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Green’ s Impedance Function Approach 
for Propagation Characteristics of Generalized 

S triplines and Slotlines on Nonlayered Substrates 
Jeng-Wen Huang, Student Member, IEEE, and Ching-Kuang C .  Tzuang, Senior Member, IEEE 

Abstract- A newly proposed generalized full-wave space- 
domain integral equation technique incorporating dyadic 
Green’s impedance function and a new set of basis functions are 
presented for the analysis of striplines and slotlines arbitrarily 
integrated on multiple nonlayered sustrates. The generalized 
full-wave integral equation technique is validated by conducting 
convergence study and several case studies. The theoretical 
dispersion characteristic of the transmission lines obtained here 
are in very good agreement with the published and measured 
data for the modified Microslab and the microstrip proximity 
effect near substrate edge. For the slotline type problem, where 
a new set of current basis function must be derived to be 
incorperated into Green’s impendance function approach, the 
new approach presented here shows that the corresponding 
propagation characteristics thus obtained are also in excellent 
agreement with those reported in the available literature, which 
normally used the slot electric fields as the unknowns. To explain 
how general the present formulation is, it can be reduced to the 
well-known spectral domain formulation for any guided-wave 
structure containing only layered substrates. 

I. INTRODUCTION 

N the past two decades guided-wave structures consisting I of layered and nonlayered substrates, the latter having step 
discontinuities in the dielectric constant of layers, have been 
studied characterized both theoretically and experimentally 
for various applications in electrooptic modulators [ 1]-[3], 
low-loss millmeter-wave transmission lines [4], [ 5 ] ,  the mode 
compensation technique on a pair of parallel-coupled mi- 
crostrip lines [6]-[SI, high-d) MMIC (monolithic microwave 
integrated circuits) resonators [9], and resonant phenomena 
in MMIC packaging [IO],  etc. In view of the forementioned 
applications for MMIC a system of transmission lines can be 
pictured in Fig. 1, where two dominant features may convert 
Fig. I structure to virtually almost any planar or quasi-planar 
transmission line configuration known to date. 

First, each layer has step discontinuities in dielectric con- 
stant for y = d k ,  k = 1 , 2 , .  . . , N - 1. By setting the thickness 
values of appropriate layers equal to zero, complex structures 
such as ridge substrate, microslab waveguide, microstrip (or 
slot line) and dielectric waveguide, and slot line of recessed 
gap can be realized easily. 
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Fig. I. A generic system of striplines and slotlines on multiple nonlayered 
substrates for use in microwave, millimeter-wave, and electrooptic circuit 
designs. The metal strips are assumed infinitely thin and perfect conductors. 

Second, each layer consists of randomly-distributed strips 
and/or side planes connected to the electrically shielded side- 
walls. If two side planes and one central coplanar strip are 
incorporated, it will look like a coplanar waveguide (cpw) 
structure. Various arrangements of microstrips and side planes 
lead to a variety of transmission line structures. Notice that 
both slotline type and microstrip type guided structures are 
inherently mingled in Fig. 1. 

The full-wave analysis of propagation characteristics of 
Fig. 1 is necessary for most circumstances when carrying out 
a design project related to the above-mentioned applications 
and is by no means a simple task. Generally speaking 
three categories of numerical solutions can be invoked 
to tackle the problem. At one end, FEM (finite-element- 
method) [ 1 I], [ 121, finite-difference in frequency [ 131, 
[I41 and time-domain [15], [16] may analyze the guided- 
wave structure of arbitrary shape; however, they normally 
require large memory space in the program code to achieve 
desired accuracy. On the other hand, the spectral-domain 
approach or space-domain integral equation approach [ 171 
or mode-matching method [ 181 uses comparatively less 
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memory and CPU time to achieve desired accuracy of the 
guided-wave propagation characteristics at the expanse of 
somewhat lengthy derivations for dyadic Green’s functions 
which are limited to structures with layered or stratified 
substrates [19]-1211 except for very few examples that both 
layered and nonlayered substrates of step-discontinuity in 
dielectric constant can be considered simultaneously [22] ,  
[23]. Between the two extremes, the method of lines had been 
reported for the reduced guided-wave structures of Fig. 1 
1241, P51. 

