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1. Introduction

A secret-sharing scheme is a protocol by means of which a dealer distributes a secret key among a set of participants P so
that only qualified subsets of P can reconstruct the secret key whereas unqualified subsets of P have no information about
the secret key. The family of all qualified subsets is called the access structure of the scheme. In practice, an access structure
has to be monotone which means any subset of P containing a qualified subset must also be qualified. The basis I'y of an
access structure I' is the set of all minimal subsets in I". The access structure I" is called the closure of Iy, denoted as
I' =CI(I'p). In addition, I" is r-homogeneous if the cardinality of each subset in I'g is r.

The first secret-sharing schemes were (t,n)-threshold schemes. These schemes were introduced by Shamir [22] and Blakley
[2] independently in 1979. The basis of the access structure for such a scheme consists of all t-subsets of the set P of par-
ticipants of size n. Related problems have received considerable attention since then. Secret-sharing schemes for various
access structures have been widely studied [2-7,9,12,15,19,20,22,24-26]. Many modified versions of secret-sharing schemes
with additional capacities were proposed [8,11,13,14,16,17,21,23,27]. The reader is referred to [1] for a comprehensive sur-
vey. Secret sharing has been an interesting branch of modern cryptography.
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One of the most important research directions regarding secret-sharing schemes is to establish bounds on the size of the
shares given to the participants and thereby obtain bounds on the storage and communication complexity. There are two
major tools to measure the efficiency of a secret-sharing scheme, namely the information rate and the average information
rate of a scheme. The information rate of a secret-sharing scheme is the ratio between the length (in bits) of the secret
key and the maximum length of the shares given to the participants. The average information rate of a secret-sharing scheme
is the ratio between the length of the secret key and the average length of all shares given to the participants. In a practical
implementation of a secret-sharing scheme, these rates are expected to be as high as possible. Therefore, researchers also
concern about the highest rates a secret-sharing scheme can have for a given access structure. The optimal (average) infor-
mation rate of an access structure is the maximum (average) information rate over all secret-sharing schemes which realize
that access structure.

Graph-based access structures have been widely studied during the past decades. In such an access structure, each vertex
of a graph G represents a participant and each edge represents a minimal qualified subset, that is, ? = V(G) and I" = CI(E(G)).
The optimal information rate (resp. optimal average information rate) of an access structure based on a graph G is denoted as
p*(G) (resp. p*(G)). It is easy to see that p*(G) < p*(G) < 1 and that p*(G) = 1 if and only if p*(G) = 1. A secret-sharing scheme
with the information rate equal to one is then called an ideal secret-sharing scheme. An access structure is ideal if there ex-
ists an ideal secret-sharing scheme for it. Brickell and Devenport [6] have completely characterized ideal graph-based access
structures. For general graphs, Stinson [26] showed that p*(G) > 32; where d is the maximum degree of G and p*(G) > ;2
where n = |V(G)| and m = |E(G)|. Due to the difficulty of the derivation of good results on general graphs, most efforts have
been focused on small graphs [5,12,15] and graphs with better structures [3,5,9,10,18,26].

Morillo et al. [19] considered the weighted threshold secret-sharing schemes. This is the case when every participant is
given a weight depending on his or her position in an organization. A set of participants is in the access structure if and only
if the sum of the weights of all participants in the set is not less than the given threshold. Morillo et al. characterized
weighted threshold access structures based on graphs and studied their optimal information rate. Since these access struc-
tures are more applicable in real-life situation, an in-depth investigation can have a significant contribution to the applica-
tion of secret sharing. We are motivated to construct better secret-sharing schemes for them and have a more detailed
analysis of the average information rate of our schemes.

This paper is organized as follows. Definitions, notations and basic known results are introduced in Section 2. Morillo’s
characterization and constructions of secret-sharing schemes of graph-based weighted threshold access structures are pre-
sented in Section 3. In Section 4, we start with an observation on the structure of the graphs that represent weighted thresh-
old access structures, and then our first construction is introduced. Subsequently, one more sophisticated construction is
presented in Section 5. Finally, we give a comparison of these constructions in Section 6.

2. Preliminaries

Let P be the set of all participants, K be the set of all secret keys, I' C 27 be the access structure and S be the set of all
possible shares. Given a secret key d € K, a dealer D gives to participant p a share s,4 € S, where S, is the set of all shares
participant p receives from the dealer corresponding to all keys in K. A distribution rule is a function f : {D} UP — K US with
f(D) € K and f(p) € S for all p € P. (D) is the secret key to be distributed and f{p) is the share participant p receives from the
dealer for key f{D). Let F be a collection of distribution rules and 7, = {f € F : f(D) = d}. We call F a perfect secret-sharing
scheme if the following two conditions are satisfied:

(i) Given any Be I' and f, g € F, if f(p) = g(p) for all p € B, then f{D) = g(D).
(ii) Given any B ¢ I' and any function g: B — S, there exists a nonnegative integer A(g,B) such that, for each d € K,

[{f € Falf(p) = &(p), Vp € B}| = A(g,B).

