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We consider the solution of the large-scale nonlinear matrix equa-

tion X + BX−1A − Q = 0, with A, B,Q , X ∈ C
n×n, and in some

applications B = A. (. = � or H). The matrix Q is assumed

to be nonsingular and sparse with its structure allowing the solu-

tion of the corresponding linear system Qv = r in O(n) computa-

tional complexity. Furthermore, B and A are respectively of ranks

ra, rb � n. The type 2 structure-preserving doubling algorithm by

Lin and Xu (2006) [24] is adapted, with the appropriate applica-

tions of the Sherman–Morrison–Woodbury formula and the low-

rank updates of various iterates. Two resulting large-scale doubling

algorithms have an O((ra + rb)
3) computational complexity per it-

eration, after some pre-processing of data in O(n) computational

complexity and memory requirement, and converge quadratically.

These are illustrated by the numerical examples.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Consider the nonlinear matrix equation (NME)

R(X) ≡ X + BX−1A− Q = 0 (1)

with A, B,Q , X ∈ C
n×n.We assume thatQ is nonsingularwith structures, like being banded or sparse,

allowing the solution of the corresponding linear system Qv = r in O(n) computational complexity.
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We further assume that A, B are respectively of ranks ra, rb � n. These NMEs arise in the solution of

palindromic eigenvalue problems, with applications in the computation of Green’s function in nano

research [12–14,16] and surface acoustic simulations [18,19]; for the individual models, structures of

the particular NMEs and their solvability conditions, please consult these references. For the surface

acoustic wave application in [18,19], we have Q = Q� ∈ C
n×n and B = A� ∈ C

n×n. In some

applications as in [18,19], selected eigenvalues from the pencils λX − A or λB− X are required, after

the solution X to (1) is found.

We shall adapt the structure-preserving doubling algorithm (SDA) of type 2 [13,16,24] for the NME

in (1), resulting in an efficient large-scale doubling algorithm (SDA_ls). The original SDA is usually

attributed to Anderson [1], 1 as an accelerated variant of the direct functional iteration method. It has

recently been revitalized and further developed in [5–7], for a great variety of applications [9]. Recently,

we have extended the SDA (of type 1) for large-scale algebraic Riccati equations (AREs) [21,22,28]

and the associated linear equations [23], with the resulting algorithms possessing an efficient O(n)
computational complexity and memory requirement per iteration. We shall extend these methods

to NMEs, based on similar philosophy. Notice the important difference in the large-scale NME, from

large-scale AREs, that the solutionX is nonsingular and not numerically low-ranked. (We shall see later

that X is a numerically low-ranked update of the nonsingular Q .) Interestingly, the essential steps of

compression and truncation of Krylov bases for large-scale AREs are not required for NMEs. Also, the

SDA_ls for large-scale NMEs is of amore efficientO((ra+rb)
3) computational complexity per iteration,

as compared to O(n) for AREs. The overall algorithm shares the O(n) computational complexity and

memory requirement because of the pre-processing of data.

Similar techniques in this paper are applicable to the cyclic reduction method in [25] for X ±
A.X−1A− Q = 0 (. = �,H; denoting the transpose and the Hermitian).

2. Preliminaries

In this section,we shall introduce somenotations, briefly describe the solvability condition for NME

(1) and give some preliminary results. Throughout this paper, we denote the unit circle in the complex

plane by T. For a matrix A ∈ C
n×n, σ(A) and ρ(A) denote respectively the spectrum and spectral

radius of A, and σmax(A) and σmin(A) are respectively the maximum and minimum singular values of

A. The conjugate transpose and transpose of A are denoted by AH and A� respectively. We can write

A = AR + iAI , where the Hermitian matrices

AR = 1

2
(A+ AH), AI = 1

2i
(A− AH)

are called the real part and the imaginary part ofA, respectively. ForHermitianmatricesA1,A2 ∈ C
n×n,

we use A1 > A2 (A1 ≥ A2) to denote the fact that A1−A2 is positive definitive (positive semi-definite).

The NME in (1) can be reformulated as

R(X) = X + (CH + iDH)X−1(C + iD)− (QR + iQI) = 0,

where C ≡ 1
2
(A + BH), D ≡ 1

2i
(A − BH) and QR, QI are the real part and the imaginary part of Q ,

respectively. Let

ψ(z) = zDH + QI + z−1D (2)

be a rational matrix-valued function. The following is a consequence of the solvability results from

[13] and the proof can be found in [14], after superficial modifications.

1 In [2, p. 149], we have the quotation “Doubling algorithms have been part of the folklore associated with Riccati equations in

linear systems problems for some time. We are unable to give any original reference containing material close to that presented

here.” This quotation from Anderson, to whom the SDA is widely attributed, indicates the uncertain origin of the method.
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Theorem 2.1. Let A = C + iD, B = CH + iDH and Q = QR + iQI be n × n complex matrices. Suppose

thatψ(z) defined in (2) is positive definite for each z ∈ T.

(i) The matrix polynomial P(z) = z2B− zQ + A has exactly n eigenvalues each inside and outside T.

(ii) The NME (1) has a solution X = XR + iXI with ρ(X−1A) < 1 and XI > 0.

Note that if X is solution of NME, then P(z) = (zBX−1 − I)X(zI − X−1A). So the eigenvalues of

X−1A are the n eigenvalues of P(z), and the eigenvalues of BX−1 are the reciprocals of remaining n

eigenvalues of P(z). A solution X of NME is said to be stabilizing if ρ(X−1A) < 1. From Theorem 2.1, if

ψ(z) > 0 for each z ∈ T, then the NME and its dual

X̂ + AX̂−1B = Q (3)

have stabilizing solutions.

Remark 2.1. Theorem2.1 gives a sufficient condition for the existence of stabilizing solutions of NMEs.

For applications in the computation of the surface Greens function in nano research [13,16] , we have

QI = I, D = 0 and C, QR being real, and it is easy to check that the sufficient condition holds. For the

surface wave application in [18,19], we have C, D, QR and QI being real such that ψ(z) > 0 for each

z ∈ T. For the special case where C,QR = 0, ifψ(z) > 0 for each z ∈ T, then

X + (iDH)X−1(iD) = iQI (4)

has a stabilizing solution XS with XS,I > 0, ρ(X−1S (iD)) < 1 and ρ((iDH)X−1S ) < 1. We shall show

that the real part of XS is zero. Consider the nonlinear matrix equation

X + (iDH)X−1(iD) = −iQI. (5)

It is obvious that −XS and XH
S are solutions with ρ(−X−1S (iD)) < 1 and ρ(X−HS (iD)) < 1, i.e., −XS

and XH
S are stabilizing solutions. Since the stabilizing solution of (5) is unique, XH

S = −XS . Hence, XS

has only imaginary part, i.e., XS = iXS,I . Since XS,I > 0, substituting XS = iXS,I into (4) implies that

X+DHX−1D = QI has a Hermitian positive definite solution XS,I . This coincideswith the result in [10].

