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Abstract We consider the problem of identifying multiple outliers in a general class
of beta regression models proposed by Ferrari and Cribari-Neto (J Appl Stat 31:799–
815, 2004). The currently available single-case deletion diagnostic measures, e.g., the
standardized weighted residual (SWR), the Cook-like distance (LD), etc., often fail
to identify multiple outlying observations, because they suffer from the well-known
problems of masking and swamping effects. In this article, we develop group deletion
diagnostic measures, such as generalized SWR, generalized LD, generalized DFFITS
and generalized DFBETAS, and suggest a simple procedure for identifying multiple
outliers using these. The performance of the proposed methods is investigated through
simulation studies and two practical examples.

Keywords Beta regression · Multiple outliers · Generalized SWR ·
Generalized LD · Generalized DFFITS · Generalized DFBETAS

1 Introduction

Many fields of studies involve data in the form of percentages, rates or proportions
that are measured continuously in the open interval (0, 1). For example, one may be
interested in modeling the proportion of income spent on food as a function of the
level of income and the number of persons in the household. The beta distribution is
a flexible and useful tool for modeling data on the standard unit interval (0, 1), since
the beta density can display quite different shapes depending on the values of the
parameters that index the distribution; see, for example, Kieschnick and McCullough
(2003).
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1640 L.-C. Chien

Ferrari and Cribari-Neto (2004) proposed a class of beta regression models which
is the class of models derived from generalized linear models (GLMs), except the
response variable is not from a linear exponential family distribution. Under gener-
alized beta linear models (GBLMs), they developed maximum likelihood inference
including parameter and interval estimation, and also hypothesis tests. They provided
complete inference tools for the new class of models. The tools are freely available
in the R package betareg. See Cribari-Neto and Zeileis (2010) for details. Hence, the
execution of the beta regression techniques in practical problems is convenient.

Identifying observations that may affect the results of a regression analysis is a
fundamental step in regression model building processes. In general, observations that
lie well outside the majority of the data are termed outliers, in the sense that outliers
come from a different probability distribution or from a different deterministic model
than the mass of the data. The existence of outliers always distorts the outcome and
accuracy of regression results, and hence, outliers must be detected in the regression
analysis processes.

In GBLMs, to identify the outlying observations that depart from the postulated
model of the bulk of the data, some authors have provided guidelines for diagnos-
tic analysis. For example, Ferrari and Cribari-Neto (2004) provided some diagnostic
measures to identify atypical observations and to detect model misspecification. Espin-
heira et al. (2008a) proposed two new beta residuals and numerically compared their
behavior to those originally suggested by Ferrari and Cribari-Neto (2004). The results
indicate a preference for one of the new residuals, more specifically the residual that
accounts for the different leverages of the observations. On the other hand, Espin-
heira et al. (2008b) developed the Cook-like distance (LD) to measure the effects of
influential observations on regression parameter estimates of GBLMs.

These currently available outlier measures and influence diagnostics seem to be
available only when the data merely contain a single outlier. However, if the data
contain more than one outlying observation, these existing methods may become
ineffective, due to the problems of masking and swamping effects. Hence, multiple
outlier detection methods that are free from these problems are proposed in this article.

This article unfolds as follows. Section 2 contains a concise review of GLBMs pro-
posed by Ferrari and Cribari-Neto (2004). In the next section, we briefly introduce
some of the current diagnostic tools, e.g., the standardized weighted residual (SWR),
LD, etc. We also define the GBLM versions of the influence measures DFFITS and
DFBETAS in this section. In the section after, we introduce SWR, LD, DFFITS and
DFBETAS based on group deletion techniques and suggest an easy procedure for
detecting multiple outliers using these group deletion diagnostics. Sections 5 and 6
illustrate applications of these newly proposed deletion diagnostic methods in simu-
lated and real data examples, respectively. Finally, in Sect. 7, some conclusions about
these proposed diagnostic measures are set out.

2 Beta regression model

The probability function for a single response variable Y in a GBLM (Ferrari and
Cribari-Neto 2004) is
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Multiple deletion diagnostics in beta regression models 1641

f (y;μ, φ) = �(φ)

�(μφ)�((1 − μ)φ)
yμφ−1(1 − y)(1−μ)φ−1, 0 < y < 1 (1)

where 0 < μ < 1, φ > 0 and�(·) is the gamma function. The mean and variance of Y
are E(Y ) = μ and V ar(Y ) = V (μ)/(1 + φ), respectively, where V (μ) = μ(1 − μ)

is a variance function. Note that φ can be viewed as a precision parameter, in the sense
that, for a fixed mean μ, the variance of Y decreases as φ increases. Here our concern
is with the mean parameter μ, and φ may be viewed as a nuisance parameter.