The first condition guarantees that the shares given to a qualified subset uniquely determine the secret key, while the
second ensures that the shares given to an unqualified subset reveal no information about the secret key. When these
two conditions are made, we say that this secret-sharing scheme F realizes the access structure I'. Since all schemes men-
tioned in this paper are perfect, we will simply use “secret-sharing scheme” for “perfect secret-sharing scheme” throughout
this paper. In a secret-sharing scheme F, the information rate, denoted p(F), is defined as

_ log, K|
max{log,|Sy| : p € P}

p(F)
and the average information rate, denoted p(F), is defined as

sr) - JomlKl _ (PllogsIk]
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Example 2.1. P = {a,b,c}, I'g={{a,b},{b,c}}, K =GF(3). Let F = {f;4|r,d € GF(3)} where f.4(D)=d, f.4(a)=f-q(c)=r and
fra(b) =r+d. This scheme can be represented by the following table:

D a b c
0 00O
0111
02 2 2
1 010
11 2 1
1 2 0 2
2 020
2 1 01
2 21 2

Note that each row in the table represents a distribution rule. One can easily check that this scheme is a secret-sharing
scheme and p(F) = p(F) =1 since £ =S, = S, =S¢ = GF(3). This scheme is in fact an ideal one.

In this paper, only graph-based access structures are considered. In this case, I" = CI(E(G)) is 2-homogeneous. The graphs
with optimal rate p*(G) =1 or p*(G) = 1 have been completely characterized by Brickell and Devenport.

Theorem 2.2 [6]. Suppose that G is a connected graph, then p*(G) =1 if and only if G is a complete multipartite graph.

Example 2.1 shows that p*(K; ) = 1 since the access structure of the scheme is CI(K; ;). For graphs that are not complete
multipartite graphs, Blundo et al. [5] have shown the following fact.

Theorem 2.3 [5]. Suppose that G is a connected graph that is not a complete multipartite graph, then p*(G) < 2 and p*(G) < e}
where n = |V(G)|.
When dealing with information rates, the following lemma is especially helpful.

Lemma 2.4 [5]. If G’ is an induced subgraph of graph G, then p*(G) < p*(G').

Stinson [26] proposed a very useful decomposition construction which enables us to build up secret-sharing schemes for
larger graphs using smaller complete multipartite graph through complete multipartite coverings. A complete multipartite
covering of a graph G is a collection of complete multipartite subgraphs {G;,G,,...,G;} of G such that each edge of G belongs
to at least one subgraph G;.

Theorem 2.5 [26]. Suppose that {G;,G,...,G;} is a complete multipartite covering of a graph G with V(G)={1,2,...,n}. Let
Ri =|{jli € V(G j)}| and R = max;<;i<nR;. Then there exists a secret-sharing scheme for access structure Cl(E(G)) with information rate
p and average information rate p where

no n

T p Tl
2R 3LV

According to the theorem, in order to construct a secret-sharing scheme with higher information rate (resp. average infor-
mation rate), we need a complete multipartite covering with less maximum number of occurrence of a vertex (resp. less total
number of occurrences of the vertices) in the covering.

1 _
P=% and p=

3. Weighted threshold secret-sharing scheme

Given a set of n participants P, a threshold t>0 and a weight function w: P — R with w(p) > 0 for all p € P, the
(t,n,w)-weighted threshold access structure consists of all subset AC P such that w(A) = 3_,_,w(p) > t. Morillo et al. [19]
showed that any weighted access structure determined by a non-integer-valued weight function and a non-integer thresh-
old can also be determined by an integer-valued weight function and an integer threshold. So, considering integer-valued
weight functions is sufficient in our problem. In the remainder of the paper, we assume that a weight function w is given.
An access structure I" = Cl(I'p) is said to be connected if for any participant p € P, there exists A € I'g such that p € A. Through-
out this paper, we consider 2-homogeneous connected weighted threshold access structure and exclude the case where any
participant has zero-weight. This kind of access structure can be represented by a graph G. In this graph, there is a set C of
vertices, each of which is adjacent to all other vertices in G. The weight of each vertex in C is higher than the weight of any
vertex not in C. If C # V(G), removing C from the graph G produces a nonempty set A of isolated vertices, each of which has
lower weight than any other vertex not in A. If CUA # V(G), the subgraph G’ induced by V(G)\(CuU A) represents a 2-homo-
geneous connected weighted threshold access structure I = {BC P\ (CUA)|w(B) > t}. Repeating these processes, the
structure of G can be clearly characterized in the following theorem.
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Theorem 3.1 [19]. Let G be a graph that represents the 2-homogeneous connected weighted threshold access structure I'. Then,
there exists a unique partition of the vertices of G,

P=CiUAi UG UAU---UC UAy,
where C;#= 0 fori=1,...,k Ai=0ifi=1,..., k— 1 and either Ay =0 and |G| > 2 or |Ax| = 2, such that the set of edges of G is

i=1
They also showed that any graph with a partition described in Theorem 3.1 represents a 2-homogeneous connected
weighted threshold access structure. A such graph is then called k-weighted where k is the parameter used in Theorem

k
o= {{u, vu,ve | JGu# y} U{{v,p}lveC, peA;, 1<i<j<k}.

