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Correspondence 

M-Ary Wavelet Transform and Formulation for 
Perfect Reconstruction in M-Band Filter Bank 

Ming-Haw Yaou and Wen-Thong Chang 

Abstract-The binary wavelet transform is generalized and extended 
to the Al-ary hiorthonormal case. The computational equivalence he- 
tween the discrete wavelet analysis and the ill-hand multirate signal 
filtering is indicated. The equivalence allows the perfect reconstruction 
requirement in a filter hank to he investigated from the vector space 
decompositionheconstruction in wavelet analysis. From the construction 
of the biorthonormal wavelet bases, the necessary and sufficient condition 
for the filters in a perfect reconstruction filter bank is formulated. Under 
this formulation, an additional optimization procedure is then used to 
model the frequency domain requirement in filter bank design. 

I. INTRODUCTION 

The design of arbitrary :\[-band filter banks for perfect recon- 
struction multirate signal filtering has been studied for a long period 
[ I]-[3]. Most methods address this issue based on the analysis of 
the transfer function of filter bank in either the time domain or the 
frequency domain. The perfect reconstruction (PR) constraint is spec- 
ified by making the input and the output of the multirate system equal. 
Recently, the wavelet transform has attracted considerable attention. 
It was found [4]-[6] that the multiresolution wavelet analysis can be 
implemented in the structure of a filter bank. This observation has 
raised great interest into research about the relationship between the 
two subjects. In [6]-[8], the equivalence in computational structure 
between the binary orthonormal wavelet transform and the two- 
band QMF has been indicated. In [14], the orthonormal wavelet 
transform has also been used for the formulation of PR in a filter 
bank. Recently, the orthogonality is shown not to be a necessary 
condition for the binary wavelet analysis [9], [IO]. This implies that 
the orthonormal (or lossless in [8]) filter bank is not the only solution 
for PR multirate signal filtering. More generally, the PR filter bank 
should be investigated from the biorthonormal wavelet analysis. 

In this correspondence, the binary wavelet analysis is generalized 
and extended to the case of the M-ary wavelet transform. This 
generalization allows us to investigate the PR constraint in multirate 
signal filtering from the point of view of signal space decomposi- 
tionheconstruction in wavelet analysis. The necessary and sufficient 
condition for PR can be explicitly formulated through the vector space 
analysis. With this wavelet analysis, the computational characteristics 
of a filter bank can be made more clear, and the relationship between 
the decomposed signals from all the channels can be described 
more precisely. In Section 11, we first extend the binary orthonormal 
wavelet analysis to the more general W a r y  biorthonormal case. This 
is done by using .\I - 1 wavelets 9 ' ( ~ ) ( , = ~ - ~ ~ - ~ )  and releasing the 
orthonormal condition to the looser biorthonormal one. From this 
extension, we indicate the connection between the wavelet analysis 
and :\I-band multirate signal filtering in Section 111. Then, in Section 
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IV, based on the constraints in the construction of the general 
biorthonormal wavelet bases, the necessary and sufficient condition 
for the PR of the arbitrary M-band filter bank is derived. Based on 
this PR condition, additional distinct requirements of the wavelets and 
the filter bank such as regularity and frequency response are addressed 
in Section V. These characteristics lead to different considerations 
in the practical construction of the two subjects. Finally, in Section 
VI, an optimization procedure is proposed for the frequency domain 
consideration in the PR filter bank design. Design examples are also 
presented. 

11. -11 -ARY B~ORTHONORMAL WAVELET ANALYSIS 

The basic idea of binary orthonormal wavelet analysis is to 
represent a function F( .r )  E L2((R)  (finite energy real function) as 
a limit of successive approximations, each of which is a smoothed 
version of F( . r ) .  The analysis is performed by using a set of bases 
{a,,,,, ( . I . ) }  to expand a continuous function F(.r) .  These bases are 
generated by dilating and translating a prototype function @ (  .I.) 
called the scaling function. In addition, the difference between 
two approximations can be obtained by expanding the signal with 
another set of bases { Q , r L 7 L ( . r ) ) ,  which is generated by another 
prototype function Q( . r )  called the wavelet. In the orthonormal case, 
the basis sets { @ , , , , L ( . r ) }  and { 9 1 n ( . r ) }  are mutually orthogonal 
and both are orthonormal bases. This leads the binary orthonormal 
wavelet analysis to a signal projection operation that projects signals 
onto a subspace V,,, spanned by {@,,,,,(.I.)} and its orthogonal 
complement W,, spanned by {9r,ln(.r)}. From the basic concept 
of signal space decomposition [ 1 I]. complementary subspaces only 
have to be disjoint. The orthonormal requirement can be released. 
This observation was also pointed out in [9] and [IO].  

