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A secret-sharing scheme is a protocol by which a dealer distributes shares of a secret key
among a set of n participants in such a way that only qualified subsets of participants can
reconstruct the secret key from the shares they received, while unqualified subsets have no
information about the secret key. The collection of all qualified subsets is called the access
structure of this scheme. The information rate (resp. average information rate) of a secret-
sharing scheme is the ratio between the size of the secret key and the maximum size (resp.
average size) of the shares. In a weighted threshold scheme, each participant has his or her
own weight. A subset is qualified if and only if the sum of the weights of participants in the
subset is not less than the given threshold. Morillo et al. [19] considered the schemes for
weighted threshold access structure that can be represented by graphs called k-weighted
graphs. They characterized this kind of access structures and derived a result on the infor-
mation rate. In this paper, we deal with the average information rate of the secret-sharing
schemes for these structures. Two sophisticated constructions are presented, each of which
has its own advantages and both of them perform very well when n/k is large.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

A secret-sharing scheme is a protocol by means of which a dealer distributes a secret key among a set of participants P so
that only qualified subsets of P can reconstruct the secret key whereas unqualified subsets of P have no information about
the secret key. The family of all qualified subsets is called the access structure of the scheme. In practice, an access structure
has to be monotone which means any subset of P containing a qualified subset must also be qualified. The basis C0 of an
access structure C is the set of all minimal subsets in C. The access structure C is called the closure of C0, denoted as
C = Cl(C0). In addition, C is r-homogeneous if the cardinality of each subset in C0 is r.

The first secret-sharing schemes were (t,n)-threshold schemes. These schemes were introduced by Shamir [22] and Blakley
[2] independently in 1979. The basis of the access structure for such a scheme consists of all t-subsets of the set P of par-
ticipants of size n. Related problems have received considerable attention since then. Secret-sharing schemes for various
access structures have been widely studied [2–7,9,12,15,19,20,22,24–26]. Many modified versions of secret-sharing schemes
with additional capacities were proposed [8,11,13,14,16,17,21,23,27]. The reader is referred to [1] for a comprehensive sur-
vey. Secret sharing has been an interesting branch of modern cryptography.
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One of the most important research directions regarding secret-sharing schemes is to establish bounds on the size of the
shares given to the participants and thereby obtain bounds on the storage and communication complexity. There are two
major tools to measure the efficiency of a secret-sharing scheme, namely the information rate and the average information
rate of a scheme. The information rate of a secret-sharing scheme is the ratio between the length (in bits) of the secret
key and the maximum length of the shares given to the participants. The average information rate of a secret-sharing scheme
is the ratio between the length of the secret key and the average length of all shares given to the participants. In a practical
implementation of a secret-sharing scheme, these rates are expected to be as high as possible. Therefore, researchers also
concern about the highest rates a secret-sharing scheme can have for a given access structure. The optimal (average) infor-
mation rate of an access structure is the maximum (average) information rate over all secret-sharing schemes which realize
that access structure.

Graph-based access structures have been widely studied during the past decades. In such an access structure, each vertex
of a graph G represents a participant and each edge represents a minimal qualified subset, that is, P ¼ VðGÞ and C = Cl(E(G)).
The optimal information rate (resp. optimal average information rate) of an access structure based on a graph G is denoted as
q⁄(G) (resp. ~q�ðGÞ). It is easy to see that q�ðGÞ 6 ~q�ðGÞ 6 1 and that q⁄(G) = 1 if and only if ~q�ðGÞ ¼ 1. A secret-sharing scheme
with the information rate equal to one is then called an ideal secret-sharing scheme. An access structure is ideal if there ex-
ists an ideal secret-sharing scheme for it. Brickell and Devenport [6] have completely characterized ideal graph-based access
structures. For general graphs, Stinson [26] showed that q�ðGÞP 2

dþ1 where d is the maximum degree of G and ~q�ðGÞP 2n
2mþn

where n = jV(G)j and m = jE(G)j. Due to the difficulty of the derivation of good results on general graphs, most efforts have
been focused on small graphs [5,12,15] and graphs with better structures [3,5,9,10,18,26].

Morillo et al. [19] considered the weighted threshold secret-sharing schemes. This is the case when every participant is
given a weight depending on his or her position in an organization. A set of participants is in the access structure if and only
if the sum of the weights of all participants in the set is not less than the given threshold. Morillo et al. characterized
weighted threshold access structures based on graphs and studied their optimal information rate. Since these access struc-
tures are more applicable in real-life situation, an in-depth investigation can have a significant contribution to the applica-
tion of secret sharing. We are motivated to construct better secret-sharing schemes for them and have a more detailed
analysis of the average information rate of our schemes.

This paper is organized as follows. Definitions, notations and basic known results are introduced in Section 2. Morillo’s
characterization and constructions of secret-sharing schemes of graph-based weighted threshold access structures are pre-
sented in Section 3. In Section 4, we start with an observation on the structure of the graphs that represent weighted thresh-
old access structures, and then our first construction is introduced. Subsequently, one more sophisticated construction is
presented in Section 5. Finally, we give a comparison of these constructions in Section 6.

2. Preliminaries

Let P be the set of all participants, K be the set of all secret keys, C # 2P be the access structure and S be the set of all
possible shares. Given a secret key d 2 K, a dealer D gives to participant p a share sp,d 2 Sp where Sp is the set of all shares
participant p receives from the dealer corresponding to all keys in K. A distribution rule is a function f : fDg [ P ! K [ S with
f ðDÞ 2 K and f(p) 2 S for all p 2 P. f(D) is the secret key to be distributed and f(p) is the share participant p receives from the
dealer for key f(D). Let F be a collection of distribution rules and F d ¼ ff 2 F : f ðDÞ ¼ dg. We call F a perfect secret-sharing
scheme if the following two conditions are satisfied:

(i) Given any B 2 C and f ; g 2 F , if f(p) = g(p) for all p 2 B, then f(D) = g(D).
(ii) Given any B R C and any function g: B ? S, there exists a nonnegative integer k(g,B) such that, for each d 2 K,
jff 2 F djf ðpÞ ¼ gðpÞ; 8p 2 Bgj ¼ kðg; BÞ:
The first condition guarantees that the shares given to a qualified subset uniquely determine the secret key, while the
second ensures that the shares given to an unqualified subset reveal no information about the secret key. When these
two conditions are made, we say that this secret-sharing scheme F realizes the access structure C. Since all schemes men-
tioned in this paper are perfect, we will simply use ‘‘secret-sharing scheme’’ for ‘‘perfect secret-sharing scheme’’ throughout
this paper. In a secret-sharing scheme F , the information rate, denoted qðFÞ, is defined as
qðFÞ ¼ log2jKj
maxflog2jSpj : p 2 Pg
and the average information rate, denoted ~qðFÞ, is defined as
~qðFÞ ¼ log2jKj
1
jPj
P

p2P log2jSpj
¼ jPjlog2jKjP

p2P log2jSpj
:
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Example 2.1. P ¼ fa; b; cg, C0 = {{a,b}, {b,c}}, K ¼ GFð3Þ. Let F ¼ ffr;djr; d 2 GFð3Þg where fr,d(D) = d, fr,d(a) = fr,d(c) = r and
fr,d(b) = r + d. This scheme can be represented by the following table:

Note that each row in the table represents a distribution rule. One can easily check that this scheme is a secret-sharing
scheme and qðFÞ ¼ ~qðFÞ ¼ 1 since K ¼ Sa ¼ Sb ¼ Sc ¼ GFð3Þ. This scheme is in fact an ideal one.