3.1. Since the structure of a k-weighted graph is completely determined by the values |A;|’s and |Cj|’s,i=1, 2, ..., k, we denote
the k-weighted graph by W(|A4|, ..., |Akl, |C1|, .., |Ck|). Observe that the subgraph induced by Uﬁzl(Aji uUGj,) where 1 <j; <-
J2<---<ji<kisanl-weighted graph W(|A;, |, ..., 14.|C, |-, |C;]). Morillo et al. gave a complete multipartite decomposition

for (29 — 1)-weighted graph in which the maximum number of occurrence R of a vertex is not greater than q. Then, by Lemma
2.4, a lower bound on optimal information rate for k-weighted graph for all k follows.
Theorem 3.2 [19]. Let I' = {ACP|w(A) > t} be an access structure that is represented by a k-weighted graph G. Then
P (C) > rgieny

For the average information rate, we need to find complete multipartite coverings for k-weighted graphs for each value of
k. For convenience, we make a slight modification to the notation given in Theorem 3.1. In the case where A, =@ and |C| > 2,

we move one (arbitrarily chosen) vertex from Cj, to Ay. So, in our model, none of A;'s and C;’s are empty. Now, we are ready for
our constructions.

4. Construction (I)
4.1. An observation

We observe that any k-weighted graph can be obtained by alternately applying two graph operations starting with a sin-
gle vertex. Let us introduce these operations first. By “splitting vertex v of a graph G into m vertices vy, ..., vy”, denoted S(v;

{v1,...,0Un)), we obtain a graph G¥--"m}) —G* where W(G*)=(V(G)—{v})U{v, 15, ...,0m} and E(G")=E(G - v)U

GEw{vi--vm) "This graph is said to be obtained by “expanding vertex v into m vertices u, ..., v, from the original graph G
and this operation is denoted by E(v; {#1, ..., vn}). For convenience, we use ( Vy,V,)¢ to denote the set of edges {uvju € V,
ve V, and uv € E(G)} for any two disjoint subsets of vertices V; and V; in G.

Given a k-weighted graph G=W(a;,ay,...,0,C1,Co-..,Ck), We let A,-:{u"l.,u;,...,ujli} and Ci:{uﬁ,u;,...,vg},

i=1,2,...,k. In what follows, we propose an algorithm showing how the given graph is constructed from a single vertex
by splitting and expanding.

Algorithm 1

Go — {uo}.
Fori«— 1 to k do

Gi — GE(I{mCiU{UO})

A AU , if1<i<k
GiHGf(“"A')whereA;‘:{' {uo}, 1 bk

Ay, ifi=k.
Output the k-weighted graph G;.

Theorem 4.1. The proposed algorithm produces the given k-weight graph G from a single vertex.

Proof. The edges in (A;, (j), j < i, are produced by the operation S(uo;A;) and edges in { C;Gj), j < i, and within the part C; are all
produced by E(uo, C}). So, G is a subgraph of G,. Next, the number of edges produced in this algorithm is
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(G I S (R =)

S8 ((5)- ko)

which is exactly the size of the given G. Hence, the proof is completed. O

4.2. Construction (I)

Before we can literally describe our first construction, there are some more notations needed to be introduced. For any [
disjoint sets of vertices Vi, Vs, ..., V}, we use K(V4,V5,. . .,V)) to denote the complete multipartite graph with partite sets V1, V5,

.. and V.. Let G, be the [-weighted graph with vertex set (UL]AI-) U (UL] Ci), I < k. Define B, | < k, to be the graph obtained
from G, by removing all edges connecting vertices in (J|_,C;. Then B, is a bipartite graph with partite sets |J._,A; and |._,C.
Next, we use M;; to denote the complete multipartite graph K (C1 ,Cayoo s Gy, {yll‘ }, {1/’21} {v’c‘,] },

(U}illﬂcj) U (Uj’?:l]Aj)), 1< L <L <k In the following lemma, H; stands for the complete multipartite graph K(Cj,
G, ..., Cj,p Aj,], Aj), 2 g] <k.

Lemma 4.2. IT¥ is a complete multipartite covering of B, where

HB _ {Hz,',K(AZi,CZi)‘l. = 172, c.. ,%}, if [ is even,
' KA, €, Hain K (Agisr, Coin)li = 1,2, 51, if Lis odd.