To generalize the binary orthonormal framework to the 41-ary 
biorthonormal case. two steps are involved. First, the single wavelet 
9 ( . r )  is extended to :If - 1 wavelets ~ ' ( . r ) . ~ t = l . - ~ ~ - l , .  This leads 
the binary wavelet analysis to the :If-ary case, which projects signals 
onto the subspace V,,, and the 21 - 1 complementary subspaces 
W;,).L,=,wjf-l ,  spanned by the bases { * ~ ~ ~ , ~ ( . r ) } , ( , = ~ - ! ~ ~ - l ) .  Sec- 
ond, the orthogonality between the complementary subspaces is 
released to the looser biorthogonal case. This can be done by introduc- 
ing I f  dual functions @ ( x )  and Q'(.~),(,=,-\I-~) of the functions 
@ ( x )  and *'(.r).(,z,-:,f-Lj. These dual functions generate the dual 
bases {&,,,,,(.I.)} and {%:tt,L(.r)} such that { & n 1 7 t ( . r ) , @ , n 7 z ( ~ ) }  and 
{ 9 : , , , , ( . r ) ,  @:,zTt(,r)} are biorthonormal bases [12]. In addition, these 
bases are defined as a,,,,, ( .r)  b ~ I f y  @ (  4f-"'.r - 11 ), &,,,, ( . r )  

A \ I ~ & ( J - 7 i f , ~  - I I ) ,  9t,3,t(.r) A A ~ ~ 9 ' ( ~ ~ f - 7 i t . r  - I ] ) ,  and 

With this generalization, the :If-ary biorthonormal wavelet analysis 

-,n - 
* : , > n ( * I . )  e A T 9 ' ( ~ l f - " L , r  - 7 1 )  .,,= 1 - A - I j .  

can be expressed as 
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where the operator ((1.6) stands for the inner product of function o 
and b. The signal P,,, f' is an approximation of F (  . r )  at resolution t u .  

The signals F,, - ? , I  - I )  are the differences between approxima- 
tions P,,,- F and E',,, F .  Applying this wavelet analysis. a continuous 
signal can be decomposed into its lower resolution versions and the 
associated JI - 1 differences (details). Each lower resolution version 
can be decomposed in a similar way. The original signal can also be 
perfectly reconstructed by summing its lower resolution versions and 
details together. The perfect decompositionheconstruction property is 
promised by the biorthogonality of the embedded closed subspaces 
defined as V,,, = span{+',,,,, ( x ) } .  V1,, = span{$,,,,,(.r)}. Wf,, = 
span{q~7,7t(.r)}, and W:,! = ~ p a i i { ~ ~ ~ , ~  ( x ) } .  The multiresolution 
biorthogonal space system can be expressed as 

To satisfy the biorthogonal requirement, the corresponding and the 
bases can be described as 

(+,)!A. = 0 ( & ! A .  *:d) = ( I . ( , - !  , - . l r - l )  

( K t ? A '  = o.,,,#J) . (4) 

From the embedded closed property of the projection spaces, the 
prototype functions @(. r )  E VO and q ' ( . r )  E W;, can be expanded 
by the wavelet basis +- 1 , I  ( , I . )  A -21: @ (  Jf .i' - t/ ) of subspace V-1, 

i.e., @ ( x )  and q ' ( . r )  can be represented as the linear combination of 
the wavelet basis ( r ) .  That is 

@ ( . r )  = -&,O(tl)+(JIJ - I t )  

* ' ( . / ' ) = I f f  ~ ~ , , ( I t ) ~ ( - ~ ~ . r - ~ J ) . i ~ = ~ - , ~ f - , ~  ( 5 )  

yo[J?] = 2 \ I ~ ( ~ ( . t ' ) . & ( - \ ~ . l '  - t / ) )  

y , [ ~ / ]  = ~ ~ f + ( ~ ' ( . ~ ) . ~ ( ~ ~ ~ . i , -  t i ) ) . ( , = l - n l - l ) .  (6) 

Similar results can be derived for the dual prototype functions & ( . r )  
and * ' ( . r )  

&.r) = M i  ~ h ~ l ( t i ) & ( L ~ L i ~  - I f )  

i J ' ( X )  = J I +  p , ( / / ) * [ . \ f . t  - U ) . ,  ,=,-. \/..,) (7) 

h , l [ f J ]  = . l ~ ~ ( $ ( . l ' ) . ~ ( ~ ~ f . f '  + I t ) )  

h , [ ) / ]  = AlfT(4!'( . ( ' ) .@(i l f .r  + / / ) ) . ( , = l s . i l - - L ) .  
1 -  

(8) 

Equations ( 5 )  and (7) indicate that the prototype functions are 
characterized simply by the time-scale versions of the two scaling 
functions @ ( . I . )  and +(r) ( in  orthonormal case by one scaling 
function +( . r )  only). This time-scale property plays an important 
role in the derivations of wavelet bases. 