In this paper, only graph-based access structures are considered. In this case, C = Cl(E(G)) is 2-homogeneous. The graphs
with optimal rate q⁄(G) = 1 or ~q�ðGÞ ¼ 1 have been completely characterized by Brickell and Devenport.

Theorem 2.2 [6]. Suppose that G is a connected graph, then q⁄(G) = 1 if and only if G is a complete multipartite graph.

Example 2.1 shows that q⁄(K1,2) = 1 since the access structure of the scheme is Cl(K1,2). For graphs that are not complete
multipartite graphs, Blundo et al. [5] have shown the following fact.

Theorem 2.3 [5]. Suppose that G is a connected graph that is not a complete multipartite graph, then q�ðGÞ 6 2
3 and ~q�ðGÞ 6 n

nþ1
where n = jV(G)j.

When dealing with information rates, the following lemma is especially helpful.

Lemma 2.4 [5]. If G0 is an induced subgraph of graph G, then q⁄(G) 6 q⁄(G0).

Stinson [26] proposed a very useful decomposition construction which enables us to build up secret-sharing schemes for
larger graphs using smaller complete multipartite graph through complete multipartite coverings. A complete multipartite
covering of a graph G is a collection of complete multipartite subgraphs {G1,G2, . . . ,Gl} of G such that each edge of G belongs
to at least one subgraph Gi.

Theorem 2.5 [26]. Suppose that {G1,G2, . . . ,Gl} is a complete multipartite covering of a graph G with V(G) = {1,2, . . . ,n}. Let
Ri = j{jji 2 V(G j)}j and R = max16i6nRi. Then there exists a secret-sharing scheme for access structure Cl(E(G)) with information rate
q and average information rate ~q where
q ¼ 1
R

and ~q ¼ nPn
i¼1Ri

¼ nPl
i¼1jVðGiÞj

:

According to the theorem, in order to construct a secret-sharing scheme with higher information rate (resp. average infor-
mation rate), we need a complete multipartite covering with less maximum number of occurrence of a vertex (resp. less total
number of occurrences of the vertices) in the covering.
3. Weighted threshold secret-sharing scheme

Given a set of n participants P, a threshold t > 0 and a weight function w : P ! R with w(p) P 0 for all p 2 P, the
(t,n,w)-weighted threshold access structure consists of all subset A #P such that wðAÞ ¼

P
p2AwðpÞP t. Morillo et al. [19]

showed that any weighted access structure determined by a non-integer-valued weight function and a non-integer thresh-
old can also be determined by an integer-valued weight function and an integer threshold. So, considering integer-valued
weight functions is sufficient in our problem. In the remainder of the paper, we assume that a weight function w is given.
An access structure C = Cl(C0) is said to be connected if for any participant p 2 P, there exists A 2 C0 such that p 2 A. Through-
out this paper, we consider 2-homogeneous connected weighted threshold access structure and exclude the case where any
participant has zero-weight. This kind of access structure can be represented by a graph G. In this graph, there is a set C of
vertices, each of which is adjacent to all other vertices in G. The weight of each vertex in C is higher than the weight of any
vertex not in C. If C – V(G), removing C from the graph G produces a nonempty set A of isolated vertices, each of which has
lower weight than any other vertex not in A. If C [ A – V(G), the subgraph G0 induced by V(G)n(C [ A) represents a 2-homo-
geneous connected weighted threshold access structure C0 ¼ fB #P n ðC [ AÞjwðBÞP tg. Repeating these processes, the
structure of G can be clearly characterized in the following theorem.
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Theorem 3.1 [19]. Let G be a graph that represents the 2-homogeneous connected weighted threshold access structure C. Then,
there exists a unique partition of the vertices of G,
P ¼ C1 [ A1 [ C2 [ A2 [ � � � [ Ck [ Ak;
where Ci – ; for i = 1, . . . , k, Ai – ; if i = 1, . . . , k � 1 and either Ak = ; and jCkjP 2 or jAkjP 2, such that the set of edges of G is
C0 ¼ fu;vgju;v 2
[k
i¼1

Ci;u – v
( )

[ ffv; pgjv 2 Ci; p 2 Aj; 1 6 i 6 j 6 kg:
They also showed that any graph with a partition described in Theorem 3.1 represents a 2-homogeneous connected
weighted threshold access structure. A such graph is then called k-weighted where k is the parameter used in Theorem
3.1. Since the structure of a k-weighted graph is completely determined by the values jAij’s and jCij’s, i = 1, 2, . . . , k, we denote

the k-weighted graph by W(jA1j, . . . , jAkj, jC1j, . . . , jCkj). Observe that the subgraph induced by
Sl

i¼1ðAji [ Cji Þ where 1 6 j1 < -
j2 < � � � < jl 6 k is an l-weighted graph WðjAj1 j; . . . ; jAjl j; jCj1 j; . . . ; jCjl jÞ. Morillo et al. gave a complete multipartite decomposition
for (2q � 1)-weighted graph in which the maximum number of occurrence R of a vertex is not greater than q. Then, by Lemma
2.4, a lower bound on optimal information rate for k-weighted graph for all k follows.

Theorem 3.2 [19]. Let C ¼ fA #PjwðAÞP tg be an access structure that is represented by a k-weighted graph G. Then
q�ðGÞP 1

dlog2ðkþ1Þe.

For the average information rate, we need to find complete multipartite coverings for k-weighted graphs for each value of
k. For convenience, we make a slight modification to the notation given in Theorem 3.1. In the case where Ak = ; and jCkjP 2,
we move one (arbitrarily chosen) vertex from Ck to Ak. So, in our model, none of Ai’s and Ci’s are empty. Now, we are ready for
our constructions.

4. Construction (I)

4.1. An observation

We observe that any k-weighted graph can be obtained by alternately applying two graph operations starting with a sin-
gle vertex. Let us introduce these operations first. By ‘‘splitting vertex v of a graph G into m vertices v1, . . . , vm’’, denoted S(v;

{v1, . . . ,vm}), we obtain a graph GSðv ;fv1 ;...;vmgÞ ¼ G� where V(G⁄) = (V(G) � {v}) [ {v1,v2, . . . ,vm} and E(G⁄) = E(G � v) [
{viujvu 2 E(G) and i = 1,2, . . . ,m}. If we further add the set of edges {vivjj 1 6 i < j 6m} to E(G⁄), then we obtain a graph
GEðv ;fv1 ;...;vmgÞ. This graph is said to be obtained by ‘‘expanding vertex v into m vertices v1, . . . , vm from the original graph G
and this operation is denoted by E(v; {v1, . . . , vm}). For convenience, we use h V1,V2iG to denote the set of edges {uvju 2 V1,
v 2 V2 and uv 2 E(G)} for any two disjoint subsets of vertices V1 and V2 in G.

Given a k-weighted graph G = W(a1,a2, . . . ,ak,c1,c2, . . . ,ck), we let Ai ¼ ui
1; u

i
2; . . . ;ui

ai

n o
and Ci ¼ v i

1;v i
2; . . . ;v i

ci

n o
,

i = 1,2, . . . ,k. In what follows, we propose an algorithm showing how the given graph is constructed from a single vertex
by splitting and expanding.