Proof. When I is even, the edges in (Azi, Gy, with j<2i and in (A2i1, Gy, with j < 2i — 1 appear in the subgraph H,;, for
i=1,2,..., L while the edges in (Ay;, Cai)p, appear in the subgraph K(A;, G;;). The edges of B, are then all used up. For odd
I, the argument is similar. O

With these notations in mind, we are able to give our complete multipartite covering II; of G. Let IT, be obtained recur-

sively by letting  II; ={G;}, Hz:{K({zﬂ},{z@},.‘.,{vgl},fh),Mz_z}, I'[3:{K({v}},{v}},...,{ygl},m),
K({ vi},..., {Uf} },Ag),Mz,g} and, fork > 4, I, = HL"*‘J U {ML“;—‘JH-k} U Ty, where IT ), is the complete multipartite cov-
ering of the (|%] — 1)-weighted subgraph W(av%ﬁp gty - O Ctgty 12, Ctst 30 - ,ck). It is obvious that the edges of Gy
which are not in By, and W( 51020 s O Clsty g - ) all lie in Mx.,, ., ;. These three subgraphs literally make up the

k-weighted graph G,. We have the following lemma.

Lemma 4.3. The collection II, stated above is a complete multipartite covering of Gy.

k=(j+2)2*-2 I=(j+3)2%-3
the x-th —_— @ @ ° . ° ° ° °
layer
M3y
the second
layer (x=2)

the first layer ———
(x=1)

Fig. 4.1. The binary tree for Construction (I).
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Our next goal is to find the sum m; of the orders of all subgraphs in IT,. Due to the complexity of the enumeration, we
consider the reduced forms first. We call G; = W(1,...,1,1,...,1) the reduced form of a general k-weighted graph W(aj,-
.,y C1,...,Cr). We also let B?, Mﬂ b and HJ‘-’ be the graphs defined in the same ways as B;, M, ;, and H; respectively, except

that a;'s and ¢;’s involved are all set to be one. Then G, and B} have the complete multipartite covering I and Hfo reduced
from IT; and IT% respectively. Note here that Gg has 2k vertices. By applying suitable splitting and expanding operations men-
tioned in Section 4.1 to the reduced form G} accordingly, one can recover the general k-weighted graph W(ay,. . .,a,c1,. . .,C).
For the evaluation of the sum m{ of the orders of all subgraphs in I1°, we introduce a specially designed binary tree.

Note that we have decomposed Gy, into BLm MWM . and G . Since 41| equals (|&] — 1) + 1 or (4] —1) +2,G] can
either go with B ; and M} , ,;,, to compose G, or go with BY,, and M} 5,;,5 to compose Gy, ;. Recursively repeating this
process, all G's can be composed from some B, Mﬁ_y,{s and just Gy, G, and Gs. We illustrate this relation by means of a bin-
ary tree in Fig. 4.1. In this tree, each path from the root represents the conformation of a k-weighted graph of reduced form in
our covering. For example, the leftmost path from the root G; to G4j+¢ represents that GZJ+2 is composed of G BJOH and M? 20112
and then G?U i;6 is composed of sz 42 BSJ 3 and Mz, L 44j+6- Hence the path shows how G4J 6 is built up. The 2" paths of length x
from the root give the conformations of the 2* k-weighted graphs where k ranges from (j + 2)2* — 2 to (j + 3)2* - 3,j=1,2,3.

Theorem 4.4. Let I' = {AC P|w(A) > t} be an access structure represented by a k-weighted graph G0 of reduced form, k; =

(j+2)2-2andky,= (j+3)2*-3,x > 1,j =1, 2, 3. If k; < k < ko, then there exists a secret-sharing scheme for the access structure
I with average information rate p with
24](2 ~ 24k1
kZ ky+2 () < p ki+2 )
2 + 60k, — 84log, (W) ~37 -4 K% + 58k; — 60log, ( 4 ) ~32-

where

(53”, 55”) ={(28,24), ifj=2
(40,44), ifj=3

Proof. Let m¢ and m® be the sum of orders of all subgraphs in I79 and Hfo respectively and mf‘f’zz be the order of M?] 1, then
mf‘l”_u,z =2 -L+1.In Hfo, [V(K(Ci,A))| = [V(Ky)| = 2 and |V(H?)| = i + 1 for each i. So when [ is even, mfo = ?;JV(H%) +

V(K (CanAz)| = 32 (2 +1)+2) =1(P+8l). When [ is odd, mf =37 |V<H‘2’M)\ + Y2 VK (Caier, Agis1)] =
ST 2i42)+ Y702 = 1P +81-1).

(1) First, we consider Gg] whose composition process is shown by the leftmost path of length x from the root. Adding up
the orders of all subgraphs involved, we have

mk1 = mo +Zm(1+2 i1 T Zmo+2 211 (j42)2i -
+HG+ 1) +8(+1)]

+i%{<u+2>2“ C1R (22 1)1

i=2

+2X:[2((i+2)2"—2)—u+2)2'”+1}7 ifj=1,3;
m°+Z% [(G+2)27" =12 +8((G+2)2"7" = 1) 1]

+Z[2(u‘ +2)2'=2) = (j+2)27 41, ifj=2

=m0+ (i +2)292 + 9 +2)2" - 5x — &) = L (ki +2)* +2 (ks +2) — 5log, (’H—gz) —g
-1 [1 + 58k, — 60log, (W) 32— 59] ,

Jj+2

24584109 i : .
where ¢/ — § 5 12— iTJ=13i 3y (7‘3“) & 7‘3(3)) = (12,£.%).
1 P4584112  jpi_ o 1% 5% 3
—1 J=2