When considering a guided structure where both slotlines 
and striplines coexist, the well-known Spectral Domain 
Immitance Approach (SDIA 1 is numerically efficient and 
very accurate and thus widely adopted for obtaining the 
propagation characteristics of the transmission line system 
embedded in the layered substrates [20]. As shown in 
Fig. 1, the guided-structure is nonlayered; thereby a modified 
approach is required to obtain the dyadic Green’s function. 
Section JI shows how the new dyadic Green’s impedance 
function is obtained for Fig. 1. The unknowns in the new 
dyadic Green’s impedance function are all in terms of 
surface currents on the metal strips regardless of whether 
the striplines or slotlines are under investigation. Section 
111 develops a new set of basis functions for slotlines 
problems where two side planes may be connected to 
side-walls. Combined use of the new basis functions and 
those developed previously for striplines problem [26], the 
propagation characteristics of Fig. I can be solved very 
accurately. 

Followed by the validity check of the present approach 
against existing literature [22], [23], [25] in Section IV and the 
convergence study are also conducted. Section V concludes 
the paper. 

11. FORMULATION DYADIC GREEN’S IMPEDANCE FUNCTION 
OF THE SLOTLINES AND STRIPLINES IN NONLAYERED 

SUBSTRATES 

In Fig. 1, metal strips are assumed infinitely thin per- 
fect conductors surrounded by rectangular perfect electric 
walls. Assume that the time-harmonic dependence is eJWt 
and guided-wave z-dependant solution is e-3’)’. Omitting the 
eJwt time-dependant term in the formulation, the point-source 
current density can be written as 

where J ,  and Jx represent the longitudinal and transverse cur- 
rent components, respectively; 2 and i are the unity constant 
vector in the z and z direction, respectively. 

The first step in deriving the dyadic Green’s impedance 
function is to obtain the correct eigenfunction expansions in 
nonlayered substrate region such that the boundary conditions 
are satisfied at the step discontinuities at the dielectric interface 
and at the enclosure [22], [23], [27], [28]. In an arbitrary 
kth source-free region (See Fig. I), d k - 1  5 y 5 d k ,  the 

electromagnetic fields satisfying the Helmholtz equation can 
be expressed as 

= 0 x 0 x TLk) - jwpv x T y ,  ( 2 4  

(2b) 

Since the solutions for the Helmholtz equation are separable 
in Cartesian coordinates, the hybrid TE-to-2 and TM-to-x 
Hertzian potentials in (2a) and (2b) can be written as 

$4 

= j W & V  x T y  + v x v x T?’. H ( k )  - 

where k denotes the index from region 1 to N and M denotes 
the total number of each eigenfunction expansion terms . The 
normalized Hertzian potential functions $,$k) (y) and + Z k )  (y) 
can be expressed as 

and the corresponding potential functions qh$”(z) and 
&”(x) can be expressed as 

f$$”((.) = c$“) cos[/?:E‘)(Z - 2 k t ) ]  

+ d s k % )  sin [ , o ~ ~ ~ ) ( . ~  - . 6 k ,  )] , (5a) 
h k  

f$$”((.) ,$“) cos[/?xLL ”(z - X k ,  )] 
+ dzkz)SiIl[@t“’)(2 - X k , ) ]  (5b) 

where 

( p ; y  = Ep(z)k; - ( / j t p ) 2  - 72, 

(pYm h ( k )  ) 2 - - E,  ( k )  (.)IC; - ( / ? , “ ( 3 2  - 7 2 .  ( k ;  = w2po&o) 

y; = [ d k  - d k - l ] / 2 ,  

!/k = [ d k  f d k - 1 ] / 2 .  (5c) 