Under the assumption that ψ(z) > 0 for each z ∈ T, we know that the NME and its dual have

stabilizing solutions X and X̂ , respectively. The corresponding SDA of type 2 [13,16,24] has the form

A0 = A, B0 = B, Q0 = Q , P0 = 0;
Ak+1 = Ak(Qk − Pk)

−1Ak, Bk+1 = Bk(Qk − Pk)
−1Bk;

Qk+1 = Qk − Bk(Qk − Pk)
−1Ak, Pk+1 = Pk + Ak(Qk − Pk)

−1Bk. (6)

From [13, Theorem 3.1], all the iterates are well-defined (i.e., Mk ≡ Qk − Pk are always invertible),

Qk → X , Q − Pk → X̂ and Ak, Bk → 0, all quadratically as k→∞. In the following, we shall give an

upper bound of {‖M−1k ‖2 : k = 0, 1, . . .} For the case where B = AH and Q = QH , an upper bound

has been given in [3, Theorem 15].

The following lemma is useful to estimate the upper bound.

Lemma 2.2. Let� = �R+ i�I ∈ C
n×n, where�R and�I are the real and imaginary parts of�. Suppose

that�I is positive (negative) definite.

(i) � is invertible and

�−1 = �−1I �R(�I +�R�
−1
I �R)

−1 + i[−(�I +�R�
−1
I �R)

−1] (7)
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with �
−1
I �R(�I + �R�

−1
I �R)

−1 being Hermitian and−(�I + �R�
−1
I �R)

−1 being Hermitian

negative (positive) definite.

(ii) If�I � εI (�I �−εI) for some ε > 0, then σmin(�)� ε, i.e., ‖�−1‖2 � ε−1.

Proof. (i) For eachunit vector x ∈ C
n, since�R,�I areHermitian and�I is positive (negative) definite,

we have

‖�x‖2 = ‖(�R + i�I)x‖2 � ‖xH(�R + i�I)x‖2 � ‖xH�Ix‖2 � σmin(�I). (8)

Hence,� is invertible. From

(�R + i�I)[�−1I �R(�I +�R�
−1
I �R)

−1 − i(�I +�R�
−1
I �R)

−1]
= (�R + i�I)(�

−1
I �R − iI)(�I +�R�

−1
I �R)

−1

= (�I +�R�
−1
I �R)(�I +�R�

−1
I �R)

−1 = I,

we obtain (7). Since �I is positive (negative) definite and �R = �H
R , it is easy to see that −(�I +

�R�
−1
I �R)

−1 is Hermitian negative (positive) definite. Finally, we show that �
−1
I �R(�I

+�R�
−1
I �R)

−1 is Hermitian. From (7), we have

[�−1I �R(�I +�R�
−1
I �R)

−1 − i(�I +�R�
−1
I �R)

−1](�R + i�I) = I.

It follows that �
−1
I �R(�I + �R�

−1
I �R)

−1�I − (�I + �R�
−1
I �R)

−1�R = 0. Since �R and �I are

Hermitian, we deduce that�
−1
I �R(�I +�R�

−1
I �R)

−1 is Hermitian.

(ii) If�I � εI (�I �−εI) for some ε > 0 then from (8), we have

σmin(�) = min‖x‖=1 ‖�x‖2 � ε.

Hence, ‖�−1‖2 = σmin(�)
−1 � ε−1. �

Suppose thatψ(z) > 0 for each z ∈ T. Let

Mk = Qk − Pk, φk(z) = −Bkz + Mk − Akz
−1, (9)

where Ak , Bk, Qk , Pk are generated by SDA (6). From [13], we know thatMk is invertible. Then

φk(z)M
−1
k φk(−z) = (−Bkz + Mk − Akz

−1)(M−1k Bkz + I + M
−1
k Akz

−1)
= −BkM−1k Bkz

2 + (Mk − BkM
−1
k Ak − AkM

−1
k Bk)− AkM

−1
k Akz

−2

= −Bk+1z2 +Mk+1 − Ak+1z−2 = φk+1(z2). (10)

Let φ0,R(z) and φ0,I(z) be the real and imaginary parts of φ0(z), respectively. Since, for z ∈ T,

φ0(z) = φ0,R(z)+ iφ0,I(z), φ0,I(z) = ψ(−z) > 0. (11)

Lemma 2.2 implies that φ0(z) is invertible for z ∈ T. It follows from (10) that for k = 0, 1, . . ., φk(z)
is invertible for z ∈ T. Let ϕk(z) = φk(z)

−1 for z ∈ T and

ϕk(z) = ϕk,R(z)+ iϕk,I(z), (12)
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where ϕk,R(z) and ϕk,I(z) are the real and imaginary parts of ϕk(z). Taking the inverse of (10) yields

ϕk+1(z2) = φk+1(z2)−1 = φk(−z)−1Mkφk(z)
−1 = φk(−z)−1

(
φk(z)+ φk(−z)

2

)
φk(z)

−1

= 1

2
[φk(z)

−1 + φk(−z)−1] = 1

2
[ϕk(z)+ ϕk(−z)]. (13)

From (11), (12) and Lemma 2.2, we have ϕ0,I(z) = −(φ0,I(z) + φ0,R(z)φ0,I(z)
−1φ0,R(z))

−1 < 0 for

z ∈ T. It follows from (13) that for each k, ϕk,I(z) < 0 for z ∈ T and

max
z∈T σmax(ϕk,R(z))� max

z∈T σmax(ϕ0,R(z)) ≡ σmax,R,

max
z∈T σmax(ϕk,I(z))� max

z∈T σmax(ϕ0,I(z)) ≡ σmax,I,

min
z∈T σmin(ϕk,I(z))� min

z∈T σmin(ϕ0,I(z)) ≡ σmin,I > 0. (14)

For z ∈ T, we then have

‖ϕk,R(z)‖2 � σmax,R, ‖ϕk,I(z)‖2 � σmax,I, ‖ϕk,I(z)−1‖2 � σ−1min,I. (15)

The following theorem gives upper bounds of ‖Mk‖2 and ‖M−1k ‖2 for k = 0, 1, . . .