Algorithm 1

G0 {u0}.
For i 1 to k do
Gi  GEðu0 ;Ci[fu0gÞ
i�1

Gi  GSðu0 ;A�i Þ
i where A�i ¼

Ai [ fu0g; if 1 6 i < k;

Ak; if i ¼ k:

�

Output the k-weighted graph Gk.
Theorem 4.1. The proposed algorithm produces the given k-weight graph G from a single vertex.
Proof. The edges in hAi, Cji, j 6 i, are produced by the operation S u0; A�i
� �

and edges in h Ci,Cji, j < i, and within the part Ci are all
produced by E u0;C

�
i

� �
. So, G is a subgraph of Gk. Next, the number of edges produced in this algorithm is
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Xk�1

i¼1

ci þ 1
2

� �
þ ci

Xi�1

j¼1

cj þ ai

Xi

j¼1

cj

 !
þ

ck þ 1
2

� �
þ ck

Xk�1

j¼1

cj þ ðak � 1Þ
Xk

j¼1

cj ¼
Xk

i¼1

ci þ 1
2

� �
þ ci

Xi�1

j¼1

cj þ ai

Xi

j¼1

cj

 !

�
Xk

j¼1

cj ¼
Xk

j¼1

ci

2

� �
þ ci

Xi�1

j¼1

cj þ ai

Xi

j¼1

cj

 !
which is exactly the size of the given G. Hence, the proof is completed. h
4.2. Construction (I)

Before we can literally describe our first construction, there are some more notations needed to be introduced. For any l
disjoint sets of vertices V1, V2, . . . , Vl, we use K(V1,V2, . . . ,Vl) to denote the complete multipartite graph with partite sets V1, V2,

. . . and Vl. Let Gl be the l-weighted graph with vertex set
Sl

i¼1Ai

� �
[
Sl

i¼1Ci

� �
, l 6 k. Define Bl, l 6 k, to be the graph obtained

from Gl by removing all edges connecting vertices in
Sl

i¼1Ci. Then Bl is a bipartite graph with partite sets
Sl

i¼1Ai and
Sl

i¼1Ci.

Next, we use Ml1 ;l2 to denote the complete multipartite graph K C1;C2; . . . ; Cl1�1; v l1
1

n o
; v l1

2

n o
; . . . ; v l1

cl1

n o
;

�
Sl2

j¼l1þ1Cj

� �
[
Sl2

j¼l1
Aj

� �
Þ, 1 6 l1 6 l2 6 k. In the following lemma, Hj stands for the complete multipartite graph K(C1,

C2, . . . , Cj�1, Aj�1, Aj), 2 6 j 6 k.

Lemma 4.2. PB
l is a complete multipartite covering of Bl where
PB
l ¼

H2i;KðA2i;C2iÞji ¼ 1;2; . . . ; l
2

	 

; if l is even;

KðA1;C1Þ;H2iþ1;KðA2iþ1;C2iþ1Þji ¼ 1;2; . . . ; l�1
2

	 

; if l is odd:

(

Proof. When l is even, the edges in hA2i;CjiBl
with j < 2i and in hA2i�1;CjiBl

with j 6 2i � 1 appear in the subgraph H2i, for
i ¼ 1;2; . . . ; l

2, while the edges in hA2i;C2iiBl
appear in the subgraph K(A2i,C2i). The edges of Bl are then all used up. For odd

l, the argument is similar. h

With these notations in mind, we are able to give our complete multipartite covering Pk of Gk. Let Pk be obtained recur-

sively by letting P1 = {G1}, P2 ¼ K v1
1

	 

; v1

2

	 

; . . . ; v1

c1

n o
;A1

� �
;M2;2

n o
, P3 ¼ K v1

1

	 

; v1

2

	 

; . . . ; v1

c1

n o
;A1

� �
;

n
K v3

1

	 

; . . . ; v3

c3

n o
;A3

� �
;M2;3g and, for k P 4;Pk ¼ PB

bkþ1
2 c
[ Mbkþ1

2 cþ1;k

n o
[Pbk2c�1 where Pbk2c�1 is the complete multipartite cov-

ering of the bk
2c � 1

� �
-weighted subgraph W abkþ1

2 cþ2; abkþ1
2 cþ3; . . . ; ak; cbkþ1

2 cþ2; cbkþ1
2 cþ3; . . . ; ck

� �
. It is obvious that the edges of Gk

which are not in Bbkþ1
2 c

and W abkþ1
2 cþ2; . . . ; ak; cbkþ1

2 cþ2; . . . ; ck

� �
all lie in Mbkþ1

2 cþ1;k. These three subgraphs literally make up the

k-weighted graph Gk. We have the following lemma.

Lemma 4.3. The collection Pk stated above is a complete multipartite covering of Gk.
Fig. 4.1. The binary tree for Construction (I).
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Our next goal is to find the sum mk of the orders of all subgraphs in Pk. Due to the complexity of the enumeration, we
consider the reduced forms first. We call G0

k ¼Wð1; . . . ;1;1; . . . ;1Þ the reduced form of a general k-weighted graph W(a1, -

. . . ,ak, c1, . . . ,ck). We also let B0
l ;M

0
l1 ;l2

and H0
j be the graphs defined in the same ways as Bl, Ml1 ;l2 and Hj respectively, except

that ai’s and cj’s involved are all set to be one. Then G0
k and B0

k have the complete multipartite covering P0
k and PB0

k reduced

from Pk and PB
k respectively. Note here that G0

k has 2k vertices. By applying suitable splitting and expanding operations men-

tioned in Section 4.1 to the reduced form G0
k accordingly, one can recover the general k-weighted graph W(a1, . . . ,ak,c1, . . . ,ck).

For the evaluation of the sum m0
k of the orders of all subgraphs in P0

k , we introduce a specially designed binary tree.
Note that we have decomposed G0

k into B0
bkþ1

2 c
, M0

bkþ1
2 cþ1;k and G0

bk2c�1. Since bkþ1
2 c equals k

2

� �
� 1

� �
þ 1 or k

2

� �
� 1

� �
þ 2;G0

j can
either go with B0

jþ1 and M0
jþ2;2jþ2 to compose G0

2jþ2 or go with B0
jþ2 and M0

jþ3;2jþ3 to compose G0
2jþ3. Recursively repeating this

process, all G0
k ’s can be composed from some B0

l ’s, M0
l1 ;k

’s and just G1, G2 and G3. We illustrate this relation by means of a bin-
ary tree in Fig. 4.1. In this tree, each path from the root represents the conformation of a k-weighted graph of reduced form in
our covering. For example, the leftmost path from the root Gj to G4j+6 represents that G0

2jþ2 is composed of G0
j ;B

0
jþ1 and M0

jþ2;2jþ2

and then G0
4jþ6 is composed of G0

2jþ2;B
0
2jþ3 and M0

2jþ4;4jþ6. Hence the path shows how G0
4jþ6 is built up. The 2x paths of length x

from the root give the conformations of the 2x k-weighted graphs where k ranges from (j + 2)2x � 2 to (j + 3)2x � 3,j = 1,2,3.