111. FILTER BANK S-rwcrum I N  DISCREIE WAVELET ANALYSIS 
The discrete sequences f , ? ) [ t t ]  and t l : , , [ ~ r ]  i n  ( I )  and (2) are the 

discrete approximations of the continuous signals P,,, F and U:,, F .  
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The multiresolution wavelet analysis can be exactly characterized by 
these discrete sequences. This discrete property maps the analysis 
signal space from L2 (R) onto I" (2) (finite energy sequences) and 
provides a powerful tool to deal with sampled signals. The decom- 
position of a discrete sequence f,,-,[n] into the lower resolution 
sequence f, ,[ t~] and dh[n] can be expressed as 

This result can be easily derived by taking the inner product of F( .r )  
with both sides of (7). In addition, applying (5) and the fact that 
f , , , - ,[n] = ( F ( , r ) . @ 7 , , - 1 7 1 ( . r ) )  = (P,,F + Q o z F . @ 7 , z - ~ r L ( . r ) ) ,  the 
reconstruction of f , , 2 - - l [ i i ]  from fTn[n] and &[n] can be derived as 

fm-1  (4 = fm[k]go[7t - M k ]  
L 

The sequences y, [ I ! ]  and h ,  [ n ]  are simply the coefficient sequences 
in the time-scale property described in (6) and (8). Equations (9) and 
(10) define the relationship between the discrete signal f , t t - ~ [ n ]  and 
its lower resolution signals f m  [I)] and d:,! [n] in the W a r y  case. These 
two equations establish the M -ary discrete biorthonormal wavelet 
analysis. This discrete analysis can be interpreted as a discrete signal 
decompositionheconstruction process performed by the two sets of 
discrete sequences h ,  [ n ]  and y, [n]. In decomposition, a discrete signal 
f t , i - l [ t ~ ]  is convolved with the 114 sequences h , [ - n ] , ( , = o - . ~ ~ - l )  
to generate M subsignals. Then, the Ai' subsignals are subsampled 
subsequently to obtain the lower resolution discrete signals f m  [11] and 
dLn [U]. In reconstruction, the lower resolution discrete signals are first 
upsampled and convolved with the M sequences yt [7)].,,,=0~~11-1 

Then, the J f  convolved signals are combined to reconstruct the orig- 
inal signal. With these digital filtering notations, the decomposition 
and reconstruction of fn,- 1 [ n ]  by the discrete wavelet analysis can 
be represented by a filter bank-like structure as illustrated in Fig. I .  

By representing the discrete wavelet analysis in a filter bank-like 
structure, the connection between the wavelet analysis and multirate 
signal filtering can be easily observed. In this representation, the 
discrete sequences h i  [ - n ]  and y, [ n ]  can be treated as the analysis 
filters and the synthesis filters in the M-band multirate filter bank. On 
the other hand, the filtering and sampling operations in a filter bank 
can also be described from the signal projection and recombination 
point of view. This interpretation enables the construction of PR 
multirate signal filtering directly in terms of the signal space analysis. 

IV. BASES CONSTRUCTION AND PR CONDITION 
As illustrated in Fig. 1, the discrete 31-ary wavelet analysis can be 

processed in a filter bank structure with critical sampling factor )If. 
From the discussion in Section 11, the coefficient sequences 11 [ 1 / ]  and 
y, [ t i ]  in the time-scale property will uniquely determine the prototype 
functions and, consequently, the wavelet bases used in the continuous 
wavelet analysis. In addition, it has been shown that the analysis 
and synthesis filters are exactly the same as the sequences h , [ t i ]  and 
y, [ t i ] .  Thus, it is clear that these filters in the multirate signal filtering 
can be uniquely determined from the wavelet bases in the wavelet 
analysis. This observation allows us to investigate the PR condition 
in multirate filtering from the signal space projection point of view. 
As discussed in Section 11, the signal decompositionheconstruction 
in wavelet analysis is promised by partioning the signal space 
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Fig. 1. Filter bank " m e  in !\I-ary biorthonormal wavelet transform. 

into a family of embedded closed subspaces and the associated 
complementary subspaces, i.e., to construct the wavelet bases a5 
the biorthonormal system described in (4). It can be proven by 
induction that the biorthonormal basis construction is equivalent to 
the following constraints: 