In the second last step, we combine the value of &/ with m¢ =2, mg = 5 and mg = 9 to calculate the value of 7. With this
covering of G,(1 we are able to construct a secret-sharing scheme with average information rate p; = 25,

kl
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(2) We consider ng whose composition process is shown by the rightmost path of length x from the root. Similar to (1),
we have

mkz 7m0+zm(,+32" 1+Z (;+32’ 1 (+3)2-3
m°+z [(G+3)27" =12 +8((+3)2""' —1)—1]
+Z[ ((+3)2'-3) = (+3)27 +1], ifj=13
= m< 7[(]+2) +8( +2)]

+ [(;+3 )2t )2+8((j+3)2i’1—1)—1]

Z
+Z[ ((+3)2'=3)=(+3)27" +1], ifj=2

=m0+ 5 ((+3)22 492G +3)2" —Tx— ) = & (k§ + 60k, — 84log, (kz_”) 37— 53“),

j+3

P,
. 604171 i q 3.
O_) iz 1=5L3
where & = { j2+60j+168 j=2
b

With this covering of sz we have constructed a secret-sharing scheme with average information rate p, = 2"0 . The result
then follows. ™,

As a matter of fact, each m{ can be evaluated in a similar way. The resulting expression only slightly differs from the ones
for m) and m) at some nonleading coefficients.

After dealing with the reduced forms we shall turn back to the model of general forms. We start with introducing nota-
tions. Let 7, =(11212121---21),y;=(t+1){L({-1)(t-1)---221) and 1,=(11---1) be three I-dimensional

vectors. For Iy <, let a(lhlz):(aha,lﬂa,ﬁz -a,) and c(h,b) = (cy,C1C42---C,) where a;=1A) and ¢ =|CG|, i=h,
L+1,..., L

Lemma 4.5. Fork=3-2-2andx > 1
! k+2)27" -1 k+2)2" -1
= Z(Zku + )ﬂk+z> -a <( + )2(1.71 ) +1, ( ot )Z(i ) + Xayx_3 + (X + 1)(1](,2 + Xak_1

x—1 i—1 i
+(x+ D+ Z(M - 1)%_;) .@<(k+2)2(fl L Y (’”2)2(? - ”)
= Py 2

+ X+ 1)ck3+ (X +1)Cka +XChk1 + (X4 1)ck

Proof. Recall that the expression for m; depends on all a;'s and c¢;’s, each of whose coefficients represents the occurrence of
the vertices of that part in the covering II,.

(1) First, let us examine the occurrence of vertices of B, whose partite sets are | J_,A; and | J!_, C;, in its covering IT?. For odd
I, by Lemma 4.2, one can easily see that the vertices in A; have occurrence 1 (only in K(A;, C;)), the vertices in Ay;,
j=1,...,5L also have occurrence 1 (only in H,j.1) and the vertices in Ay, j = 1,...,5% have occurrence 2 (in Hajiq
and K(As;j+1,C2j+1)). Hence, the occurrences of the vertices in Ay, Ay, ..., A; are exactly the first | coordinates in Z,H Sim-
ilarly, the vertices in C; have occurrence %! (in K(A;,C;) and Haiur's, i = l,... ’*1) the vertices in G, j = 1,...,5L, have
occurrence th,j +1 (in Haisq's, 1 = j) and the vertices in Gjsq, j=1,..., 2 , have occurrence 5t 1 —j+1 (in Hajq's,
i > j+1 and K(Ayj:1, Coj+1)). Hence, the occurrences of the vertices in Gy, Cy, ..., G are exactly the first | coordinates
iny,; — 1.

(2) Let us consider the value of m, now. We prove the result by induction on x. When x=1, my=a; +2a, + as + 2-
4=01+ 20 +az +2a4+2c; + 2¢, + ¢3 + 2¢4 by direct counting the occurrences of vertices in I14. So, the result holds
when x =1. Next, for k=321 - 2G,=W(ay, ..., a C1,..., ¢) is composed of B3« 1, M 5x 35015 and Gsox_p. For
convenience, denote M, 5,1, by M for now. Observe that the vertices in A;, 1<i<3-2*—1 have the same

occurrences in [T as they do in the covering IT5,. , because they do not lie in M and G, _,, while the vertices
in G, 1<i<3-2¥-1, gain one more occurrences in II; than they do in IT5,. , because they also occur in M.
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Notice that the vertices in A;,« and C; only occur once in I1,. Besides, the vertices in A/s and Cj's, i=3-2*+1, -
.,k, also gain one more occurrence in II, than they do in the covering II;3,x_, of G;,+_,. Therefore, by (1) and
the induction hypothesis,

m3‘2x+172
=Z3p-a(1,3-2") + (V30 — I32) - (1,3 - 2%) + 130 - ¢(1,3 - 27)