Theorem 4.4. Let C ¼ fA #PjwðAÞP tg be an access structure represented by a k-weighted graph G0
k of reduced form, k1 =

(j + 2)2x � 2 and k2 = (j + 3)2x � 3, x P 1, j = 1, 2, 3. If k1 6 k 6 k2, then there exists a secret-sharing scheme for the access structure
C with average information rate ~q with
24k2

k2
2 þ 60k2 � 84log2

k2þ2
jþ3

� �
� 37� dðjÞ2

6 ~q 6
24k1

k2
1 þ 58k1 � 60log2

k1þ2
jþ2

� �
� 32� dðjÞ1
where 8

dðjÞ1 ; d

ðjÞ
2

� �
¼

ð0;0Þ; if j ¼ 1;

ð28;24Þ; if j ¼ 2;

ð40;44Þ; if j ¼ 3:

><>:

Proof. Let m0

k and mB0

l be the sum of orders of all subgraphs in P0
k and PB0

l respectively and mM0

l1 ;l2
be the order of M0

l1 ;l2
, then

mM0

l1 ;l2
¼ 2l2 � l1 þ 1. In PB0

l ; jVðKðCi;AiÞÞj ¼ jVðK2Þj ¼ 2 and jVðH0
i Þj ¼ iþ 1 for each i. So when l is even, mB0

l ¼
P l

2
i¼1 V H0

2i

� �


 


þ
jVðKðC2i;A2iÞj ¼

P l
2
i¼1ðð2iþ 1Þ þ 2Þ ¼ 1

4 ðl
2 þ 8lÞ. When l is odd, mB0

l ¼
Pl�1

2
i¼1jV H0

2iþ1

� �
j þ
Pl�1

2
i¼0jVðKðC2iþ1;A2iþ1ÞÞj ¼Pl�1

2
i¼1ð2iþ 2Þ þ

Pl�1
2

i¼02 ¼ 1
4 ðl

2 þ 8l� 1Þ.

(1) First, we consider G0
k1

whose composition process is shown by the leftmost path of length x from the root. Adding up
the orders of all subgraphs involved, we have
m0
k1
¼ m0

j þ
Xx

i¼1

mB0

ðjþ2Þ2i�1�1
þ
Xx

i¼1

mM0

ðjþ2Þ2i�1 ;ðjþ2Þ2i�2

¼

m0
j þ 1

4 ½ðjþ 1Þ2 þ 8ðjþ 1Þ�

þ
Xx

i¼2

1
4 ½ððjþ 2Þ2i�1 � 1Þ2 þ 8ððjþ 2Þ2i�1 � 1Þ � 1�

þ
Xx

i¼1

½2ððjþ 2Þ2i � 2Þ � ðjþ 2Þ2i�1 þ 1�; if j ¼ 1;3;

m0
j þ

Xx

i¼1

1
4 ½ððjþ 2Þ2i�1 � 1Þ2 þ 8ððjþ 2Þ2i�1 � 1Þ � 1�

þ
Xx

i¼1

½2ððjþ 2Þ2i � 2Þ � ðjþ 2Þ2i�1 þ 1�; if j ¼ 2:

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
¼ m0

j þ 1
12 ððjþ 2Þ2xÞ2 þ 9

2 ðjþ 2Þ2x � 5x� eðjÞ1 ¼ 1
12 ðk1 þ 2Þ2 þ 9

2 ðk1 þ 2Þ � 5log2
k1þ2
jþ2

� �
� ~eðjÞ1

¼ 1
12 k2

1 þ 58k1 � 60log2
k1þ2
jþ2

� �
� 32� dðjÞ1

h i
;

where eðjÞ1 ¼
j2þ58jþ109

12 ; if j ¼ 1;3;
j2þ58jþ112

12 ; if j ¼ 2:

(
and ~eð1Þ1 ; ~eð2Þ1 ; ~eð3Þ1

� �
¼ 12; 43

3 ;
46
3

� �
.

In the second last step, we combine the value of eðjÞ1 with m0
1 ¼ 2, m0

2 ¼ 5 and m0
3 ¼ 9 to calculate the value of ~eðjÞ1 . With this

covering of G0
k1

, we are able to construct a secret-sharing scheme with average information rate ~q1 ¼ 2k1
m0

k1

.
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(2) We consider G0
k2

whose composition process is shown by the rightmost path of length x from the root. Similar to (1),
we have
m0
k2
¼ m0

j þ
Xx

i¼1

mB0

ðjþ3Þ2i�1�1
þ
Xx

i¼1

mM0

ðjþ3Þ2i�1 ;ðjþ3Þ2i�3

¼

m0
j þ

Xx

i¼1

1
4 ½ððjþ 3Þ2i�1 � 1Þ2 þ 8ððjþ 3Þ2i�1 � 1Þ � 1�

þ
Xx

i¼1

2ððjþ 3Þ2i � 3Þ � ðjþ 3Þ2i�1 þ 1
h i

; if j ¼ 1;3;

m0
j þ 1

4 ½ðjþ 2Þ2 þ 8ðjþ 2Þ�

þ
Xx

i¼2

1
4 ððjþ 3Þ2i�1 � 1Þ2 þ 8ððjþ 3Þ2i�1 � 1Þ � 1
h i

þ
Xx

i¼1

2ððjþ 3Þ2i � 3Þ � ðjþ 3Þ2i�1 þ 1
h i

; if j ¼ 2:

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
¼ m0

j þ 1
12 ððjþ 3Þ2xÞ2 þ 9

2 ðjþ 3Þ2x � 7x� eðjÞ2 ¼ 1
12 k2

2 þ 60k2 � 84log2
k2þ3
jþ3

� �
� 37� dðjÞ2

� �
;

where eðjÞ2 ¼
j2þ60jþ171

12 ; j ¼ 1;3;
j2þ60jþ168

12 ; j ¼ 2:

(
.

With this covering of G0
k2

, we have constructed a secret-sharing scheme with average information rate ~q2 ¼ 2k0
m0

k2

. The result
then follows.

As a matter of fact, each m0
k can be evaluated in a similar way. The resulting expression only slightly differs from the ones

for m0
k1

and m0
k2

at some nonleading coefficients.
After dealing with the reduced forms we shall turn back to the model of general forms. We start with introducing nota-

tions. Let Zl ¼ ð1 1 2 1 2 1 2 1 � � �2 1Þ;yl ¼ l
2þ 1
� �

l
2

l
2

l
2� 1
� �

l
2� 1
� �

� � �2 2 1
� �

and 1l ¼ ð1 1 � � �1Þ be three l-dimensional
vectors. For l1 6 l2, let aðl1; l2Þ ¼ ðal1 al1þ1al1þ2 � � � al2 Þ and cðl1; l2Þ ¼ ðcl1 cl1þ1cl1þ2 � � � cl2 Þ where ai = jAij and ci = jCij, i = l1,
l1 + 1, . . . , l2.

Lemma 4.5. For k = 3 � 2x � 2 and x P 1,
mk ¼
Xx�1

i¼1

Zkþ2
2i
þ ði� 1Þ1kþ2

2i

� �
� a ðkþ 2Þð2i�1 � 1Þ

2i�1 þ 1;
ðkþ 2Þð2i � 1Þ

2i

 !
þ xak�3 þ ðxþ 1Þak�2 þ xak�1

þ ðxþ 1Þak þ
Xx�1

i¼1

ykþ2
2i
þ ði� 1Þ1kþ2

2i

� �
� c ðkþ 2Þð2i�1 � 1Þ

2i�1 þ 1;
ðkþ 2Þð2i � 1Þ

2i

 !
þ ðxþ 1Þck�3 þ ðxþ 1Þck�2 þ xck�1 þ ðxþ 1Þck:
Proof. Recall that the expression for mk depends on all ai’s and ci’s, each of whose coefficients represents the occurrence of
the vertices of that part in the covering Pk.