(W.r - k ) , & ( . r  - 2 ) )  = 6 C l  (W(.r - k ) , G J ( . r  - 1 ) )  = hk ,h , ,  

(a(.? - k ) , G ' ( . r  - 1 1 )  = o ( Q L ( . r  - k ) . & ( s  - 1 ) )  = 0. ( 1  1) 

Substituting the time-scale property of the prototype functions de- 
scribed in ( 5 )  and (7) into the above equations, the constraints on the 
filters g , [ n ]  and I r , [ - n ]  can be derived as 

c S , [ ' ! ] h , [ J l P  - 171 = h ~ . J f i P . ! D - r . , ~ ~ ~ l - l . p E Z 1  , (12) 

This compact result indicates the necessary and sufficient condition 
for PR requirement in the general M-band multirate signal filtering. 
Equation (14) is derived based on the general biorthonormal wavelet 
analysis. As described in Section 11, in its special orthonormal case, 
the biorthonormal wavelet basis system will become one orthonormal 
basis set. It leads the two sets of dual prototype functions to be 
identical. Therefore, the special orthonormal case of (14) can be 
written as 

In this orthonormal case, the analysis filters h ,  [ - r l ] , ~ , = , l - . ~ ~ - l l  are 
the same as the synthesis filters gi[t~].(,=o-2Lf-L) with a pure time 
reverse. It can be seen that this result is the same as the paraunitary 
condition derived in [ 11. However, based on the concept of wavelet 
analysis, both this orthonormal condition and the more general 
biorthonormal condition can be explicitly derived. In the general 
biorthonormal case, the '21-ary wavelet analysis leads to the 31- 
band PR critical sampling filter bank that decomposes signals into AI 
disjoint subspaces. In the special orthonormal case, the biorthonormal 
wavelet basis system will merge into one orthonormal bases set. This 
leads to the PR filter bank with identical analysis and synthesis filters, 
which decomposes signals into :lif mutually orthogonal subspaces. 
A further discussion of the signal projection property in multirate 
signal filtering can be found in [ 151. From the point of view of signal 
space projection, the PR property can be formally discussed under the 
concept of disjoint signal space decompositionkeconstruction. This 
allows us to derive the necessary and sufficient condition explicitly, 
although it is not obvious in other approaches. 

v .  PRACTICAL CONSIDERATIONS ON WAVELETS AND FILTER BANKS 

As discussed previously, the wavelet bases are uniquely deter- 
mined by the scaling functions @(.?), 6 ( , r )  and the wavelets Q ' ( . r ) ,  
4' (.r ). From the time-scale property, these prototype functions are 
determined by the sequences h [n]  and gt [ n ] .  Therefore, h , [I!]  and 
y, [n] will uniquely determine the wavelet bases. However. several 
important properties need be considered for practical applications. 
Taking the Fourier transform of ( 5 )  and (7), we have 

Normalizing the scaling functions @(.r )  and 6i .r)  by JTz @(.r)d.r 

= JTz &(,r)d.r  = 1 and applying the above equations iteratively, 
one obtains 

& ( U % )  = W~GD( . \ I - 'w)  
35 

h = L  

k = i  
00 

$ ( t o )  = n - I f + H , ( J - L ) .  (15) 

This result indicates that the scaling functions and wavelets can be 
generated iteratively from the Fourier transforms of h , [ n ]  and {J, [ U ] .  

which are the filters to be derived for a PR filter bank. In fact, most 
of the existing wavelets are generated using this method [6] ,  191, 
[ IO] .  In (15), the basic requirement of the iterative method is to 
make sure that the iteration will converge. This implies that certain 
constraints on regularity are needed for deriving useful wavelets. 
Various method have be proposed [6],  [9], [IO],  [13] to address this 
regularity requirement. Basically, these methods require the frequency 
responses of the low-pass filters h o [ - n ]  and go[r i ]  to have as many 
zeros as possible at the frequency x. It was also indicated that the 
converged functions are better at being compactly supported. This 
can be done by forcing the filters h i  [ I , ]  and y, [ I I ]  to be FIR filters. 