Now consider observations y1, . . . , yn which are regarded as realizations of inde-
pendent random variables Y1, . . . ,Yn and each yi , i = 1, . . . , n, follows the density
(1) with mean μi and unknown precision φ. The mean of Yi involves explanatory
variables through a link function g(·), so that g(μi ) = ηi where ηi = xT

i β =
β1xi,1 + β2xi,2 + · · · + βpxi,p. Here ηi is a linear predictor, xi = (xi,1, . . . , xi,p)

T

is a p-vector of explanatory variables, β = (β1, . . . , βp)
T is a p-vector of unknown

regression parameters, and g(·) is a strictly monotonic and twice differentiable link
function that forms a mapping from the interval (0, 1) to R. The parameters β and
φ can be estimated by maximum likelihood methods that can easily be implemented
through the R package betareg. For details, see Cribari-Neto and Zeileis (2010).

3 Measures of influence based on single-case deletion diagnostics

In this section, we succinctly review the currently available single-case deletion diag-
nostic methods. We also define the GBLM versions of the influence measures DFFITS
and DFBETAS according to the classical versions of DFFITS and DFBETAS estab-
lished under the normal regression settings and discussed in Subsection 2.1 of Belsley
et al. (1980).

3.1 Assessing the influence of case deletion on residuals

This subsection is focused on the single-case outlier identification tools which use the
residuals to detect the atypical observations and check model adequacy. We review
the weighted residual (WR) and SWR proposed by Espinheira et al. (2008a).

WR and SWR. Espinheira et al. (2008a) defined WR for point i as

r∗
i = y∗

i − μ̂∗
i

√

̂φv̂i

(2)

where y∗
i = log(yi/(1 − yi )), μ̂

∗
i = ψ(μ̂îφ) − ψ((1 − μ̂i )̂φ), v̂i = {ψ ′(μ̂îφ)+ ψ

′

((1 − μ̂i )̂φ)} and ψ ′(·) is the trigamma function. Here the symbol “ˆ” is used for
quantities that are evaluated at parameter values of the maximum likelihood solution
based on all observations. Then the standardized version, SWR, for point i is defined by

rwwi = r∗
i

√

(

1 −̂hi
)

/̂φ

= y∗
i − μ̂∗

i
√

v̂i
(

1 −̂hi
)

(3)
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where ̂hi is the i th diagonal element of ̂H = ̂W
1/2

X(XT
̂WX)−1XT

̂W
1/2

and ̂W
1/2

is a symmetric square root of ̂W . Here X = (x1, . . . , xn)
T and ̂W = ̂φ̂ĜV̂G with

diagonal matrices ̂G = Diag(1/g′(μ̂1), . . . , 1/g′(μ̂n)) and ̂V = Diag(̂v1, . . . , v̂n).
An excessively large or small value of WRi or SWRi indicates point i having an
unusual residual.

3.2 Assessing the influence of case deletion on regression parameter estimates

This subsection is concerned with the single-case influence identification tools which
measure the influence of deleting one observation on the regression parameter esti-
mates or on the fitted values. We review LD proposed by Espinheira et al. (2008b) and
propose the GBLM versions of the influence measures DFFITS and DFBETAS.

LD. Espinheira et al. (2008b) defined LD for point i as

LDi =
(

̂β − ̂β
(−i)

)T (

̂φXT
̂WX

) (

̂β − ̂β
(−i)

)

where ̂β
(−i)

is the maximum likelihood estimator (MLE) of β without the i th obser-
vation. From the approximate relation

̂β
(−i) ≈ ̂β −

(

XT
̂WX

)−1
xi ŵ

1/2
i

1 −̂hi
r∗

i (4)

where ŵ1/2
i is the i th diagonal entry of ̂W

1/2
, it follows that

LDi ≈
(

r∗
i

1 −̂hi

)2
̂φ̂hi = (

rwwi

)2 ̂hi

1 −̂hi
. (5)

A large LDi indicates that point i has a large impact on ̂β.
DFFITS. We define DFFITS for point i as

DFFITSi =
ŵ

1/2
i xT

i

(

̂β − ̂β
(−i)

)

√

̂hi
/

̂φ(−i)

which, in view of (4), is expressed by

DFFITSi ≈ r∗
i

√

1 −̂hi

√

̂hîφ(−i)
√

1 −̂hi

= rwwi

√

̂φ(−i)

̂φ

√

̂hi

1 −̂hi
(6)

123



Multiple deletion diagnostics in beta regression models 1643

where ̂φ(−i) is the MLE of φ with observation i omitted. Using (6), we obtain, from
(5), that

LDi = (DFFITSi )
2

̂φ

̂φ(−i)
.