3.2 -1y L322 1) )
+Z<Z3zx 1—1)ﬂ32x+1]3221x)- <2il+1+3'2’2i+3'2
+ (X +1)a300 5,300 + (X 4+ 2)30 4130 + (X + 1)8350 3,300 + (X + 2)030x .30

x—1 X i—1 X (i
. 3.2°27" -1 L3272 -1 "
+ (yg+(171)ﬂ@+ﬂ@>- ((,)+1+3 2, (i)+3-2)
= 2 2 2 2 2

+ (X +2)C300 50300 + (X +2)C30g130¢ + (X + 1)C30 30300 + (X 4+ 2)C300 5,30

3.2x+1 3_2x+1
:Z“;“'a<1’ 2 )*y“:“'@<1v 2

3.2x+1 21‘_1 3.2x+1 2i+1 -1
+Z( e+ (( +1)1)ﬂn_m>.a< 2(f ), 2("“ )

21+1 pisal

—

+ X+ D) o) 3+ X+2)05001 5 5+ X+ 10300 5 + X +2)05 5001 5

—1 . . 2x+1 2i -1 2x+1 21+1 1
+ <y3zx+1+((l+1)1)ﬂm>'c<3 R IE )

3

= ST s 2! it

+2)Capx1 9 3+ (X+2)Ca0m1 5 5 + X+ 1)Ca 01 5 + (X +2)C3501

X i-1 i
(ZM‘F(i*l)ﬂkﬂ)'a (k+2)(%1 —1)+17(k+2)(_2 -1)

— of 2 2! 2!

+x+Dag s+ x+2)a 2+ X+ a1 + (x+2)a
. (MHI._ 1)1@) ,C(<k+2><_z” 1) (k22 1))
i1 2t 2!

+
3?~

x

1 21—1 21
+X+2)Ch3+ X+2)k 2+ X+ 1)1+ (X+2)c. O

This lemma presents a sophisticated expression for m, in terms of a;'s and ¢;’s. In what follows, we give the conditions on

the values of a;’s and c¢;'s under which my, attains its minimum value when n = Zf‘zl (a; + ¢;) is fixed. Thereby, the highest pos-
sible average information rate via this covering is obtained.

Theorem 4.6. Let I" be a weighted threshold access structure represented by a k-weighted graph G=W(ay, ..., ay ¢y, ..., C) Of
ordernand k=3-2-2.Ifc;=1foralli ¥+ 1and a;=1 foralli ¢ T={1,2,4,6,...,%+1}. Then

-, 12n
p(G) > .
12n + k* + 34k — 60log, (&%) —32

Proof. Observe that only Cyiq and a;, i € T, have coefficient equal to one in the expression for m; in Lemma 4.5. So my, is mini-
mizedifc;=1foralli# X+ 1anda;=1foralli¢ Tsince this expression for my is linear. This case is similar to the reduced form.
So, we make an adjustment in the expression for mﬁl (withj = 1) in the proof of Theorem 4.4 to derive what we need here. The
sum m; of orders of subgraphs in this covering is mﬁl + 2ier@i + ¢y — (IT|+1). Note that n=S% (g +c) =
Sier@i + Ceq + D igrti + Zi#éﬂci = icr@i + Ceq + + k=T +(k—=1)=> a0 + Cp + 2k — (|T| + 1). Therefore, in this case
me =3 [kz + 58k — 60log, (&42) — 32] +n—2k= [12n +k* + 34k — 60log, (42) — ] The average information rate of the
secret-sharing scheme constructed with this covermg attains its maximum value - and the proof is completed. O

Our result appears to be quite good if k is relatively small compared with n. ln fact, as k fixed, the rate given in Theorem
4.6 asymptotically approaches “1” which is the optimal value for the rate.

5. Construction (II)

Our second construction is similar to the first, while it performs better than Construction I when k > 31. The major dif-
ference is that B, is replaced with G, in the covering. With the notations used before, we define our second covering I, of
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I=(j+1)2+-1
the x-th
L] L] L] L] L]
layer *
M1y
the second
layer (x=2)

the first layer ———
=1

Fig. 5.1. The binary tree for Construction (II).

Ge=W(ay, ..., ay C1, ..., ) recursively as follows. IT; = IT;,i = 1,2,3. For k > 4, IT; = ﬁt% U {ML%]H_,(} U ﬁ@ where the
I & is the complete multipartite covering of the |4]-weighted subgraph
W= W(”L’%‘Hz’at%‘HB’ o O Cpcty gy Cpcty g - - ,ck). It is obvious that the edges not in the subgraphs
W(al, Qs € ..,q:(%) and W all lie in Mtk,TlJ+17k. So, Il is a complete multipartite covering of G.

Lemma 5.1. The collection II is a complete multipartite covering of Gy.
In order to evaluate the sum 7, of the orders of all subgraphs in II, we consider the reduced form first. Let IT 9and my be

the reduced version of IT; and 7 respectively In the covering I1°, we decompose Gy into Gok 1 M‘fk 11k and GokJ Since |1

equals [£] — 1 or ], G° can either go with G’ ;, and M?,; to compose G or go with G° and M 112j11 to compose GY._ . Recur-

]2] 2j+1*
sively, all G’s can be obtained by using thlS process repeatly from Gy, Gz, Gs and some M,-_yk s. As we have done in Section 4,
this relation is depicted by a binary tree in Fig. 5.1. The 2* paths of length x from the root give the conformations of 2* k-

weight graphs where 2*"1 <k<3-2*—1or3-2*<k<2¥? 1.