On the other hand, there exist some distinct requirements in the 
design of filter bank. Besides the PR requirement, the frequency 
responses of the analysis and the synthesis filters in a filter bank are 

k = l  
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-8.91103410e-02 -3.67949327e-01 8.91103410e-02 2.89882106e-01 -5.92821834e-15 2.89882106e-01 
3.20071193e-14 4.57204319e-15 3.20071193e-14 1.15506494e-01 -5.59469596e-02 -1.15506494e-01 
4.46471453e-02 1.84354441e-01 -4.46471453e-02 4.33114553e-15 1.87926995e-15 4.33114553e-15 
-2.90961044e-14 -4.40952469e-15 -2.90961044e-14 -6.47505158e-02 3.13626910e-02 6.47505158e-02 

usually excepted to be a set of consecutive equal-bandwidth frequency 
channels distributed in [O. T I .  This can be achieved by minimizing 
the stop-band energy and the pass-band ripple of the associated filter. 
In addition, the filters in PR multirate signal filtering are not restricted 
to be FIR ones. Hence, the wavelet analysis and PR filter bank have 
some practical differences beyond their fundamental similarity. In this 
correspondence, we consider only the FIR filter bank design with (12). 
An optimization procedure for the frequency domain consideration of 
filter bank design will be addressed in the next section. 

VI. FREQUENCY DOMAIN OPTIMIZATION FOR THE FILTER BANK 
For practical application, an optimization procedure is usually used 

to constrain the stop-band energy of filters. This leads the filter bank 
design to a constrained minimization problem as 

Subject to (12) (16) 

where S,.( ,=(,- are the ranges of stopbands for the -11 frequency 
channels. Letting filters !/,[ti] and g,[u] be described as h,  = 
[ / i , [ ~ ] ! t , [ l ] . " / ~ , [ ~ ~  - 111' and g ,  = [g~[O]9 , [1] . . .g , [ i~- -  l ] l r ,  the 
Objective function can be reformulated as 

Q, = 2 1 (CC' + ss' )rlw (17) 

where vector c [co\(O) cos( 713 j . . . cos( (:\: - 1)a j]' and vector 
s A [siii(O) sill( 1 1 ' )  . . . .in( (S - l ) ~ ) ] ~ .  Denote the constraints 
described i n  (12) as D ~ ( h , . g , )  = O . , A = , ~ . ~  , I  and applying the 
Lagrange multiplier [ 161. the constrained minimization problem can 
be expressed as the minimization of the following Lagrange function 
L.  

- CXADk(h,,gO. (18) 
A 

The minimization of the above Lagrange function can be achieved by 
forcing the hrst order derivatives of the Lagrange function to be zero. 
Define the vector operators Th? = I&& . . .  +IT, 
rg, = [LL . . .  d 1 < I  0 

<,<,,[U] d q r [ l ]  ,dg,[\-l]1 ' a n d r x c  = [,,--...'IT, < ) X I  C I A L  

5 

0 0.2 0.4 0.6 0.8 1 

Noiiii;iliz.cd Frequency 

Fig. 2. Frequency response of the analysis filters listed in Table I 

and then, the first-order condition can be expressed as vhtL = 0, 
Vgt L = 0, and Vx, L = 0. This leads the optimization problem to 
the following nonlinear equations: 

Q,h; - CXk(GhiBk(ht ,gt))=O, 
k 

Qigi - x X k ( V g , B k ( h , , g t ) )  = 0, (19) 
k 

Bk(hi.gt) = O. , ,k=1 ,2  ,... ). 

With the above derivation, the constrained minimization problem for 
PR filter bank design can be transferred into a system of nonlinear 
equations. To solve this system of nonlinear equations, Newton's 
method is chosen for its quick convergence. To make Newton's 
method more stable and to achieve a global convergence, a modified 
Quasi-Newton method proposed by Dennis [ 171 is applied for our 
implementation. An example of a three-band filter bank with equal- 
bandwidth and length 12 is shown in Table I. The frequency responses 
of the analysis filters and the synthesis filters are shown in Fig. 2 
and Fig. 3, respectively. A test input sequence used to measure 
the reconstruction performance of the designed filter bank and the 
reconstructed output sequence are listed in Table 11. The delay 
between the input sequence and the output sequence is equal to the 
order of the filters. 
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-40 I 
0 0.2 0.4 0.6 0.8 1 

Normalized Frequency 

Fig. 3. Frequency response of the synthesis filters listed in Table I 

VII. CONCLUSION 
By generalizing the wavelet analysis to the M-ary biorthonormal 

case, the equivalence in the computational structure between the 
arbitrary M-band multirate signal filtering and the multiresolution 
wavelet analysis is established. The two subjects are equivalent under 
the theory of multiresolution signal decompositionheconstruction. 
Based on the vector space analysis, the design of the M-band filter 
bank can be interpreted as the construction of the wavelet bases 
for the multiresolution wavelet analysis with resolution step M. 
With this signal decomposition perspective, the operation of multirate 
signal filtering can be built on the concept of multiresolution signal 
projection. The PR problem of filter bank can then be solved directly 
from the constraints in the construction of wavelet bases. 
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