(1) First, let us examine the occurrence of vertices of Bl, whose partite sets are
Sl

i¼1Ai and
Sl

i¼1Ci, in its covering PB
l . For odd

l, by Lemma 4.2, one can easily see that the vertices in A1 have occurrence 1 (only in K(A1, C1)), the vertices in A2j,
j ¼ 1; . . . ; l�1

2 , also have occurrence 1 (only in H2j+1) and the vertices in A2j+1, j ¼ 1; . . . ; l�1
2 , have occurrence 2 (in H2j+1

and K(A2j+1,C2j+1)). Hence, the occurrences of the vertices in A1, A2, . . . , Al are exactly the first l coordinates in Zlþ1. Sim-
ilarly, the vertices in C1 have occurrence lþ1

2 (in K(A1,C1) and H2i+1’s, i ¼ 1; . . . ; l�1
2 ), the vertices in C2j, j ¼ 1; . . . ; l�1

2 , have
occurrence l�1

2 � jþ 1 (in H2i+1’s, i P j) and the vertices in C2j+1, j ¼ 1; . . . ; l�1
2 , have occurrence l�1

2 � jþ 1 (in H2i+1’s,
i P j + 1 and K(A2j+1, C2j+1)). Hence, the occurrences of the vertices in C1, C2, . . . , Cl are exactly the first l coordinates
in ylþ1 � 1lþ1.

(2) Let us consider the value of mk now. We prove the result by induction on x. When x = 1, m4 = a1 + 2a2 + a3 + 2-
4 = a1 + 2a2 + a3 + 2a4 + 2c1 + 2c2 + c3 + 2c4 by direct counting the occurrences of vertices in P4. So, the result holds
when x = 1. Next, for k = 3 � 2x+1 � 2,Gk = W(a1, . . . , ak, c1, . . . , ck) is composed of B3�2x�1, M3�2x ;3�2xþ1�2 and G3�2x�2. For
convenience, denote M3�2x ;3�2xþ1�2 by M for now. Observe that the vertices in Ai, 1 6 i 6 3 � 2x � 1 have the same

occurrences in Pk as they do in the covering PB
3�2x�1 because they do not lie in M and G3�2x�2, while the vertices

in Ci, 1 6 i 6 3 � 2x � 1, gain one more occurrences in Pk than they do in PB
3�2x�1 because they also occur in M.
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Notice that the vertices in A3�2x and C3�2x only occur once in Pk. Besides, the vertices in Ai’s and Ci’s, i = 3 � 2x + 1, -
. . . ,k, also gain one more occurrence in Pk than they do in the covering P3�2x�2 of G3�2x�2. Therefore, by (1) and
the induction hypothesis,
m3�2xþ1�2

¼ Z3�2x � að1;3 � 2xÞ þ ðy3�2x � 13�2x Þ � cð1;3 � 2xÞ þ 13�2x � cð1;3 � 2xÞ

þ
Xx�1

i¼1

Z3�2x

2i
þ ði� 1Þ13�2x

2i
þ 13�2x

2i

� �
� a 3 � 2xð2i�1 � 1Þ

2i�1 þ 1þ 3 � 2x;
3 � 2xð2i � 1Þ

2i
þ 3 � 2x

 !
þ ðxþ 1Þa3�2x�5þ3�2x þ ðxþ 2Þa3�2x�4þ3�2x þ ðxþ 1Þa3�2x�3þ3�2x þ ðxþ 2Þa3�2x�2þ3�2x

þ
Xx�1

i¼1

y3�2x

2i
þ ði� 1Þ13�2x

2i
þ 13�2x

2i

� �
� c 3 � 2xð2i�1 � 1Þ

2i�1 þ 1þ 3 � 2x;
3 � 2xð2i � 1Þ

2i
þ 3 � 2x

 !
þ ðxþ 2Þc3�2x�5þ3�2x þ ðxþ 2Þc3�2x�4þ3�2x þ ðxþ 1Þc3�2x�3þ3�2x þ ðxþ 2Þc3�2x�2þ3�2x

¼ Z3�2xþ1
2
� a 1;

3 � 2xþ1

2

 !
þ y3�2xþ1

2
� c 1;

3 � 2xþ1

2

 !

þ
Xx�1

i¼1

Z3�2xþ1

2iþ1
þ ððiþ 1Þ � 1Þ13�2xþ1

2iþ1

� �
� a 3 � 2xþ1ð2i � 1Þ

2i þ 1;
3 � 2xþ1ð2iþ1 � 1Þ

2iþ1

 !
þ ðxþ 1Það3�2xþ1�2Þ�3 þ ðxþ 2Það3�2xþ1�2Þ�2 þ ðxþ 1Það3�2xþ1�2Þ1 þ ðxþ 2Það3�2xþ1�2Þ

þ
Xx�1

i¼1

y3�2xþ1

2iþ1
þ ððiþ 1Þ � 1Þ13�2xþ1

2iþ1

� �
� c 3 � 2xþ1ð2i � 1Þ

2i
þ 1;

3 � 2xþ1ð2iþ1 � 1Þ
2iþ1

 !
þ ðxþ 2Þcð3�2xþ1�2Þ�3 þ ðxþ 2Þcð3�2xþ1�2Þ�2 þ ðxþ 1Þcð3�2xþ1�2Þ1 þ ðxþ 2Þcð3�2xþ1�2Þ

¼
Xx

i¼1

Zkþ2
2i
þ ði� 1Þ1kþ2

2i

� �
� a ðkþ 2Þð2i�1 � 1Þ

2i�1 þ 1;
ðkþ 2Þð2i � 1Þ

2i

 !
þ ðxþ 1Þak�3 þ ðxþ 2Þak�2 þ ðxþ 1Þak�1 þ ðxþ 2Þak

þ
Xx

i¼1

ykþ2
2i
þ ði� 1Þ1kþ2

2i

� �
� c ðkþ 2Þð2i�1 � 1Þ

2i�1 þ 1;
ðkþ 2Þð2i � 1Þ

2i

 !
þ ðxþ 2Þck�3 þ ðxþ 2Þck�2 þ ðxþ 1Þck�1 þ ðxþ 2Þck: �
This lemma presents a sophisticated expression for mk in terms of ai’s and ci’s. In what follows, we give the conditions on

the values of ai’s and ci’s under which mk attains its minimum value when n ¼
Pk

i¼1ðai þ ciÞ is fixed. Thereby, the highest pos-
sible average information rate via this covering is obtained.

Theorem 4.6. Let C be a weighted threshold access structure represented by a k-weighted graph G = W(a1, . . . , ak, c1, . . . , ck) of
order n and k = 3 � 2x � 2. If ci = 1 for all i – k

2þ 1 and ai = 1 for all i R T ¼ 1;2;4;6; . . . ; k
2þ 1

	 

. Then
~q�ðGÞP 12n

12nþ k2 þ 34k� 60log2ðkþ2
3 Þ � 32

:

Proof. Observe that only ck
2þ1 and ai, i 2 T, have coefficient equal to one in the expression for mk in Lemma 4.5. So mk is mini-

mized if ci = 1 for all i – k
2þ 1 and ai = 1 for all i R T since this expression for mk is linear. This case is similar to the reduced form.