Theorem 5.2. Let I' be an weighted threshold access structure represented by a k-weighted graph (72 of reduced form, k; =j - 2%
and ky= (j+1)-2—1,x > 0,j=2, 3. If k; <k < kj, then there exists a secret-sharing scheme for the access structure I" with
average information rate p with

2’(2 - < p < 2k1 - .
3 (ky + 1)logy (ko + 1) + 0 (ky + 1) + 1 Gk +2)logyky + 00k + 67
where
(9,50,49) = { (¢ —2log,3.-1,2), ifj =2
(-1,4-2log,3,5 - 2log,3), ifj=3

Proof. Recall that M} , has order m{‘]”ﬁ2 =2L-L+1,ml=ml,i=1, 2, 3. m¢=2,md=5 and mj=09.

(1) First, we consider G0 Foreach I=2i(j+ 1) — 1, G, is composed of two G.; 1 ’s and one Mml So m{ can be evaluated recur-
sively as follows.

g, =29, + 302 G+ —1=2m0 +3 2732+ 1) - 1)) =2 m) +3x- 2 (j + 1) - 2" = 1)
i=1
. ky+1 ky +1 m]o—l 73 mJQ_ 3 .
=3. 5 log (j+1>+ i c(ka+1) + _i(kz+1)log2(k2+l) j+—1_510g20+1) (kp+1)+1
%(k2+1)log2(k2+l)+5“(k2+1) 1.
2k2_

Hence, the secret-sharing scheme constructed with I7° has average information rate p, =

ko
r<2
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(2) The composition process of Ggl is shown on the leftmost path of length x from the root. Adding up the orders of all

subgraphs involved, we have m) =m+m, + > o My, LT Lmt 1121 Making use of the equation

m‘z’x(lm =2"-m) +3x- 2*1(j+1) — (2* — 1) from the derivation in (1), we can continue to evaluate m) according
to the value of j as follows.
(i) Ifj=3,

. . . X .
My =md +md | +umS 20 md, +3.0-27 - 2=+ > (327 j+1)

i=1
=md+md+md2¥ —2)+9((x—2)2 "+ 1)~ (2 —1-X)+ 92"~ 1) +x=9x2" ' +4.2° 1 2x +5
= %klogzk] + (g - %logzl’)) ki + 2log, ki + (5 — 2log,3).
(ii) If j = 2,
x-1 . . X .
MYy =m +m) | +Z[21 "my+331—-1)2"%-4- (27" - 1)] +3 327+ 1)=3x-2" 42"+ 2x + 4
i=1 i=1
3
= Ek1 log,ki — ki + 2log,k; + 2.
Hence m) = (3ki +2)log,ki + 6'ks + 33 and we have a secret-sharing scheme with average information rate p; = 2. The
ky

result follows immediately. O
Next, we give the expression for m, for a k-weighted graph of general form.

Lemma 5.3. Let k=2%-(j+1)-1,x>0,j=2,3. If m, = Zﬁ‘ 1050 + Zf lﬂj‘ici is the sum of the orders of all subgraphs in the
covering II, of a k-weighted graph G, =W(ay,...,axCs,...,Cx). Then the values of ogy's and ﬁj‘i's can be obtained by the recursive

; X X Xx—1 x 1 X k-1 i iit
relations oy = ocjk_,+ 1=, B = ﬂxmﬂ +1 and O‘ﬂz = [3}_; 1, 1< >, with initial values
0 = g0
o ocjzfﬁjzflandﬁjlfocﬂfﬁ”fz

Proof. We prove this result by induction on x. When x =0, k =j, the occurrences of the vertices in A/s and C/s in I~7,- are
exactly the initial values oco s and f [ ’s respectively. For x >0, recall that G, is composed of W, = W(ar,... .y, 1,
Ciy.-- czx i1 W, = W(azx istyits - oo Ok Cxt(iigyegs - - Ck) and M = My, 7.1)-1- Each vertex in
A1<ig<kEl =2 1(j + 1) — 1, has the same occurrence in Hk as it does in the covering of W since it does not occur in either
W, or M. So, ocj"l = ocX 1. However, each vertex in C;, 1 <i < ,gams one more occurrence in H,c than it does in the covering
of W; because it also occurs in M. This is also true for vertices in A; and Ci,"*Tl = 2""(j +1)+1<i k because all of them
occur in graph M. Hence, we also have f; = fx +1, oc",mﬂ o' 4+ 1 and [f;k%] [fj‘,l + 1 for 1 < i < X1 Besides, the ver-
tices in A%l and C,HTl have occurrence one because they only appear in M. Hence, oc;‘_’,%1 = [)’j‘k%] = 1. This proves that the coef-
ficients of;'s and B;;'s satisfy the given recursive relations. O

Now, we consider the case when n = Zf‘zl (a; + ¢;) is fixed. By evaluating the minimum value of m,, we obtain the highest
possible average information rate of a secret-sharing scheme constructed with this covering.