The determination of the unknown coefficients c$“), dZk’ ) ,  
c?‘”), and d 2 “ )  and the eigenvalues @:Ea) and ,&ga)of 
(5a) and (5b) is straightforward when the tangential bound- 
ary conditions at 2 = zk., a = 1,. . . ,pk  [28], where 
pk is number of dielectric step discontinuity of the kth 
region in 2-direction. The remaining a$”), I,::”), and 
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b z k )  coefficients constitute four sets of unknown coeffi- 
cients to be determined. Notice that in region 1 and region 
N ,  only two sets of coefficients i.e., a Z k )  and & I c )  are 
necessary. 

Substituting equations (4) and ( 5 )  into (3) and invoking (2a) 
and (2b), one obtains the total field in region k 

M 

m=l 
h.3 

m=1 

At y = dk, for example, the boundary condition reads as 

Notice that the :I;-directed eigenfunctions satisfy the well- 
known biorthogonality relations 

When one considers the interface matching at y = d k  and 
y = d k - 1 ,  respectively, the following matrix equations can 
be obtained by substituting the corresponding tangential field 
components as shown in (6) into 7(a)-7(d) and applying the 
biorthogonality relations equations (8a) and (8b). 

at y = d k  for m = 1 , 2 , .  . . ,111 (9a) 

at y = dkP1 for m = 1 , 2 , .  . . , M (9b) 

and 

f o r m = 1 , 2  , . . . . & ! ( l o a )  

J : i ( X ' )  = J;')$b?)(.d), S = k - 1, k :  J = k ,  
f o r m =  1,2,  . . . .  M ( l 0 b )  

where [ V ( k , k + 1 ) ] 4 ~ f x 4 ~  and [ A ( k > k - 1 ) ] 4 ~ x 4 h f  are called the 
upper and lower chain matrix relating the corresponding adja- 
cent set of coefficients respectively; whereas [ 1 ( k ' k + 1 ) ] 4 ~ x 2 ~  
and [ I ( k i k - 1 ) ] 4 ~ f x 2 ~  are called the associated current matri- 
ces relating the current densities to the unknown coefficients. 
For the sake of clarity and completeness, the elements of 
the matrices shown in (9a) and (9b) are listed in Appendix 
A. Notice that if there is no strip existing at certain inter- 
face, the corresponding current matrix [ T ( k ~ k + 1 ) ] 4 , ~ ~ x  2h1 and 
[ I ( k > k - 1 ) ] 4 ~ f x 2 ~  will become null matrices. 

Referring to the structure in Fig. 1 and by applying (9a) 
and (9b) recursively, one can obtain the following equations 
relating the coefficient vector at an arbitrarily selected layer at 
y E (dk-1 ,  dk) to the coefficient vectors at the top and bottom 
layers as well as all the current densities of the strips 

where b&,, and i?:kn are the Kronecker delta functions. 
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By equating (1 1) and (12), the coefficients at the top and 
bottom layers are in terms of all the current densities on the 
strips as shown in 

When all the current densities are known, all the coefficients 
at various layers can be readily obtained by the use of (9a), 
(9b), and (13). 

Consequently, the tangential electric fields as shown in (6) 
at the arbitrary region k can be written symbolically as 

By using of (loa) and (lob), (14a) can be rewritten as 

Notice that all the coefficients in (6) are now in terms 
of currents densities, where [ Z ( k , i ) ]  is the dyadic Green's 
impedance function in the region IC as a result of all current 
densities IC = 1 , 2 , .  . . , N and i = 1 , 2 , .  . . , N - 1. 

Integrating (14a) along all the metal strips, one obtains 
general Green's impedance function equations where the un- 
knowns are the current distributions on the metal strips and 
no longer the point sources 

where (16) and (17), (see bottom of the page). Next, the surface 
current densities J:) and J;') are expanded in terms of a finite 
series by using the appropriate set of basis functions that will 
be discussed in the next section. 