So, we make an adjustment in the expression for m0
k1

(with j = 1) in the proof of Theorem 4.4 to derive what we need here. The

sum mk of orders of subgraphs in this covering is m0
k1
þ
P

i2T ai þ ck
2þ1 � ðjTj þ 1Þ. Note that n ¼

Pk
i¼1ðai þ ciÞ ¼P

i2T ai þ ck
2þ1 þ

P
iRT ai þ

P
i–k

2þ1ci ¼
P

i2T ai þ ck
2þ1 þ ðk� jTjÞ þ ðk� 1Þ ¼

P
i2T ai þ ck

2þ1 þ 2k� ðjTj þ 1Þ. Therefore, in this case

mk ¼ 1
12 k2 þ 58k� 60log2

kþ2
3

� �
� 32

h i
þ n� 2k ¼ 1

12 12nþ k2 þ 34k� 60log2
kþ2

3

� �
� 32

h i
. The average information rate of the

secret-sharing scheme constructed with this covering attains its maximum value n
mk

and the proof is completed. h

Our result appears to be quite good if k is relatively small compared with n. In fact, as k fixed, the rate given in Theorem
4.6 asymptotically approaches ‘‘1’’ which is the optimal value for the rate.

5. Construction (II)

Our second construction is similar to the first, while it performs better than Construction I when k P 31. The major dif-

ference is that Bl is replaced with Gl in the covering. With the notations used before, we define our second covering ePk of



Fig. 5.1. The binary tree for Construction (II).
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Gk = W(a1, . . . , ak, c1, . . . , ck) recursively as follows. ePi ¼ Pi; i ¼ 1;2;3. For k P 4, ePk ¼ ePbk�1
2 c
[ Mbk�1

2 cþ1;k

n o
[ ePbk2c

where theePbk2c
is the complete multipartite covering of the bk

2c-weighted subgraph

W ¼W abk�1
2 cþ2; abk�1

2 cþ3; . . . ; ak; cbk�1
2 cþ2; cbk�1

2 cþ3; . . . ; ck

� �
. It is obvious that the edges not in the subgraphs

W a1; . . . ; abk�1
2 c
; c1; . . . ; cbk�1

2 c

� �
and W all lie in Mbk�1

2 cþ1;k. So, ePk is a complete multipartite covering of Gk.

Lemma 5.1. The collection ePk is a complete multipartite covering of Gk.

In order to evaluate the sum ~mk of the orders of all subgraphs in ePk, we consider the reduced form first. Let eP0
k and ~m0

k be

the reduced version of ePk and ~mk respectively. In the covering eP0
k , we decompose G0

k into G0
bk�1

2 c
, M0

bk�1
2 cþ1;k and G0

bk2c
. Since bk�1

2 c

equals bk
2c � 1 or bk

2c;G
0
j can either go with G0

j�1 and M0
j;2j to compose G0

2j or go with G0
j and M0

jþ1;2jþ1 to compose G0
2jþ1. Recur-

sively, all G0
k ’s can be obtained by using this process repeatly from G1, G2, G3 and some M0

i;k’s. As we have done in Section 4,
this relation is depicted by a binary tree in Fig. 5.1. The 2x paths of length x from the root give the conformations of 2x k-
weight graphs where 2x+1

6 k 6 3 � 2x � 1 or 3 � 2x
6 k 6 2x+2 � 1.

Theorem 5.2. Let C be an weighted threshold access structure represented by a k-weighted graph G0
k of reduced form, k1 = j � 2x

and k2 = (j + 1) � 2x � 1, x P 0, j = 2, 3. If k1 6 k 6 k2, then there exists a secret-sharing scheme for the access structure C with
average information rate ~q with
2k2

3
2 ðk2 þ 1Þlog2ðk2 þ 1Þ þ dðjÞðk2 þ 1Þ þ 1

6 ~q 6
2k1

3
2 k1 þ 2
� �

log2k1 þ dðjÞ1 k1 þ dðjÞ0
where
dðjÞ; dðjÞ1 ; d
ðjÞ
0

� �
¼

4
3� 3

2 log23;�1;2
� �

; if j ¼ 2;

�1; 4
3� 3

2 log23;5� 2log23
� �

; if j ¼ 3:

(

Proof. Recall that M0
l1 ;l2

has order mM0

l1 ;l2
¼ 2l2 � l1 þ 1, ~m0

i ¼ m0
i , i ¼ 1; 2; 3. m0

1 ¼ 2, m0
2 ¼ 5, and m0

3 ¼ 9.

(1) First, we consider G0
k2

. For each l = 2i(j + 1) � 1, Gl is composed of two Gl�1
2

’s and one Mlþ1
2 ;l

. So ~m0
k can be evaluated recur-

sively as follows.
~m0
k2
¼ 2 ~m0

2x�1ðjþ1Þ�1
þ 3 � 2x�1ðjþ 1Þ � 1 ¼ 2xm0

j þ
Xx

i¼1

ð2i�1ð3 � 2x�iðjþ 1Þ � 1ÞÞ ¼ 2x �m0
j þ 3x � 2x�1ðjþ 1Þ � ð2x � 1Þ

¼ 3 � k2 þ 1
2

log2
k2 þ 1
jþ 1

� �
þ

m0
j � 1

jþ 1
� ðk2 þ 1Þ þ 1 ¼ 3

2
ðk2 þ 1Þlog2ðk2 þ 1Þ þ

m0
j � 1

jþ 1
� 3

2
log2ðjþ 1Þ

 !
ðk2 þ 1Þ þ 1

¼ 3
2
ðk2 þ 1Þlog2ðk2 þ 1Þ þ dðjÞðk2 þ 1Þ þ 1:
Hence, the secret-sharing scheme constructed with eP0
k2

has average information rate ~q2 ¼ 2k2
~m0

k2

.
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(2) The composition process of G0
k1

is shown on the leftmost path of length x from the root. Adding up the orders of all

subgraphs involved, we have ~m0
k1
¼ ~m0

j þ ~m0
j�1 þ

Px�1
i¼1 ~m0

2i �j�1
þ
Px

i¼1mM0

2i�1 j;2i j
. Making use of the equation

~m0
2xðjþ1Þ�1 ¼ 2x �m0

j þ 3x � 2x�1ðjþ 1Þ � ð2x � 1Þ from the derivation in (1), we can continue to evaluate ~m0
k1

according

to the value of j as follows.

(i) If j = 3,

~m0
3�2x ¼ m0

j þm0
j�1 þ umx�1

i¼1 ½2
i �m0

j�1 þ 3 � i � 2i�1 � j� ð2i � 1Þ� þ
Xx

i¼1

ð3 � 2i�1 � jþ 1Þ

¼ m0
3 þm0

2 þm0
2ð2

x � 2Þ þ 9ððx� 2Þ2x�1 þ 1Þ � ð2x � 1� xÞ þ 9ð2x � 1Þ þ x ¼ 9x2x�1 þ 4 � 2x þ 2xþ 5

¼ 3k
2

log2k1 þ
4
3
� 3

2
log23

� �
k1 þ 2log2k1 þ ð5� 2log23Þ:

(ii) If j = 2,

~m0
2xþ1 ¼ m0

j þm0
j�1 þ

Xx�1

i¼1

2i�1m0
3 þ 3ði� 1Þ2i�2 � 4� ð2i�1 � 1Þ

h i
þ
Xx

i¼1

ð3 � 2i�1 � jþ 1Þ ¼ 3x � 2x þ 2x þ 2xþ 4

¼ 3
2

k1log2k1 � k1 þ 2log2k1 þ 2:
Hence ~m0
k1
¼ 3

2 k1 þ 2
� �

log2k1 þ dðjÞ1 k1 þ dðjÞ0 and we have a secret-sharing scheme with average information rate ~q1 ¼ 2k1
~m0

k1

. The

result follows immediately. h

Next, we give the expression for ~mk for a k-weighted graph of general form.