Theorem 2.3. Let A = C + iD, B = CH + iDH and Q = QR + iQI be given such thatψ(z) is positive for
each z ∈ T. Let Mk = Qk − Pk, where Qk and Pk are generated by the SDA in (6). Then

‖Mk‖2 �

√
σ 2
max,R + σ 2

min,I

σ 2
min,I

, ‖M−1k ‖2 � σmax,I + σ
2
max,R

σmin,I

,

where σmax,R, σmax,I and σmin,I are given in (14), which are only dependent on φ0(z) for z ∈ T.

Proof. For each k = 0, 1, . . ., from (15), we have that for each z ∈ T,

−
(
σmax,R

σmin,I

)
ϕk,I(z)�ϕk,R(z)�

(
σmax,R

σmin,I

)
ϕk,I(z),

0 < σmin,I I �−ϕk,I(z)− ϕk,R(z)ϕk,I(z)−1ϕk,R(z)�
(
σmax,I + σ

2
max,R

σmin,I

)
I.

Let φk,R(z) and φk,I(z) be the real and imaginary parts of φk(z), respectively. From Lemma 2.2 (i) and

using the fact that φk(z) = ϕk(z)−1, we have for z ∈ T,

(
σmax,R

σ 2
min,I

)
I �φk,R(z)�−

(
σmax,R

σ 2
min,I

)
I,

σ−1min,I I �φk,I(z)�
(
σmax,I + σ

2
max,R

σmin,I

)−1
I.



P.C.-Y. Weng / Linear Algebra and its Applications 439 (2013) 914–932 919

Since Mk = [φk(z)+ φk(−z)]/2 = [φk,R(z)+ φk,R(−z)]/2+ i[φk,I(z)+ φk,I(−z)]/2, we have

‖Mk‖2 �

√√√√(
σmax,R

σ 2
min,I

)2

+ σ−2min,I =
√
σ 2
max,R + σ 2

min,I

σ 2
min,I

and

Mk,I = 1

2i
(Mk −MH

k ) =
φk,I(z)+ φk,I(−z)

2
�

(
σmax,I + σ

2
max,R

σmin,I

)−1
I.

It follows from Lemma 2.2 (ii) that ‖M−1k ‖2 � σmax,I + σ 2
max,R/σmin,I. �

For the special case C,QR = 0, it follows from (14) and Theorem 2.3 that ‖Mk‖2 � σ−1min,I and

‖M−1k ‖2 � σmax,I . This coincides with the results in [3, Theorem 15].

3. Large-scale doubling algorithm

3.1. Main ideas

From [21–23,28], the main ideas behind the algorithm for large-scale problems are:

(a) The appropriate application of the Sherman–Morrison–Woodbury formula (SMWF) in order to

avoid the inversion of large or unstructured matrices.

(b) The use of low-rank updates for various iterates.

(c) The computation of matrix operators (Ak) recursively, to preserve the corresponding sparsity or

low-rank structures, instead of forming them explicitly.

(d) The careful organization of convergence control in the algorithm, so as to preserve the low

computational complexity and memory requirement per iteration.

For the SDA for large-scale NMEs, we shall see that (c) is not relevant.

Let A, B, Q ∈ C
n×n be given such thatψ(z) defined in (2) is positive definite for each z ∈ T and A,

B be respectively of ranks ra, rb � n. Assume the full-rank decompositions

A = FaRaG
H
a , B = FbRbG

H
b (16)

with Ra ∈ C
ra×ra and Rb ∈ C

rb×rb . Without loss of generality, we shall assume that Fa, Fb, Ga and

Gb are unitary. In this paper, we shall call some matrices “kernels”, mostly denoted by R with various

subscripts (Y is also used in Section 3.3). Most of our computation will be done in terms of kernels.

From Theorem 2.1, we know that NME (1) and its dual (3) have stabilizing solutions X and X̂ ,

respectively. The SDA for NME and its dual has the form in (6) which requires the inverse of Mk =
Qk − Pk . It is shown in [13] that Mk is invertible for each k = 0, 1, . . . Furthermore, an upper bound

of {‖M−1k ‖2 | k = 0, 1, . . .} is given in Theorem 2.3. Similar to the approach in [21,23], we shall apply

the SMWF:

(̃A± UC̃V)−1 = Ã−1 ∓ Ã−1U(I ± C̃VÃ−1U)−1C̃VÃ−1

to various inverses of matrices in sparse-plus-low-rank (splr) form, enabling the computation of large

inverses of size n in terms of much smaller matrices. In the following lemma, we show that the small

size matrix (I ± C̃VÃ−1U) is invertible provided that Ã and (̃A± UC̃V) are invertible.
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Lemma 3.1. If Ã and (̃A± UC̃V) are invertible then (I ± C̃VÃ−1U) is invertible.

Proof. Suppose that Ã and (̃A ± UC̃V) are invertible. Then

⎡⎣ Ã± UC̃V 0

0 ∓I

⎤⎦ is invertible. Since Ã is

invertible and⎡⎣ I ∓U
0 I

⎤⎦ ⎡⎣ Ã± UC̃V 0

0 ∓I

⎤⎦ ⎡⎣ I 0

∓C̃V I

⎤⎦ =
⎡⎣ Ã U

C̃V ∓I

⎤⎦
=

⎡⎣ I 0

C̃VÃ−1 ∓I

⎤⎦ ⎡⎣ Ã 0

0 I ± C̃VÃ−1U

⎤⎦ ⎡⎣ I Ã−1U
0 I

⎤⎦ ,
we have shown that (I ± C̃VÃ−1U) is invertible. �

3.2. Algorithm 1

For k = 0, 1, . . ., we can organize the SDA so that the iterates have the recursive forms

Ak = FaRakG
H
a , Bk = FbRbkG

H
b ;

Qk = Q − FbRqkG
H
a , Pk = FaRpkG

H
b ; (17)

with Rak ∈ C
ra×ra , Rbk ∈ C

rb×rb and Rpk, R
H
qk ∈ C

ra×rb . The general forms in (17) can be verified easily

from (6), when identifying the updating formulae in (23) and the initail values in (25). Note that we

can equivalently formulate the SDA in terms of Ak , Bk, Pk and the new variable Q̂k ≡ Q − Qk , with the

symmetry in the low-ranked Pk and Q̂k . Note also that the row and column spaces of all thesematrices

remain constant, with only the various kernels Rs varying with k. Also, Qk are low rank updates of Q .

