentation

defect type in example 2. Likewise, in example 3, while an abnormal performance of

SPI has been found on June 15, the point should be removed before plotting

subsequent points. The Q chart of the SPI and CPI for June 30 is revised in Fig. 8.

Fig. 7 The Q charts for documentation defect type in example 2: a occurrence of assignable cause; and
b removal of the point at component No. 7

Fig. 8 The revised Q chart of the SPI and CPI for June 30 after removing the abnormal point on June 15
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(3) Since all observations are transformed into Q statistics, data points on Q charts no

longer have the original measurement scale. Therefore, when interpreting out-of-

control signals on Q charts, we suggest that one refers to the original observation

value for additional information. For instance, the out-of-limit value of 4.9 at the

eighth data point (Fig. 5a) provides less information than the corresponding

measurement of 20 defects when investigating the root cause.

7 Conclusions

The Shewhart control chart is very useful for monitoring process variations over time and

can help practitioners manage process performance quantitatively. However, the conven-

tional control chart requires a large number of observations to estimate process parameters

accurately and establish valid control limits; otherwise, type I or type II errors may occur in

statistical reasoning when utilizing a control chart. However, a large amount of data is

unavailable in SDPs. Therefore, in this study, the Q chart, which is adopted for short-run

manufacturing, is used as an alternative control chart to overcome such an issue for the

SDP. Additionally, the early detection capability, real-time process monitoring, and fixed

control limits are advantages of applying the Q chart to monitor SDPs. Software practi-

tioners can begin monitoring performance with a limited amount of data early in a process

to produce high-quality software products within a short period. Thus, we conclude that the

Q chart is more applicable than the conventional control chart for monitoring the SDP.

The Q chart for a normal process with unknown parameters for monitoring the process

mean is considered in this study. The corresponding Q charts for data characterized by a

binomial or Poisson distribution can also be applied in a similar manner. Thus, we suggest

that further research focus on the application of Q charts for attribute data, such as non-

conformities, for various metrics collected in a software environment.
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Sargut, K. U., & Demirörs, O. (2006). Utilization of statistical process control (SPC) in emergent software

organizations: Pitfalls and suggestions. Software Quality Journal, 14(2), 135.
Shewhart, W. A. (1926). Quality control charts. Bell System Technical Journal, 5, 593–603.
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