Lemma 5.3. Let k = 2x � (j + 1) � 1, x P 0, j = 2, 3. If ~mk ¼
Pk

i¼1ax
j;iai þ

Pk
i¼1bx

j;ici is the sum of the orders of all subgraphs in the

covering ePk of a k-weighted graph Gk = W(a1, . . . , ak, c1, . . . , ck). Then the values of ax
j;i’s and bx

j;i’s can be obtained by the recursive

relations ax
j;i ¼ ax

j;kþ1
2 þi
� 1 ¼ ax�1

j;i , bx
j;i ¼ bx

j;kþ1
2 þi ¼ bx�1

j;i þ 1 and ax
j;kþ1

2
¼ bx

j;kþ1
2
¼ 1; 1 6 i 6 k�1

2 , with initial values

a0
j;1 ¼ a0

j;2 ¼ b0
j;2 ¼ 1 and b0

j;1 ¼ a0
3;3 ¼ b0

3;3 ¼ 2.
Proof. We prove this result by induction on x. When x = 0, k = j, the occurrences of the vertices in Ai’s and Ci’s in ePj are
exactly the initial values a0

j;i’s and b0
j;i’s respectively. For x > 0, recall that Gk is composed of W1 ¼Wða1; . . . ; a2x�1ðjþ1Þ�1,

c1; . . . ; c2x�1ðjþ1Þ�1Þ, W2 ¼Wða2x�1ðjþ1Þþ1; . . . ; ak; c2x�1ðjþ1Þþ1; . . . ; ckÞ and M ¼ M2x�1ðjþ1Þ;2xðjþ1Þ�1. Each vertex in

Ai;1 6 i 6 k�1
2 ¼ 2x�1ðjþ 1Þ � 1, has the same occurrence in ePk as it does in the covering of W1 since it does not occur in either

W2 or M. So, ax
j;i ¼ ax�1

j;i . However, each vertex in Ci;1 6 i 6 k�1
2 , gains one more occurrence in ePk than it does in the covering

of W1 because it also occurs in M. This is also true for vertices in Ai and Ci;
kþ1

2 ¼ 2x�1ðjþ 1Þ þ 1 6 i 6 k, because all of them

occur in graph M. Hence, we also have bx
j;i ¼ bx�1

j;i þ 1;ax
j;kþ1

2 þi
¼ ax�1

j;i þ 1 and bx
j;kþ1

2 þi ¼ bx�1
j;i þ 1 for 1 6 i 6 k�1

2 . Besides, the ver-

tices in Akþ1
2

and Ckþ1
2

have occurrence one because they only appear in M. Hence, ax
j;kþ1

2
¼ bx

j;kþ1
2
¼ 1. This proves that the coef-

ficients ax
j;i’s and bx

j;i’s satisfy the given recursive relations. h

Now, we consider the case when n ¼
Pk

i¼1ðai þ ciÞ is fixed. By evaluating the minimum value of ~mk, we obtain the highest
possible average information rate of a secret-sharing scheme constructed with this covering.

Theorem 5.4. Let C be a weighted threshold access structure represented by a k-weighted graph G = W(a1, . . . , ak, c1, . . . , ck) of
order n and k = (j + 1)2x � 1. If ci = 1 for all i – kþ1

2 and ai = 1 for all i R T = {1,2} [ {(j + 1)2i— i = 0, 1, . . . , x � 1}. Then
~q�ðGÞP n

nþ 3
2 ðkþ 1Þlog2ðkþ 1Þ þ ðdðjÞ � 2Þkþ ðdðjÞ þ 1Þ
where d(j) is given in Theorem 5.2.
Proof. The argument is similar to the proof of Theorem 4.6. From the relations given in Lemma 5.3, among all the coefficients
of ai’s and ci’s, only ax

j;i; i 2 T , and bx
j;kþ1

2
are equal to one. So ~mk is minimized if ai = 1 for all i R T and ci = 1 for all i – kþ1

2 . We

modify the expression for ~m0
k2

in the proof of Theorem 5.2 to meet what we need here. In this case,

~mk ¼ ~m0
k2
þ
P

i2T ai þ ckþ1
2
� ðjTj þ 1Þ ¼ ~m0

k þ n� 2k ¼ nþ 3
2 ðkþ 1Þlog2ðkþ 1Þ þ ðdðjÞ � 2Þkþ ðdðjÞ þ 1Þ. The secret-sharing

scheme for this access structure has average information rate n
~mk

. h



Fig. 6.1. A comparison of the results in the case when l = 20.
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This result is also very good when k is relatively small compared with n. The rate also approaches ‘‘1’’ asymptotically as k
fixed. After analyzing the average information rates produced from each of our constructions separately, we shall give a com-
parison of them in Section 6. For a fair comparison, we consider the same class of k-weighted graphs where k = 3 � 2x � 2. We
present the highest possible average information rate for this class as follows.

Theorem 5.5. Let C be a weighted threshold access structure represented by a k-weighted graph Gk = W(a1, . . . , ak, c1, . . . , ck) of
order n and k = 3 � 2x � 2. If ci = 1 for all i – k

2 and ai = 1 for all i R T = {1} [ {3 � 2i � 1j i = 0,1, . . . , x � 1}. Then
~q�ðGkÞP
n

nþ 3
2 kþ 2
� �

log2ðkþ 2Þ � 2
3þ 3

2 log23
� �

kþ 2
3� 2log23

:

Proof. Suppose
Sk

i¼1Ai

� �
[
Sk

i¼1Ci

� �
is the vertex set of Gk where jAij = ai and jCij = ci, i = 1, 2, . . . , k. Denote {u} by A0 and {v}

by C0. Let
Sk

i¼0Ai

� �
[
Sk

i¼0Ci

� �
be the vertex set of the (k + 1)-weighted graph Gk+1 = W(jA0j,a1, . . . ,ak, jC0j,c1, . . . ,ck) of order

n + 2 where k + 1 = 3 � 2x � 1. Then Gk+1 satisfies the criteria in Theorem 5.4, and the sum ~mkþ1 of the orders of all subgraphs

in its covering ePkþ1 is nþ 2þ 3
2 ðkþ 2Þlog2ðkþ 2Þ þ ðdð2Þ � 2Þðkþ 1Þ þ dð2Þ þ 1. Now, observe that Gk = Gk+1 � (A0 [ C0) and the

collection of subgraphs obtained from ePkþ1 by deleting u and v from each subgraphs in ePkþ1 is exactly the complete mul-

tipartite covering ePk of Gk since Gk+1 is composed of W jA0j; a1; . . . ; ak
2�1; jC0j; c1; . . . ; ck

2�1

� �
;Mk

2þ1;kþ1 (in Gk+1) and

W ak
2þ1; . . . ; ak; ck

2þ1; . . . ; ck

� �
and Gk is composed ofW a1; . . . ; ak

2�1; c1; . . . ; ck
2�1

� �
;Mk

2;k
(in Gk) and W ak

2þ1; . . . ; ak; ck
2þ1; . . . ; ck

� �
.