(For the nano research application in [13,16], this corresponds to the behaviour that only upper right

corner in Ak and the lower right corner of Qk are changing for different k.)

We require the inverse of Mk = Qk − Pk in the SDA in (6). From (17), we have

Mk = Q − [Fa, Fb]Rmk[Ga, Gb]H, (18)

where Rmk ≡
⎡⎣ 0 Rpk

Rqk 0

⎤⎦ ∈ C
(ra+rb)×(ra+rb). Applying the SMWF toM

−1
k yields

M
−1
k = Q−1 + Q−1[Fa, Fb]Nk[Ga, Gb]HQ−1 (19)

with

Nk ≡ (Ira+rb − RmkT)
−1Rmk (20)

and

T =
⎡⎣ Taa Tab

Tba Tbb

⎤⎦ ≡ [Ga, Gb]HQ−1[Fa, Fb]. (21)

Note that Nk is symmetric if B = A� and Q� = Q , as in [18,19].
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Remark 3.1. SinceQ andMk are invertible, it follows fromLemma3.1 that Ira+rb−RmkT (k = 0, 1, . . .)

are invertible. In the following, we shall give upper bounds of ‖I − RmkT‖2 and ‖(I − RmkT)
−1‖2 for

k = 0, 1, . . .when [Ga, Gb] and [Fa, Fb] are of full column rank. Assume σmin([Ga, Gb]) = σmin,G > 0

and σmin([Fa, Fb]) = σmin,F > 0. Since Ga, Gb, Fa and Fb are unitary, we obtain

‖[Ga, Gb]‖2 �
√

2, ‖[Fa, Fb]‖2 �
√

2,

‖[Ga, Gb]†‖2 = 1/σmin,G, ‖[Fa, Fb]†‖2 = 1/σmin,F ,
(22)

where (·)† denotes thepseudoinverseof amatrix. From(18), (21) and (22),wehave‖Rm,k‖2 �(‖Mk‖2+
‖Q‖2)/(σmin,Fσmin,G) and ‖T‖2 � 2‖Q−1‖2. Hence, we obtain

‖I + RmkT‖2 � 1+ 2‖Q−1‖2
σmin,Fσmin,G

(‖Mk‖2 + ‖Q‖2).

From (19) and (22), we have ‖Nk‖2 �(‖Q‖2‖M−1k ‖2 + 1)‖Q‖2/(σmin,Fσmin,G). Using the fact that

(I − RmkT)
−1(I − RmkT) = I, it follows that (I − RmkT)

−1 = NkT + I and hence

‖(I − RmkT)
−1‖2 � 1+ 2‖Q‖2‖Q−1‖2

σmin,Fσmin,G

(‖Q‖2‖M−1k ‖2 + 1).

With (17) and (19), the SDA in (6) now becomes the updating formulae:

Ra,k+1 = RakW
aa
k Rak, Rb,k+1 = RbkW

bb
k Rbk;

Rq,k+1 = Rqk + RbkW
ba
k Rak, Rp,k+1 = Rpk + RakW

ab
k Rbk; (23)

where Wuv
k ≡ GH

u M
−1
k Fv (u, v = a, b). From (19), we obtain

⎡⎣ Waa
k Wab

k

Wba
k Wbb

k

⎤⎦ = T + TNkT . (24)

The computation requires about 26
3
(r3a+r3b )+22rarb(ra+rb)flops for each iteration (thedetailed count

is given in Table 1), with the help of (19), after the pre-processing in O(n) complexity for quantities

like Q−1U, Q−HV (U = Fa, Fb and V = Ga, Gb) in (20) and T in (21).

For initial values, we have the obvious

Ra0 = Ra, Rb0 = Rb; Rp0, Rq0 = 0. (25)

In [21–23,28], the SDA of type 1 has been extended for large-scalar Stein/Lyapunov and AREs equa-

tions. The iterates Ak in the SDA of type 1 are computed recursively, without being forming explicitly.

As the SDA of type 2 in (6) now translates to the updating formulae (23) in C
ru×rv (u, v = a, b), this

previously important aspect (c) in Section 3.1 of the SDA_ls is now irrelevant.

The SDA_ls for an NME (and its dual), realizes the iteration in (6) with the help of (17), (19) and

(23), the initial values in (25), and the convergence control in Section 4.1. We summarize the SDA_ls

in Algorithm 1 below.



922 P.C.-Y. Weng / Linear Algebra and its Applications 439 (2013) 914–932

Algorithm 1 (SDA_ls)

Input: A = FaRaG
H
a , B = FbRbG

H
b ,Q ∈ C

n×n, positive tolerance ε;

Output: Rpε, R
H
qε ∈ C

ra×rb , with Q − FbRqεG
H
a and Q − FaRpεG

H
b ,

approximating, respectively, the solutions X and X̂ to the

large-scale NME (1) and its dual (3);

Orthogonalize Fa, Fb, Ga, Gb, modify Ra, Rb; (if required)

Set k = 0, r̃0 = 2ε; Ra0 = Ra, Rb0 = Rb; Rp0, Rq0 = 0;

(as in (25))

Do until convergence:

If the relative residual r̃k = |rk/(qk + mk)| < ε,

Set Rqε = Rqk and Rpε = Rpk;

Exit

End If

Compute Wuv
k = GH

u M
−1
k Fv (u, v = a, b), (as in (20) and (24))

Ra,k+1 = RakW
aa
k Rak ,

Rb,k+1 = RbkW
bb
k Rbk ,

Rq,k+1 = Rqk + RbkW
ba
k Rak , and

Rp,k+1 = Rpk + RakW
ab
k Rbk; (as in (23))

Compute k← k+ 1, rk, qk and mk; (as in (40) in Section 4.1)

End Do

3.3. A non-symmetric discrete-time algebraic Riccati equation

From Section 3.2, Q − Qk and PHk are low-ranked with small rb × ra kernels. It suggests that the

solution X , or its kernel Y , can be characterized by a matrix equation of lower dimensions, as stated in

the following lemma. We shall not elaborate on the similar result for the solution X̂ of dual equation.

Lemma 3.2. Let X be a solution of the large-scale NME (1). Then there exists Y ∈ C
rb×ra such that

X = Q − FbYG
H
a . (26)

Proof. Suppose thatX is a solutionofNME (1). Substituting (16) into (1) and settingY = RbG
H
b X
−1FaRa,

we obtain (26). �

We shall now show that Y in (26) satisfies an uncommon non-symmetric discrete-time algebraic

Riccati equation (NARE_D). Note that the standard non-symmetric algebraic Riccati equations (NARE)

[28] are of continuous-time type in most literature.