An extreme DFFITSi implies that observation i is influential on the weighted fit,
ŵ

1/2
i xT

i
̂β.

DFBETAS. We define DFBETAS for point i for β j as

DFBETASi j =
̂β j − ̂β

(−i)
j

√

(

XT
̂WX

)−1
j /

̂φ(−i)

where (XT
̂WX)−1

j is the j th diagonal element of the inverse of XT
̂WX, (XT

̂WX)−1.

Let c ji be the j th component of the p-vector (XT
̂WX)−1xi ŵ

1/2
i . We then have

DFBETASi j ≈ r∗
i

√

̂φ(−i)

1 −̂hi

c ji
√

∑n
i=1 c2

j i

= rwwi

√

̂φ(−i)

̂φ(1 −̂hi )

c ji
√

∑n
i=1 c2

j i

. (7)

A large absolute value of DFBETASi j shows that observation i is influential on ̂β j .

4 Measures of influence based on group deletion diagnostics

In this section, we introduce the group deletion diagnostic measures and suggest
a diagnostic procedure for detecting multiple outlying observations using these. We
assume that d observations among a set of n observations are unusual observations and
omitted before the fitting of the model. Let [R] index a set of the (n − d) observations
that are remaining in the analysis after deleting a set of the d unusual observations
indexed by D.

Let y∗ = (y∗
1 , . . . , y∗

n )
T ,μ = (μ1, . . . , μn)

T and μ∗ = (μ∗
1, . . . , μ

∗
n)

T be
the n × 1 vectors. Without loss of generality, we assume that observations to be
deleted are the last d components of y∗ and X, so that y∗T = (y∗T[R], y∗T

D ) and

XT = (XT[R],XT
D). Let ̂β[R],̂φ[R], μ̂[R], μ̂∗[R],̂V [R],̂G[R] and ̂W [R] be the MLEs,

respectively, of β, φ,μ,μ∗,V,G and W without the d observations in the deletion
set D. Let ̂W

−1
[R] be the inverse of ̂W [R]. Then write

z[R] = X̂β[R] + ̂W
−1
[R]̂G[R]

(

y∗ − μ̂∗[R]
)

(8)

and partition ̂W [R] as

̂W [R] = ̂φ[R]̂G[R]̂V [R]̂G[R] =
⎡

⎣

̂W [R][R] 0

0T
̂WD[R]

⎤

⎦
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1644 L.-C. Chien

with diagonal matrices ̂W [R][R] and ̂WD[R] being related to observations from the [R]
and D sets, respectively, in which 0 is a zero matrix of order (n − d) × d. When
a group of observations D is omitted, we define the leverage measure for case i as
̂hi[R] = ŵ

1/2
i[R]xT

i (X
T[R] ̂W [R][R]X[R])−1xi ŵ

1/2
i[R] where ŵ1/2

i[R] is the i th element of ̂W
1/2
[R]

that is a symmetric square root of ̂W [R].

4.1 Identifying multiple outliers using group-deleted versions of WR and SWR

The generalized WR (GWR) and the generalized SWR (GSWR), based on group
deletion techniques, are proposed by the single-case outlier detection measures WR
and SWR.

GWR. For point i from the [R] set, WR is defined, in view of (2), as

r∗
i[R] = y∗

i − μ̂∗
i[R]

√

̂φ[R]v̂i[R]
(9)

where μ̂∗
i[R] = ψ(μ̂i[R]̂φ[R])−ψ((1 − μ̂i[R])̂φ[R]) and v̂i[R] is the i th diagonal unit of

̂V [R]. Using (8), r∗
i[R] is expressed in the alternative form by

r∗
i[R] = ŵ

1/2
i[R]

(

zi[R] − xT
i
̂β[R]

)

(10)

which is called the internal WR (IWR), because the point i is from the [R] set.
In view of (10), WR for point i from the D set is defined as r∗

i[R+i] = ŵ
1/2
i[R](zi[R] −

xT
i
̂β[R+i]) where notations “̂ ” and “[R + i]” are used for quantities that are evaluated

at parameter values of the maximum likelihood solution based on the remaining set
[R + i], which consists of (n − d + 1) observations with the point i from the D set
and the others from the [R] set. Using

̂β[R+i] ≈ ̂β[R] +
(

XT[R] ̂W [R][R]X[R]
)−1

xi ŵ
1/2
i[R]

1 +̂hi[R]
r∗

i[R], (11)

r∗
i[R+i] is equivalently expressed in the form

r∗
i[R+i] = r∗

i[R]
1 +̂hi[R]

(12)

which is called the external WR (EWR), because the point i is from the D set. Then
GWRi for any data points is defined by (9) for i in [R] and by (12) for i in D.