Followed by the use of Galerkin's procedure 1291, [30], the 
final set of boundary conditions, (7e) and (70, are satisfied. 
This results in a nonstandard eigenvalue equation, Le., 

where current coefficient vector [x] contains all the unknown 
current coefficients of the metal strips. The integer subscript q 
stands for the order of the square matrix [GI. The nontrivial 
solution of (1  8) mandates that 

Once the propagation constants (7) is obtained the unknown 
coefficients of basis functions can be readily solved. Given the 
solutions for all the current distributions on the microstrips 
and slotlines, the electromagnetic fields inside the generalized 
waveguide can be computed by (9a), (9b), (13), and (4)-(6). 

It is interesting to observe that when all the substrates are 
layered, the above mentioned equations will be reduced to the 
well-known SDA formulation. Such results are documented in 
Appendix B for reference. 
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111. NEW GLOBAL BASIS FUNCTION FOR SLOTINE PROBLEMS 
USING GREEN'S IMPENDANCE FUNCTION APPROACH 

To solve the Green's impedance function equations (15) 
by the Galerkin's procedure, the unknown surface currents 
on the microstrip type and slotline type transmission lines 
will be expressed by a known set of basis functions with 
unknown coefficients prefix. The most important attribute of 
the basis functions, when they are properly determined, is that 
the unknown current distributions of the strips can converge 
to nearly true current distributions. A few examples of such 
phenomena had been reported for the nearly true current 
distributions of the suspended coupled microstrip lines in 
the case of complex modes [26] and dominant modes [31], 
respectively. Thereby such preconditioned basis functions are 
global in nature and they will result in a matrix Gnxp(-y) in 
(18) of fairly small dimension, since q is directly related to 
the number of the basis functions. 

Refer to Fig. 2, which shows perfect conductor strip of 
width w having one side connected to the side-wall which 
is also a perfect electric conductor (PEC). The strip contains 
two kinds of edge conditions, i.e., 1) 6' = 27r at the one 
side, and 2) 6' = 7r/2 at the other side. From the two- 
dimensional electrostatic wedge problem, one may obtain a 
complete solution of surface charge distribution near end 
points P J ~ = O  [321 

n= l  

where p is the distance measured from one of the two end 
points, and u; are constants. 

Normalizing variable p with respect to half of the strip 
width, the new variable u can be defined as 

(21) u = 2(z - zfJ)/w 

where x0 denotes the center point of strip. Substituting (21) 
into (20) results in 

03 

.(u) = a,(l f uU)-1, (22) 

where plus is for left side edge condition, and minus for right 
side edge condition. (22) will be used in the following context. 
In (22), the a, are unknown constants and -1 < u < 1. 

For different edge conditions, we should select the proper 
bases, namely: 

1) For 6' = 27r, the derivation of basis functions out of (22) 
had been reported in literature [26] and is summarized here 
for reference: 

&(u,0 = 27r) = (1 f ")?-I - Jz(1 f u)?-$ 

j,"(u,H = 27r) = (1 fu)? - Jz(1 -fU)?+t 

1 
2 

1 
2 

+ -(1 -f up, (23a) 

+ -(1 f ,)$+I (23b) 

where n is the order of the expansion functions; n = 

2) The expansion functions near the edge (6' = ~ / 2 )  can be 
derived as follows. Since the longitudinal strip current J, is 
proportional to the charge distribution ~ ( x )  denoted by (22) 
when 0 = 7r/2 and x = O(or u = -1) as shown in Fig. 2, the 
n t h  order basis j;, with current vanishing at z = w ( u  = l), 
can be expressed as 

1 ,2 ,  . . . , Nb. 

1 
2 

j,.,(u,O= ;) =( l+u)2n-1- - (1+U)*~ '+1  

1 
16 

+ -(1 + u ) ' ~ + ~ ,  for n = 1 , 2 , .  . . , Nb. 