Substituting (16) and (26) into (1), we have

−FbYGH
a + FbRbG

H
b (Q − FbYG

H
a )
−1FaRaGH

a = 0. (27)
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Multiplying FHb and Ga from the left and the right of (27), respectively, and applying the SMWF, we

obtain

−Y + RbG
H
b

[
Q−1 + Q−1FbY(I − GH

a Q
−1FbY)−1GH

a Q
−1] FaRa = 0. (28)

With the notation in (21), (28) is equivalent to−Y + RbTbaRa+ RbTbbY(I− TabY)
−1TaaRa = 0, or, the

NARE_D

D(Y) ≡ −Y + T̃bbY(I − T̃abY)
−1T̃aa + T̃ba = 0, (29)

where

T̃aa ≡ TaaRa, T̃bb ≡ RbTbb, T̃ba ≡ RbTbaRa, T̃ab ≡ Tab. (30)

In [15], anNARE is first processed by Cayley transform to the form (29) and then doubling is applied.

We shall refer to this approach (without the Cayley transform) as Algorithm 2.

Algorithm 2 (SDA_ls)

Input: A = FaRaG
H
a , B = FbRbG

H
b ,Q ∈ C

n×n, positive tolerance ε;

Output: Yε, Ŷ
H
ε ∈ C

rb×ra , with Q − FbYεG
H
a and Q − FaŶεG

H
b ,

approximating, respectively, the solutions X and X̂ to the

large-scale NME (1) and its dual (3);

Orthogonalize Fa, Fb, Ga, Gb, modify Ra, Rb; (if required)

Compute T̃aa, T̃bb, T̃ab, T̃ba; (as in (30)) tba = ‖T̃ba‖;
Set k = 0, r̃0 = 2ε; T̃aa,0 = T̃aa, T̃bb,0 = T̃bb, T̃ba,0 = T̃ba, T̃ab,0 = T̃ab;

Do until convergence:

If the relative residual r̃k = |rk/(qk + mk + tba)| < ε,

Set Yε = T̃ba,k and Ŷε = T̃ab,k;

Exit

End If

Compute

T̃aa,k+1 = T̃aa,k(Ira − T̃ab,kT̃ba,k)
−1T̃aa,k ,

T̃bb,k+1 = T̃bb,k(Irb − T̃ba,kT̃ab,k)
−1T̃bb,k ,

T̃ab,k+1 = T̃ab,k + T̃aa,kT̃ab,k(Irb − T̃ba,kT̃ab,k)
−1T̃bb,k , and

T̃ba,k+1 = T̃ba,k + T̃bb,kT̃ba,k(Ira − T̃ab,kT̃ba,k)
−1T̃aa,k;

Compute k← k+ 1, rk = ‖D(T̃ba,k)‖, qk = ‖T̃ba,k‖ and
mk = ‖T̃bbT̃ba,k(I − T̃abT̃ba,k)

−1T̃aa‖;
End Do

Notice that the computation of Algorithm 2 can be realized as: computing Tu,v (u, v = a, b) in (21)

requires O(n) computational complexity; computing T̃u,v (u, v = a, b) in (30) requires 2r3a + 2r3b +
2rarb(ra+rb)flops; for each iteration, it requires 22

3
r3a+10r2a rb+8rar

2
b+ 14

3
r3b flops. The detailed count
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is given in Table 2. For the case ra = rb, Algorithm2 requires 8r3a+(30r3a )k flops,where k is the number

of iterations, after the pre-processing in O(n) computational complexity. Algorithms 1 and 2 all need

to compute Tu,v (u, v = a, b) in (21) which required O(n) computational complexity. From Table 1,

we obtain that Algorithm 1 requires 74r3a flops per iteration when ra = rb. When ra ≈ n1/3 � n,

Algorithm 2 will be more efficient than Algorithm 1. However, we guarantee that all iterations in

Algorithm 1 are well-defined, but the same for Algorithm 2 cannot be guaranteed. After each iterative

step, Rqk in Algorithm 1 and T̃ba,k in Algorithm 2 are different but they converge to the same Y . From

our numerical experience, for a given example, the two algorithms converge in the same number of

iterations, possibly the result of Theorem 3.3 below.

Suppose that X = Q − FbYG
H
a and X̂ = Q − FaŶG

H
b are the stabilizing solutions of NME and its dual,

respectively.We shall show below, when all iterations of Algorithm 2 arewell-defined then T̃ba,k → Y

and T̃ab,k → Ŷ as k→∞.

Let

M =
⎡⎣ TaaRa 0

−RbTbaRa Irb

⎤⎦ , L =
⎡⎣ Ira −Tab

0 RbTbb

⎤⎦ ∈ C
(ra+rb)×(ra+rb). (31)

Suppose that (29) has a solution Y ∈ C
rb×ra . Then Y satisfies that

M

⎡⎣ Ira

Y

⎤⎦ = L

⎡⎣ Ira

Y

⎤⎦ S, (32)

where S = (Ira − TabY)
−1TaaRa ∈ C

ra×ra .

Theorem 3.3. Let X = Q − FbYG
H
a and X̂ = Q − FaŶG

H
b be the stabilizing solutions of, respectively, NME

(1) and its dual (3). Then

(i) X−1A and S = (Ira − TabY)
−1TaaRa have the same nonzero eigenvalues.

(ii) X̂−1B and Ŝ = (Irb − TbaŶ)
−1TbbRb have the same nonzero eigenvalues.

Proof. (i) From (16), we have X−1A = (Q − FbYG
H
a )
−1FaRaGH

a . Applying the SMWF to (Q − FbYG
H
a )
−1

yields

X−1A = (Q−1Fa + Q−1FbY(Ira − GH
a Q
−1FbY)−1GH

a Q
−1Fa)RaGH

a . (33)

Let G = [Ga, Ĝa] be a unitary matrix. Multiply GH and G from the left and right of (33), respectively,

we obtain

GHX−1AG =
⎡⎣ Z 0

. 0

⎤⎦ ,
where

Z =
[
Taa + TabY(Ira − TabY)

−1Taa
]
Ra = (Ira − TabY)

−1TaaRa = S.

Hence, X−1A and S = (Ira − TabY)
−1TaaRa have the same nonzero eigenvalues.