GSWR. For point i from the [R] set, the internal SWR (ISWR) is defined, using (3),
as

I rwwi[R] = r∗
i[R]

√

(

1 −̂hi[R]
) /

̂φ[R]
. (13)

123



Multiple deletion diagnostics in beta regression models 1645

On the other hand, for point i from the D set, the external SWR (ESWR) is defined,

using (13), as Erwwi[R+i] = r∗
i[R+i]/

√

(1 −̂hi[R+i]) / ̂φ[R+i]. By writing

̂hi[R+i] = ŵ
1/2
i[R]x

T
i

(

XT[R] ̂W [R][R]X[R] + xi ŵi[R]xT
i

)−1
xi ŵ

1/2
i[R] = ̂hi[R]

1 +̂hi[R]
(14)

and using (12), ESWR is seen to be equal to

Erwwi[R+i] = r∗
i[R]

√

(

1 +̂hi[R]
) /

̂φ[R+i]
. (15)

Then GSWRi for any data point is defined by (13) for i in [R] and by (15) for i in D.
In fact, group deletion residuals for both the [R] set and the D set, which are

measured based on a similar scale, have received a great deal of attention in the
literature in recent years. For example, similar residuals were derived by Hadi and
Simonoff (1993) for detecting multiple outliers in linear models and, later, a similar
diagnostic technique was sketched by Atkinson (1994). In addition, this type of residual
was introduced, under linear regression and logistic regression, by Imon (2005) and
Imon and Hadi (2008).

4.2 Identifying multiple outliers using group-deleted versions of LD, DFFITS
and DFBETAS

The generalized LD (GLD), the generalized DFFITS (GDFFITS) and the generalized
DFBETAS (GDFBETAS), based on group deletion techniques, are proposed by the
single-case influence detection measures LD, DFFITS and DFBETAS.

GLD. For point i from the [R] set, the internal LD is computed by

ILDi =
(

̂β[R] − ̂β
(−i)
[R]

)T (

̂φ[R]XT[R] ̂W [R][R]X[R]
) (

̂β[R] − ̂β
(−i)
[R]

)

whereas, for point i from the D set, the external LD is computed by

ELDi =
(

̂β[R+i] − ̂β[R]
)T (

̂φ[R+i]XT[R+i] ̂W [R+i][R]X[R+i]
)

(

̂β[R+i] − ̂β[R]
)

where ̂W [R+i][R] is an (n−d+1)×(n−d+1) diagonal matrix, in which the first (n−d)
diagonal units are relative to observations from the [R] set and the last diagonal unit is
relative to the point i from the D set. GLDi is derived by combining ILDi and ELDi .
Through (11) and using XT[R+i] ̂W [R+i][R]X[R+i] = XT[R] ̂W [R][R]X[R] + xi ŵi[R]xT

i
and

̂β[R] ≈ ̂β
(−i)
[R] +

(

XT[R] ̂W [R][R]X[R]
)−1

xi ŵ
1/2
i[R]

1 −̂hi[R]
r∗

i[R], (16)
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GLDi is expressed in terms of I rwwi[R] and ̂hi[R] as

GLDi =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(I rwwi[R])2
̂hi[R]

1−̂hi[R]
if i ∈ [R]

(

I rwwi[R]
)2 (1−̂hi[R])̂hi[R]

1+̂hi[R]
̂φ[R+i]
̂φ[R]

if i /∈ [R].
GDFFITS. The internal DFFITS (IDFFITS), for point i from the [R] set, is defined

by

IDFFITSi =
ŵ

1/2
i[R]xT

i

(

̂β[R] − ̂β
(−i)
[R]

)

√

̂hi[R]/̂φ(−i)
[R]

whereas the external DFFITS (EDFFITS), for point i from the D set, is defined by

EDFFITSi = ŵ
1/2
i[R]xT

i

(

̂β[R+i] − ̂β[R]
)

√

̂hi[R+i]/̂φ[R]
.

Together these IDFFITSi and EDFFITSi give GDFFITSi for point i in the entire
data set. Using (16) in conjunction with (11) and (14), it turns out that GDFFITSi is
displayed in terms of I rwwi[R] and ̂hi[R] as

GDFFITSi =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

I rwwi[R]

√

̂φ
(−i)
[R] ̂hi[R]√

̂φ[R](1−̂hi[R])
if i ∈ [R]

I rwwi[R]
√
(1−̂hi[R])̂hi[R]√

1+̂hi[R]
if i /∈ [R].