Theorem 5.4. Let I' be a weighted threshold access structure represented by a k-weighted graph G=W(ay, ..., axcy, ..., ck) of
ordernand k= (j+1)2*- 1. If ¢;=1 for all i # k%land ai=1foralli¢T={1,2}u{(j+1)2'—i=0,1,...,x— 1}. Then

~ n
“(G) = : :
pr(e) 3(k+ 1logy(k+1) + (69 — 2)k + (87 + 1)

where 56U is given in Theorem 5.2.

Proof. The argument is similar to the proof of Theorem 4.6. From the relations given in Lemma 5.3, among all the coefficients
of a;'s and ¢;'s, only o¥ %, 1€T, and ﬂ}‘u are equal to one. So m, is minimized if a;=1 for alli¢ Tand ¢;=1 for all i # ’%1 We
T2

modify the expression for ﬁl‘,?z in the proof of Theorem 5.2 to meet what we need here. In this case,
My = MY, + 358 + Cea — (IT|+ 1) =) +n =2k =n+3 (k+ Dlogy (k+1) + (3” —2)k+ (8" +1).  The  secret-sharing
scheme for this access structure has average information rate a0
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Fig. 6.1. A comparison of the results in the case when p = 20.

This result is also very good when k is relatively small compared with n. The rate also approaches “1” asymptotically as k
fixed. After analyzing the average information rates produced from each of our constructions separately, we shall give a com-
parison of them in Section 6. For a fair comparison, we consider the same class of k-weighted graphs where k=3 - 2* — 2. We
present the highest possible average information rate for this class as follows.

Theorem 5.5. Let I" be a weighted threshold access structure represented by a k-weighted graph G, =W(ay, ..., aycy, ..., ci) of
ordernand k=3-2*-2.Ifc;=1foralli= Xand a;=1foralli¢ T={1}u{3-2"-1]i=0,1,...,x — 1}. Then

n

p*(Gy) = .
p1(G) n+ (3k+2)log,(k +2) — (2 +3log,3)k + % — 2log,3

Proof. Suppose UfleAi) U (Uf;lci) is the vertex set of G, where |A;| =a; and |G| =¢;,i=1, 2, ..., k. Denote {u} by Ap and {v}
by Co. Let (UffzoAi> U (UffzoCi> be the vertex set of the (k + 1)-weighted graph Gy.1 = W(|Ao|,a1,. . .,ax|Col,C1,. . .,Cx) of order
n+2 where k+1=3.2¥— 1. Then G+ satisfies the criteria in Theorem 5.4, and the sum i, ; of the orders of all subgraphs
in its covering Iy, is n+ 2 + 3 (k + 2)log, (k +2) + (3% — 2)(k + 1) + 6® + 1. Now, observe that Gy = i1 — (Ao U Co) and the
collection of subgraphs obtained from I14.; by deleting u and v from each subgraphs in 14, is exactly the complete mul-

tipartite covering II, of Gy since Gp.; is composed of W(\A0|,a1,...,agfl,\Co\,cl,.H,c%fl>,M§+]‘k+1 (in Gg+1) and
W(agﬂ,....,ak,c%w...,ck) and Gy is composed 0fW<a1,...7a%71,cl,...,cgfl).M%,k (in Gi) and W(a%w...,ak,c%w...,ck).

From the relations in Lemma 5.3, one can see that the occurrence of u in II;.; is one and the occurrence of v in II.; is
B3, =x+2=1log, (%) +2. Hence, the sum m; of the orders of all subgraphs in o, s
g —1— (log, (%) +2) =n+ Gk + 2)logy(k +2) — (3+310g,3)k + % — 2log,3. The result is then obtained. O

6. Conclusion
The weighted threshold access structure is a more applicable structure of secret-sharing schemes in reality. In the imple-

mentation of such a scheme, the value of k represents the number of departments or divisions in an organization. Let
= and p, = be the highest possible average information rate derived

1= 12n+k2+34l<—162())110g2 (&2)- n+(%k+2)log2(k+2)—?%Jr%logﬁ)k%—zlogﬁ
from our two constructions in Theorems 4.6 and 5.5, respectively. Both rates perform very well when n/k is large. If k is con-
stant, both rates approaches “1” asymptotically. Let n = uk where u represents the average size of departments in the orga-
nization. When p is larger, both p; and p, become higher as well for each value of k. Fig. 6.1 shows the behavior of Morillo’s
rate [19], p; and p, in the case when yu = 20. As indicated in the figure, p; performs better than p, when k < 30, whereas p,

becomes superior to p; for all k > 31. Actually, this fact remains true for all values of p. Therefore, Construction I is more
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suitable for organizations with fewer departments, whereas Construction II performs especially well for organizations with
more departments.

Dealing with average information rate is in general very tedious. In this work, we have demonstrated an approach to the
analysis of complicated results.
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