The proof of (ii) is similar to the proof of (i). �

As mentioned before, we may require the eigenvalues of X−1A or X̂−1B in some applications, and

Theorem 3.3 provides an efficient route to the nonzero parts of these spectra via the much smaller

matrices S and Ŝ.
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Suppose that X̂ = Q − FaŶG
H
b is a stabilizing solution of (3). Then the kernel Ŷ ∈ C

ra×rb and

Ŝ = (Irb − TbaŶ)
−1TbbRb satisfy⎡⎣ TbbRb 0

−RaTabRb Ira

⎤⎦ ⎡⎣ Irb

Ŷ

⎤⎦ =
⎡⎣ Irb −Tba

0 RaTaa

⎤⎦ ⎡⎣ Irb

Ŷ

⎤⎦ Ŝ.

Let

Ỹ = R−1a ŶR
−1
b , S̃ = RbŜR

−1
b . (34)

It is easily seen that

M

⎡⎣ Ỹ

Irb

⎤⎦ S̃ = L

⎡⎣ Ỹ

Irb

⎤⎦ , (35)

whereM and L are defined in (31). It follows from (32), (34), (35) andTheorem3.3 that thematrix pencil

λL−M has ra eigenvalues inside the unit circle and rb eigenvalues outside the unit circle. Similar to the

theory in [5,15], if the matrix sequences {T̃aa,k}, {T̃bb,k}, {T̃ab,k} and {T̃ba,k} generated by Algorithm 2

are well-defined, then we have

‖T̃ba,k − Y‖ � O(ρ(S)2
k

ρ(̃S)2
k

), ‖T̃ab,k − Ŷ‖ � O(ρ(S)2
k

ρ(̃S)2
k

), (36)

where S = (Ira − TabY)
−1TaaRa and S̃ is defined in (34) with ρ(S) < 1 and ρ(̃S) < 1. For Algorithm 1,

it has been shown in [13] that

‖Rq,k − Y‖ = ‖(Q − FbRq,kG
H
a )− (Q − FbYG

H
a )‖ � O(ρ(X̂−1B)2kρ(X−1A)2k),

‖Rp,k − Ŷ‖ = ‖(Q − FaRp,kG
H
b )− (Q − FaŶG

H
b )‖ � O(ρ(X̂−1B)2kρ(X−1A)2k),

(37)

where {Rq,k} and {Rp,k} are generated by Algorithm 1. From (36), (37) and Theorem 3.3, it is easily seen

that Algorithms 1 and 2 converge in the same number of iterations.

It is intriguing, that we started from an NME associated with the SDA of type 2 and ended up with

an equivalent NARE_D associated with the SDA of type 1. Similar links between NMEs and AREs have

been considered before. In [10], an NME has been transformed to a discrete-time ARE when B = A∗.
The transformation of an NARE into a unilateral quadratic matrix polynomial (UQME), whichwas then

solved by the SDA of type 2, has recently been studied in [4].

3.4. Errors in SDA_ls

It is easy to see from (6) that errors in the iterates will propagate through the SDA. Let δAk , δBk , δPk
and δQk be the errors in Ak , Bk, Pk and Qk , respectively. From (6), with�k ≡ δQk − δPk , and ignoring

higher order terms, we have

δAk+1 ≈ δAkM
−1
k Ak − AkM

−1
k �kM

−1
k Ak + AkM

−1
k δAk,

δBk+1 ≈ δBkM−1k Bk − BkM
−1
k �kM

−1
k Bk + BkM

−1
k δBk,

δPk+1 ≈ δPk + δAkM
−1
k Bk − AkM

−1
k �kM

−1
k Bk + AkM

−1
k δBk,

δQk+1 ≈ δQk − δBkM−1k Ak + BkM
−1
k �kM

−1
k Ak − BkM

−1
k δAk.
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With δk ≡ max{‖δAk‖, ‖δBk‖, ‖δPk‖, ‖δQk‖}, cak ≡ ‖M−1k ‖‖Ak‖ and cbk ≡ ‖M−1k ‖‖Bk‖, we have

δk+1 � δk ·max{2cak(1+ cak), 2cbk(1+ cbk), 1+ (cak + cbk)
2} + O(δ2k ).

From Theorem 2.3, we have the upper bounds of {‖M−1k ‖2 | k = 0, 1, . . .} dependent only on φ0(z),
or from (9), only on A, B and Q . Using the fact that ‖Ak‖ and ‖Bk‖ are also bounded in [13], the errors

δAk , δBk , δPk and δQk then pass into δAk+1, δBk+1, δPk+1 and δQk+1, creating errors of the same order.

Note that ignoring the higher terms simplifies the error equations, without altering the conclusions

of the discussion. The fact that Ak, Bk → 0, or cak, cbk → 0, will contribute towards diminishing the

errors.

4. Computational issues

4.1. Residual and convergence control

For the convergence control in Algorithm1,we should compute residuals and differences of iterates

carefully. Note that it is much easier to compute the smaller analogous quantities in Algorithm 2.

Consider the differences of successive iterates:

dQk ≡ Qk+1 − Qk = Fb(Rqk − Rq,k+1)GH
a ,

dPk ≡ Pk+1 − Pk = Fa(Rp,k+1 − Rpk)G
H
b ,

implying that

‖dQk‖ = ‖Rqk − Rq,k+1‖, ‖dPk‖ = ‖Rpk − Rp,k+1‖
in 2- or F-norm, because the Fs and Gs are unitary by choice. The computations of ‖dQk‖ and ‖dPk‖
can be achieved in about 8rarbr̂ab (see [11, p. 254]) and 4rarb flops for 2-norm and F-norm, respectively,

where r̂ab = max{ra, rb}.
Similarly, we have the residual rk ≡ ‖R(Qk)‖ of the NME, the corresponding relative residual

equals

r̃k ≡ rk

qk + mk

(38)

with

qk ≡ ‖Q − Qk‖ = ‖Q̂k‖, mk ≡ ‖BQ−1k A‖. (39)

With the low-rank forms in (17), we then have

rk = ‖ − FbRqkG
H
a + FbRbG

H
b (Q − FbRqkG

H
a )
−1FaRaGH

a ‖,
qk = ‖FbRqkGH

a ‖,
mk = ‖FbRbGH

b (Q − FbRqkG
H
a )
−1FaRaGH

a ‖.
After applying the SMWF, using the notation in (21), we have the efficient formulae

rk =
∥∥∥−Rqk + Rb

[
Tba + Tbb(Irb − RqkTab)

−1RqkTaa
]
Ra

∥∥∥ ,
qk = ‖Rqk‖,
mk =

∥∥∥Rb [
Tba + Tbb(Irb − RqkTab)

−1RqkTaa
]
Ra

∥∥∥ . (40)
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The computation of relative residual requires about 6r2a rb + 4rar
2
b + 8

3
r3b flops, assuming the Ts are

available, and using F-norm in (40). If we use 2-norm, then an additional 12rarbr̂ab flops are required.