(24a) 

Similarly, when the metal strip is connected to side-wall at 
x = w(u = 1) with the opposing end open, j;, is 

j;-&,6' = ;) = ( I  - u)2,-1 - z(l 1 - U ) ' T L + l  

1 
16 

+ -(1 - u)2n+3, for n = 1 , 2 , .  . . , Nb. 

(24b) 

It is interesting to observe that when p ( u )  approaches 
O ( f 1 ) , j Z n  has p1 asymptote. 

By integrating the following equation imposed on the metal 
strip as was done in [33], 

where ~ ( x )  has been defined in (20). It follows that j$, is an 
integration of j& .  Therefore, 

1 
16 

+ -(1 i~ u)2n+4, for 7~ = O,1,2, .  . . Nb. 

(26) 

Notice that the index n of j,f,(u,6' = 5) starts from 0 not 
1. By doing so, the transverse current distribution J,  (u) near 
edge will contain d.c. component. n=l 
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In summary, the basis functions for microstrip problems are 
l l i h  

n = l  
N h  

n=l  
Arb  

+ d,j,,(%L, 8 = 27r): 
n= l  

and for slotline problems are 

n= l  

n=O 
N,. 

where c: and d z  are unknown coefficients; Nb is the order 
of the .I, and J ,  basis functions in the expansion. 

IV. VALIDITY CHECK 

To validate our formulations presented in Sections I1 and 
111, this section will conduct the convergence study and then 
compare the results obtained by the present formulations with 
existing literature. 

A. Convergence Study 

The dominant mode propagation constant and its corre- 
sponding characteristic impedance is of primary concern in 
our study. These parameters are function of the order of 
basis function Nt, and the number of eigenfunction expansion 
terms A I  ( 5 ) ,  (27), and (28). Fig. 3(a) and (b) illustrates the 
convergent properties of the normalized propagation constant 
~ / k o  and characteristic impedance Zo with respect to M using 
N b  as the controlling parameter, respectively. The global basis 
functions of (27a) and (27b) are incorporated in the numerical 
investigation. The characteristic impedance is given by the 
power-current definition 

2P 
z0= 12, 

where 

I = l> Jzd.c 

and the transported power is calculated as 

where s g  is the whole cross-sectional area of 
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Fig. 3. Convergence behavior of the propagation characteristics of the funda- 
mental mode for a shielded symmetric microstrip line at I O  GHz, when varying 
the number of basis function terms ( N b )  and the numher of eigenfunction 
expansion terms ( M ) .  Structural parameters are u! = 1.27 mm, 2-12 = 8.875, 
and icr. = 1.0.  (a) The normalized propagation constant. (b) The characteristic 
impedance. 

In the particular case study of Fig. 3, where both structural 
parameters and material constants are given. when Nb = 3 
and M = 200, 0.39% deviation is observed for y / k ~  and 
2, with respect to those obtained by using lVb = 5 and 
M = 500, respectively. Our experiences 0 1  using the new 
program indicate that for most commonly used planar 
and quasi-planar structures, the condition that I V b  = 3 
and M = 250 is sufficient for very good solution. Similar 
conclusion was also reported in [34]. 

B. Validify Check: Comparison of New 
Results With Existing Literature 

To validate our program based on the new formulations, the 
modified Microslab, the microstrip proximity effect, and the 
slotline are used as three test cases for the comparative study 
against the data available in existing literature [221, [23], [25]. 
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Fig. 4. Proximity effects of the extended supporting dielectric substrate 
( e ,  = 9.7) on (a) the dominant mode normalized propagation constant and (b) 
the characteristic impedance of a shielded symmetric modified Microslab when 
varying the value of s. Structural parameters are (11 = 1.2 mm, t l  = 0.48 mm, 
t 2  = 0.71 mm, n = 12.0 mm, and t g  = 0.48 mm. I X ' ~  = 3,and A l  = 100. 