From the relations in Lemma 5.3, one can see that the occurrence of u in ePkþ1 is one and the occurrence of v in ePkþ1 is

bx
2;1 ¼ xþ 2 ¼ log2

kþ2
3

� �
þ 2. Hence, the sum ~mk of the orders of all subgraphs in ePk is

~mkþ1 � 1� log2
kþ2

3

� �
þ 2

� �
¼ nþ 3

2 kþ 2
� �

log2ðkþ 2Þ � 2
3þ 3

2 log23
� �

kþ 2
3� 2log23. The result is then obtained. h
6. Conclusion

The weighted threshold access structure is a more applicable structure of secret-sharing schemes in reality. In the imple-
mentation of such a scheme, the value of k represents the number of departments or divisions in an organization. Let
~q1 ¼ 12n

12nþk2þ34k�60log2
kþ2

3ð Þ�32
and ~q2 ¼ n

nþ 3
2kþ2ð Þlog2ðkþ2Þ� 2

3þ
3
2log23ð Þkþ2

3�2log23
be the highest possible average information rate derived

from our two constructions in Theorems 4.6 and 5.5, respectively. Both rates perform very well when n/k is large. If k is con-
stant, both rates approaches ‘‘1’’ asymptotically. Let n = lk where l represents the average size of departments in the orga-
nization. When l is larger, both ~q1 and ~q2 become higher as well for each value of k. Fig. 6.1 shows the behavior of Morillo’s
rate [19], ~q1 and ~q2 in the case when l = 20. As indicated in the figure, ~q1 performs better than ~q2 when k 6 30, whereas ~q2

becomes superior to ~q1 for all k P 31. Actually, this fact remains true for all values of l. Therefore, Construction I is more
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suitable for organizations with fewer departments, whereas Construction II performs especially well for organizations with
more departments.

Dealing with average information rate is in general very tedious. In this work, we have demonstrated an approach to the
analysis of complicated results.

References

[1] A. Beimel, Secret-sharing schemes: a survey, in: Proceedings of the 3rd International Workshop on Coding and Cryptology, Lecture Notes in Computer
Science, vol. 6639, 2011, pp. 11–46.

[2] G.R. Blakley, Safeguarding cryptographic keys, in: Proceedings of the National Computer Conference, 1979, American Federation of Information
Processing Societies Proceedings, vol. 48, 1979, pp. 313–317.

[3] C. Blundo, A. De Santis, R. De Simone, U. Vaccaro, Tight bounds on the information rate of secret-sharing schemes, Designs, Codes and Cryptography 11
(1997) 107–122.

[4] C. Blundo, A. De Santis, A. Giorgio Gaggian, U. Vaccaro, New bounds on the information rate of secret-sharing schemes, IEEE Transactions on
Information Theory 41 (1995) 549–554.

[5] C. Blundo, A. De Santis, D.R. Stinson, U. Vaccaro, Graph decompositions and secret-sharing schemes, Journal of Cryptology 8 (1995) 39–64.
[6] E.F. Brickell, D.M. Davenport, On the classification of ideal secret-sharing schemes, Journal of Cryptology 4 (1991) 123–134.
[7] E.F. Brickell, D.R. Stinson, Some improved bounds on the information rate of perfect secret-sharing schemes, Journal of Cryptology 5 (1992) 153–166.
[8] C.-C. Chang, Y.-H. Chen, H.-C. Wang, Meaningful secret sharing technique with authentication and remedy abilities, Information Sciences 181 (2011)

3073–3084.
[9] L. Csirmaz, An impossibiliuty result on graph secret sharing, Designs, Codes and Cryptography 53 (2009) 195–209.

[10] L. Csirmaz, G. Tardos, Exact Bounds on Tree based Secret Sharing Schemes, Tatracrypt, Slovakia, 2007.
[11] M.H. Dehkordi, S. Mashhadi, New efficient and practical multi-secret sharing shemes, Information Sciences 178 (2008) 2262–2274.
[12] M. van Dijk, On the information rate of perfect secret-sharing schemes, Designs, Codes and Cryptography 6 (1995) 143–169.
[13] L. Harn, C. Lin, Strong (n, t,n) verifiable secret sharing sheme, Information Sciences 180 (2010) 3059–3064.
[14] C.-F. Hsu, Q. Cheng, X. Tang, B. Zeng, An ideal multi-secret sharing scheme based on MSP, Information Sciences 181 (2011) 1403–1409.
[15] W.-A. Jackson, K.M. Martin, Perfect secret-sharing schemes on five participants, Designs, Codes and Cryptography 9 (1996) 267–286.
[16] K. Kaya, A.A. Selcuk, Threshold cryptography based on Asmuth–Bloom secret sharing, Information Sciences 177 (2007) 4148–4160.
[17] C.Y. Lee, Y-S Yeh, D-J Chen, K-L Ku, A probability model for reconstructing secret sharing under the internet environment, Information Sciences 166

(1999) 109–127.
[18] H.-C. Lu, H.-L. Fu, The exact values of the optimal average information ratio of perfect secret-sharing schemes for tree-based access structure, Designs,

Codes and Cryptography (2013), http://dx.doi.org/10.1007/s10623-012-9792-1.
[19] P. Morillo, C. Padro, G. Saez, J.L. Villar, Weighted threshold secret-sharing schemes, Information Processing Letters 704 (1999) 211–216.
[20] C. Padro, G. Saez, Secret sharing schemes with bipartite access structure, IEEE Transactions on Information Theory 46 (7) (2000) 2596–2604.
[21] A. Parakh, S. Kak, Space efficient secret sharing for implicit data security, Information Sciences 181 (2011) 335–341.
[22] A. Shamir, How to share a secret, Communications of the ACM 22 (1979) 612–613.
[23] S.J. Shyu, K. Chen, Visual multiple secret sharing based upon turning and flipping, Information Sciences 181 (2011) 3246–3266.
[24] D.R. Stinson, An explication of secret-sharing schemes, Designs, Codes and Cryptography 2 (1992) 357–390.
[25] D.R. Stinson, New general lower bounds on the information rate of perfect secret-sharing schemes, in: E.F. Brickell, (Ed.), Advances in Cryptology –

CRYPTO ’92, Lecture Notes in Computer Science vol. 740, 1993, 168–182.
[26] D.R. Stinson, Decomposition constructions for secret-sharing schemes, IEEE Transactions on Information Theory 40 (1994) 118–125.
[27] D. Wang, F. Yi, X. Li, Probabilistic visual secret sharing schemes for grey-scale images and color images, Information Sciences 181 (2011) 2189–2208.

http://dx.doi.org/10.1007/s10623-012-9792-1

	New bounds on the average information rate of secret-sharing schemes for graph-based weighted threshold access structures
	1 Introduction
	2 Preliminaries
	3 Weighted threshold secret-sharing scheme
	4 Construction (I)
	4.1 An observation
	4.2 Construction (I)

	5 Construction (II)
	6 Conclusion
	References