Notice that the computation of relative residual in Algorithm 2 requires 8
3
r3a + 4r2a rb + 2rar

2
b flops.

On the relation between residuals and actual errors in the computed solutions, please consult

[27,29].

4.2. Operation and memory counts

In Algorithms 1 and 2, the dominant calculations of O(n) computational complexity and memory

requirement are in the pre-processing, with help from the structure of Q . We shall assume that cqn

flops are required in the solution of Qv = r or QHv = r, with v, r ∈ C
n.

For the pre-processing, the cost of 2(cq + ra + rb)(ra + rb)n flops is made up of the following:

(1) compute Q−1U and VHQ−1 (U = Fa, Fb and V = Ga, Gb), requiring 2cq(ra + rb)n flops; and

(2) compute VHQ−1U (U = Fa, Fb and V = Ga, Gb), requiring 2(ra + rb)
2n flops.

There is also a memory requirement for (ra+ rb)(ra+ rb+ 2)n variables. In addition, there may be up

to 8(r2a + r2b )n flops required for the orthogonalization of Fu, Gv (u, v = a, b) [11, p. 250], if required
and dependent on the exact structures in A and B.

After the pre-processing of data, it is easily seen that thememory requirement is aboutO((ra+rb)
2)

variables, per iteration in both Algorithms 1 and 2. Thememory requirement of each iteration is much

smaller than (ra + rb)(ra + rb + 2)n (the memory required in the pre-processing). Hence, we do not

need to count the memory requirement for each iteration in Algorithms 1 and 2. In Algorithm 2, we

need to compute T̃u,v (u, v = a, b) as in (30), which requires 2r3a + 2r3b + 2rarb(ra + rb) flops, before
starting the iteration.

The detailed operation counts for the kth iteration in the SDA for large-scale NMEs of Algorithms 1

and 2 are summarized in Tables 1 and 2 below, respectively, with all the kernels formed explicitly. Only

the dominant counts are recorded and the F-norm is applied. When B = A. and Q is Hermitian, the

workload and memory requirement will be halved.

Table 1

Operation counts for the kth iteration in Algorithm 1 (SDA_ls).

Computation Flops

RmkT 4rarb(ra + rb)

(I − RmkT)
−1RmkT

8
3
(ra + rb)

3

Wuv
k (u, v = a, b) 2(ra + rb)

3

Ra,k+1, Rb,k+1 4(r3a + r3b )
Rq,k+1, Rp,k+1 4rarb(ra + rb)

rk , qk , mk 6r2a rb + 4rar
2
b + 8

3
r3b

Total 26
3
r3a + 28r2a rb + 26rar

2
b + 34

3
r3b

Table 2

Operation counts for the kth iteration in Algorithm 2 (SDA_ls).

Computation Flops

T̃ab,kT̃ba,k 2r2a rb
T̃ba,kT̃ab,k 2rar

2
b

T̃aa,k+1, T̃ba,k+1 14
3
r3a + 2rarb(ra + rb)

T̃bb,k+1, T̃ab,k+1 14
3
r3b + 2rarb(ra + rb)

rk , qk , mk
8
3
r3a + 4r2a rb + 2rar

2
b

Total 22
3
r3a + 10r2a rb + 8rar

2
b + 14

3
r3b
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5. Numerical examples

All the numerical experiments were conducted using MATLAB 2010a on an iMac with a 2.97 GHz

Intel i7 processor and 8 Gigabyte RAM. To measure the accuracy of a computed stabilizing solution X

of NME (1), we use the relative and absolute residuals:

RRes ≡ ‖X + BX−1A− Q‖
‖X − Q‖ + ‖BX−1A‖ , ARes ≡ ‖X + BX−1A− Q‖. (41)

Suppose that Rqε = Rqk∗ and Yε = T̃ba,k∗ are the computed kernels by Algorithms 1 and 2, re-

spectively, and k∗ is the required number of iterations for convergence. From (38)–(40), we obtain

that the relative and absolute residuals of the computed stabilizing solution X = Q − FbRq,εG
H
a are

RRes = rk∗/(qk∗ + mk∗) and ARes = rk∗ , respectively, where rk∗ , qk∗ and mk∗ are defined in (40).

From (27)–(30), it is easily seen that the relative and absolute residuals of the computed stabilizing

solution X = Q − FbYεG
H
a are RRes = rk∗/(qk∗ + mk∗ + tab) and ARes = rk∗ , respectively, where rk∗ ,

qk∗ ,mk∗ and tab are given in Algorithm 2. Furthermore, we use “Time 1” and “Time 2” to represent the

execution times for the pre-processing data and SDA, respectively.

Example 1. In order to report the actual errors in the computed solution, we consider an example

with exact solution. Suppose that A = iD and B = iDH where D ∈ C
n×n with ra = rb = 3. We

randomly generate RD ∈ C
ra×ra , Fa, Ga ∈ C

n×ra and set Fa := Fa(F
H
a Fa)

− 1
2 , Ga := Ga(G

H
a Ga)

− 1
2

and RD = RD/(4‖RD‖2). Assume that D = FaRDG
H
a , then A and B have the full-rank decompositions

A = FaRaG
H
a and B = FbRbG

H
b where

Gb = Fa, Fb = Ga, Ra = iRD, Rb = iRHD .

Let H ∈ C
n×ra and set H = H(HHH)− 1

2 . Assume that

Xe = i(In − 0.5HHH) (42)

is the exact solution of NME. Then X−1e = −i(In + HHH) and

Q =iQI = i(In − 0.5HHH + GaR
H
DF

H
a (In + HHH)FaRDG

H
a )

=i(In − 0.5HHH + GaR
H
DRDG

H
a + GaR

H
DF

H
a HHHFaRDG

H
a ).

Since ‖D‖2 = ‖RD‖2 = 1/4 and σmin(QI)� σmin(In − 0.5HHH) = 1/2, it is easily seen that ψ(z) =
zDH + QI + z−1D is positive definite for each z ∈ T and ρ(X−1e A) < 1. That is, Xe in (42) is the

stabilizing solution of X + BX−1A = Q .

We compute the stabilizing solution X with n = 102, 5 × 102, 103 and 5 × 103, respectively, by

using Algorithm 1 with positive tolerance ε = 10−10. The numerical results are shown in Table 3.

Example 2. We first consider an example associated with the computation of Green function in nano

research [13,16].