Given the modified Microslab as shown in Fig. 4, parts (a) 
and (b) show the normalized propagation constant (y/ko) and 
the characteristic impedance 20, respectively. The solid and 
dashed lines are the data obtained by the present formulations 
using Nb = 3 and M = 100 under various conditions that 
the parameter s changes from zero to ( a  - ui)/2.  The change 
of s from zero to ( a  - w ) / 2  implies that the transmission 
line undergoes a transformation from the nonlayered Microslab 
to the modified Microslab and finally the layered microstrip 
structure. The corresponding solutions obtained by the SDA 
program [26] assuming the layered structure are denoted by the 
square symbols, whereas those obtained by the mode-matching 
method 1231 are marked by the circle symbols. In all cases 
excellent agreement is obtained. 

Fig. 5 shows the results for the second case study where 
the numerical results obtained by present formulation are 

4 6.6 

6.4 

62 

6 1 5.8 

Measurements [254 z:: 
-This work 

Fig. 5. Comparison of this work to [221, [25],  in the calculation of effective 
dielectric constant of a microstrip as a function of d / w ,  the normalized 
distance between the edge of substrate and that of microstrip. Structural 
parameters are E,. = 10.2, (u = 0.95 mm, h = 1.27 mm, Q = 50.0 mm. 
b = 35.0 mm, s = 15.0 mm, and frequency = 2 GHz. 

0 

-1 L 
-1 -0.75 -0.5 4.25 0 0.25 0.5 0.75 1 

2(x-" 
Fig. 6.  The normalized tangential E-field components of the dominant mode 
at y = d l ,  f = 30 HGz. The insert shows the structure of the symmet- 
ric conductor-backed slotline. Structural parameters are a = 7.112 mm, 
dl = 3.556 mm, d = 10.668 mm, and s = 0.4 mm. 

compared with those reported in [22], [25]. Again very good 
agreement is achieved between our work and the theoretic 
results and measurement [22], [25]. 

The last case study is to investigate the slotline problem 
using the Green's impedance function and the new basis 
functions (28a) and (28b). Similar convergence study to those 
reported in Fig. 3(a) and (b) had been conducted. Fig. 6 
displays the tangential E-field components of slotline directly 
at the interface plane, y = d l ,  at 30 GHz. In order to obtain the 
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Fig. 7. Comparison of the propagation characteristics of the dominant mode 
of the structure illustrated as an inset in Fig. 6 when varying the value of s .  
Results denoted by rectangular symbols are based on SDA program 1261 using 
the slot field expansions. Results from this work using the Green's impedance 
approach are indicated by solid lines. (a) The normalized propagation constant. 
(h) The characteristic impedance. A'hen L\'(, = 5 and M = 240. 

using the slot width s as the controlling variable. Our results 
and those obtained by the SDA program [26] with the basis 
functions represent the electric field distribution in the slot are 
represented by solid lines and square symbols, respectively. 
Only when in the low frequency limit near 20 GHz and 
narrow slot (o,/.s = 35.56), the particular case study yhows 
that about 3.5% deviation between the new formulation and 
the SDA program [26] for the characteristic impedance shown 
in the lower left comer of the Fig. 7(b). The deviation of the 
propagation constant, however, is very slight and only 0.33% 
is observed for the same condition. Further investigations 
have shown that for all normally used slotlwidths, a five-term 
expansion functions according to (28a) and (2%) and a number 
of 250 eigenfunction expansion terms are sufficient for very 
good solutions. 

V. CONCLUSION 

This paper proposes and validates a full-wave integral 
equation technique based on the Green's impedance function 
approach and newly derived basis functions for obtaining the 
dispersion characteristics of a system of strip lines and slotlines 
integrated on multiple nonlayered dielectric substrates. The 
recursive formulation of such a complicated and generic 
problem makes the derivation of Green's impedance function 
systematic and easy to implement. To solve the slotline type 
problem using the Green's impedance function a new set of 
basis functions is derived to expand the unknown current 
distributions on the metal strips of the slotline. The use 
of the resultant integral equation incorporating the Green's 
impedance function and the new basis functions is confirmed 
by conducting both convergence study and the validity check 
against existing literature, where three examples are invoked. 
namely, Microslab, microstrip proximity effect and conductor- 
backed slotline. Excellent agreement for the propagation char- 
acteristics obtained by the present method and all the three 
case studies is obtained. 