Table 3

(Example 1) Numbers of iterations, absolute residuals, relative residuals and ‖X − Xe‖2.
n 102 5× 102 103 5× 103

# iterations (k∗) 5 5 5 5

ARes 1.46× 10−17 1.75× 10−17 1.82× 10−17 1.39× 10−17
RRes 6.48× 10−17 7.86× 10−17 8.28× 10−17 6.35× 10−17
‖X − Xe‖2 4.01× 10−17 1.11× 10−16 1.11× 10−16 1.11× 10−16
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Table 4

(Example 2) Numbers of iterations, absolute residuals, relative residuals and execution times in seconds.

n 102 103 104 105 106 107

# iterations (k∗)6 6 6 6 7 6

ARes 1.85× 10−16 2.36× 10−16 2.71× 10−16 2.07× 10−16 2.52× 10−16 1.83× 10−16
RRes 7.16× 10−17 8.14× 10−17 8.92× 10−17 7.16× 10−17 6.96× 10−17 6.60× 10−17

Time 1 1.65× 10−3 3.65× 10−3 1.57× 10−2 1.24× 10−1 9.94× 10−1 133.16

Time 2 5.06× 10−3 7.05× 10−3 7.16× 10−3 7.76× 10−3 8.62× 10−4 7.41× 10−3

Table 5

(Example 2) O(n) Computational Complexity.

n 1× 106 2× 106 3× 106 4× 106 5× 106 6× 106

# iterations (k∗)7 6 6 6 6 6

ARes 2.52× 10−16 1.98× 10−16 2.46× 10−16 1.85× 10−16 2.10× 10−16 1.89× 10−16
RRes 6.96× 10−17 7.19× 10−17 9.86× 10−17 6.76× 10−17 5.95× 10−17 7.26× 10−17

Time 1 0.994 1.89 2.81 3.75 4.70 5.69

Time 2 8.62× 10−4 5.08× 10−3 6.27× 10−3 8.17× 10−3 5.16× 10−4 8.47× 10−4

With ra = 3, and rb = 5 and we randomly generate Ra ∈ C
ra×ra , Rb ∈ C

rb×rb , Fa, Ga ∈ C
n×ra and

Fb, Gb ∈ C
n×rb and set Fu := Fu(F

H
u Fu)

− 1
2 , Gu := Gu(G

H
u Gu)

− 1
2 (u = a, b). Then Fu, Gu (u = a, b) are

unitary. Recall that A and B have the forms

A = FaRaG
H
a , B = FbRbG

H
b .

LetQ be the tridiagonalmatrix of dimension nwith 2 on themain diagonal and−1 on the two adjacent

diagonals. Choose a suitable � ∈ R and set Q := Q + i�I such that A, B and Q satisfy the solvability

condition which is given in Theorem 2.1, i.e.,

ψ(λ) = �I + λD+ λ−1DH > 0, for all λ ∈ T, (43)

where D = (A − BH)/(2i). In the following numerical experiments, we choose � = 5. We compute

the stabilizing solution X with n = 102, 103, 104, 105, 106 and 107, by using Algorithm 1 with the

positive tolerance ε = 10−10. The numerical results are shown in Table 4. Somehow, when the size of

the problem jumped from n = 106 to 107, the memory requirement crossed some critical boundary

concerning virtualmemory on the computer. The amount of execution time jumped 134-folds, instead

of the previous 1.9- to 8-folds when n was increased 10-folds. Anyway, Algorithm 1 was successful in

solving the associated NMEs to machine accuracy (in terms of residuals), for n = 102 to 106, in

reasonably quick execution times. This is consistentwith thepredictedO(n) computational complexity

and memory requirement for the SDA.

To see the O(n) computational complexity more clearly, we construct Table 5 for n = j × 106

(j = 1 : 6), with the corresponding execution time equals approximately to j seconds.

The numerical results from Algorithm 2 is similar.

Example 3.

Next we consider a small example associated with the surface acoustic wave simulation [18,19].

Here we have

A1 = GM
−�
2 F�, A0 = FM

−1
2 F� + GM

−1
2 G� −M1
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Fig. 1. (Example 3) Sparsity patterns inM1 and M2.

Table 6

(Example 3) Numbers of iterations, absolute/relative residuals and execution times in seconds.

Algorithm # iterations ARes RRes Time 1 Time 2

1 18 9.88× 10−13 4.84× 10−14 39.80 27.13

2 18 3.40× 10−13 1.32× 10−14 39.80 7.562

with n = 17192, r = 363, M1 ∈ C
n×n, M2 ∈ C

r×r , and F, G ∈ C
n×r . We would like to solve for

selected eigenvalues of the palindromic quadratic

(λ2A�1 + λA0 + A1)x = 0, x �= 0

via the NME

X + A�1 X−1A1 − A0 = 0.

Note that A0 is sparse-like, in the sense that the associated linear systems can be solved in O(n)
computational complexity with the help of the SMWF. The sparsity patterns in M1 and M2 can be

found in Fig. 1.

In this case, all iterations in Algorithm 2 are well-defined. Hence, the convergence of the SDA in

Algorithm2 is guaranteedbyTheorem3.3 (see thediscussion following the theorem)or the less general

results in [5,8,9]. The numerical results are shown in Table 6. The results from Algorithms 1 and 2 are

very similar, except for a small advantage in the relative residual and execution time for Algorithm 2.

It is well-known that the execution times from MATLAB are not that reliable and should be used as a

rough guide only.

6. Conclusions

For the solution of NMEs for many applications, the problems are naturally large-scale. We have

shown that these problems are equivalent to, or can be solved as, much smaller nonlinear matrix

equations. Apart fromthepre-processingofO(n) computational complexity andmemory requirement,

the resulting structure-preserving doubling algorithm turns out to be very efficient, of O((ra + rb)
3)

computational complexity per iteration. We have presented some numerical results illustrating the

feasibility and efficiency of the algorithms.
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For really large problems, the solution of various linear systems by inexact solvers changes the

nature of the algorithms significantly. This raises additional challenges and research possibilities, and

may be something for the future.

In order to limit the length of the paper, we have not considered the fast train problem [8,17,20,

26], which is similar to the surface acoustic wave simulation in Example 3 with some differences in

structures. In this application, we have B = A� being complex with only the upper right corner of A

being nonzero and Q being complex symmetric, such that ψ(z) > 0 for each z ∈ T (for solvability).

The eigenvalues of λX− A are required. Our techniques here can be applied on the application but we

have ignored the details here.
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