APPENDIX A 

The upper chain matrix [V(k,k+l)] and the current matrix very accurate tangential E-field components at the interface, 
the condition that ,Vb = 5 and M = 5 x 103 is necessary. The [ 1 ( k 7 k + ' ) ]  in (9a) are given by 

tangential E-field are normalized by the maximum E,-field 
(E,, max). Fig. 6 shows that both tangential fields E, and E, 1/11 1'12 v13 G'l 
vanish along the metal strips and the p-1/2,  singularity clearly v22 v23 
exists for E, near the ends of the slotline. 

acteristic impedance, i.e., 
By applying the power-voltage definition for slotline char- v42 v43 1k-I 

lKIZ z, = - 
2P 

where I' is the transported power associated with slot as (29c) 
and V, is the voltage across the slot given by where 

(A-2) 

- z;, . 1 Z:e 
e(k+l) I 

Vil(m,n) = - 
tan(p$'vL) tari(iijyn .Y,+,) 

(A-3) 

( 3 0 ~  

Fig. 7(a) and (b) displays the normalized propagation constant 
and the characteristic impedance between 20 GHz and 70 GHz 
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(A-26) 

1 
V43(mr 7L) = - 

Qm 

1 
V44(7n7n) = - 

Qm 

1 
111(m,n) = - 

Qm 

-1 
112(m,n) = - 

Qm 
L .. - 

(A-14) 

(A- 1.5) 

(A- 16) 

and 

(A-20) 

(A-21) 

(A-22) 

(A-23) 

(A-24) 

(A-30) 

(A-31) 

(A-32) 

(A-34) 

where ,8;:), By71 , PYm h(k), /$Lk+'), yL, and yL+l are given 
in (5c). 

Similarly, by the same mathematical manipulations and 
proper change of the indices and symbols, the lower chain 
matrix and the current matrix in (9b) can be obtained by using 
the procedures described in the above. 

APPENDIX B 
The Fourier sine and cosine transforms in the closed struc- 

ture can be defined as 

~ ( n )  = la f ( x )  sin(cuz)dz, (B- 1 

F ( a )  = la f ( z )  cos(trz)dz, respectively. (B-2) 

In Section 11-A, we describe the proposed generalized full- 
wave integral equation and derive the general dyadic Green's 
impedance function. First, in order to solve those unknown 
coefficients, we apply the boundary condition 7(a) to 7(d) 
at the interface by multiplying both sides by 4 S k ) ( x )  and 
&"(x), respectively, and integrating from 0 to a, to obtain 
the relating equations (9a) and (9b). Second, after some alge- 
braic manipulations, we obtain the dyadic Green's impedance 
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function using the point current densities as unknowns. Then 
by integrating over the metal strips, we can obtain the generic 
dyadic Green’s impedance function governed by arbitrary 
current distributions as shown in (15). 

Now if every dielectric substrate is layered in configuration, 
the potential functon C $ $ ~ ) ( . E )  and &”((z) can be expressed 
as 

(B-3) 

(B-4) 

Thus the integrals of the boundary condition (7a)-(7d) can be 
rewritten a\ 

fp$(.r) = (‘os (‘7.1). - 

qj:,(k’(.r) = sin ( 7 . r ) .  

k = 1 , 2 , .  . . , N  

k = 1 , 2 , . .  . . N  

(B-5b) 

(B-5c) 

Similarly, the Equations (17) and (18) are now rewritten as 

i = 1 , 2 , . .  . . N  - 1. 

According to the Fourier transforms defined in 
2), (B-5)-(B-7) are now in Fourier transform 
SDA will lead to exactly the same expression 
(B-5)-(B-7). 

(B-7) 

(B-1) and B- 
domain. The 
sas shown in 
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