After some algebraic manipulation, it is observed

GLDi =

⎧

⎪

⎨

⎪

⎩

(GDFFITSi )
2 ̂φ[R]

̂φ
(−i)
[R]

if i ∈ [R]

(GDFFITSi )
2 ̂φ[R+i]

̂φ[R]
if i /∈ [R].

GDFBETAS. For point i from the [R] set, we define the internal DFBETAS (IDF-
BETAS), for β j , as

IDFBETASi j =
̂β j[R] − ̂β

(−i)
j[R]

√

(

XT[R] ̂W [R][R]X[R]
)−1

j
/̂φ

(−i)
[R]

.

For point i from the D set, we define the external DFBETAS (EDFBETAS), for β j , as

EDFBETASi j = ̂β j[R+i] − ̂β j[R]
√

(

XT[R+i] ̂W [R+i][R]X[R+i]
)−1

j

/

̂φ[R]

.
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Collecting these IDFBETASi j and EDFBETASi j , for any point i in the data set,
GDFBETAS, for β j , is exhibited in terms of I rwwi[R] and ̂hi[R] as

GDFBETASi j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

I rwwi[R]

√

̂φ
(−i)
[R]√

̂φ[R](1−̂hi[R])
c ji[R]

√

∑

i∈R c2
j i[R]

if i ∈ [R]

I rwwi[R]
√

1−̂hi[R]
1+̂hi[R]

c ji[R]
√

∑

i∈R c2
j i[R]−

(

c2
j i[R]/(1+̂hi[R])

)
if i /∈ [R]

where c ji[R] is the j th component of the p-vector (XT[R] ̂W [R][R]X[R])−1xi ŵ
1/2
i[R].

Similar diagnostic measures are derived by Imon (2005) who proposed the group
deletion versions of LD and DFFITS for the identification of multiple influential
observations in linear regression. Nurunnabi et al. (2010) developed the generalized
DFFITS in logistic regression for the same purpose.

4.3 The diagnostic algorithm

In this subsection, attention is given to the introduction of a test procedure for
the detection of multiple outliers through the group deletion diagnostic measures,
GSWRi ,GLDi ,GDFFITSi and GDFBETASi , respectively. The main idea of the pro-
posed method is to first form a basic subset of one fourth of the data which is possibly
free from potential outliers and then employ the group deletion diagnostics, based on
the basic subset, in identifying outlying observations. The detailed diagnostic algo-
rithm is illustrated with GSWRi as follows.

Step 0 Fit the regression model to the full data and compute rwwi for i = 1, . . . , n.
Step 1 Arrange the n observations in ascending order according to the absolute values
of rwwi , |rwwi |, i = 1, . . . , n. Then the first {n/4} observations form the original [R]
set, where {n/4} is the integer part of n/4 and represents the initial size of the [R]
set. If the initial subset is not of full rank, increase the initial subset by as many
observations as needed for the initial subset to become full rank (the observations are
added according to their ranked order).
Step 2 Fit a regression model to the current [R] set and compute GSWRi .
Step 3 Arrange observations in accordance with an increasing order of |GSWRi | and
let GSWR(s+1) be the (s +1)th order statistic of |GSWRi |,where s is the current size
of the [R] set.

(a) If GSWR(s+1) >2c(s)with c(s)=
√

̂φ[R]/̂φ
√

∑n
i=1 |GSWRi |/∑n

i=1 |SWRi |,
then declare all members satisfying |GSWRi | > 2c(s) as outliers, and stop.

(b) Otherwise, the current [R] set is replaced by the first (s + 1) ordered observa-
tions. If s + 1 = n, then go to Step 4; otherwise return to Step 2.

Step 4 GSWRi is recalculated with all data points involved into the [R] set. Then
declare all observations satisfying |GSWRi | > 2 as outliers and stop.

Here we suggest to use the cut-off values of 2 and 2c(s) for |SWRi | and |GSWRi | ,
respectively. That is because, SWRi and GSWRi are standardized quantities. Hence
there will be very few SWRi ’s larger than 2 and GSWRi ’s larger than 2c(s), in which
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1648 L.-C. Chien

c(s) plays the role as an adjustment, which adjusts the effect from the differences
between the sample size, n, and the current size of the [R] set, s. It should be explained
that, in practice, the criteria of |SWRi | and |GSWRi | can be flexibly defined by other
cut-off values, e.g., 2.5 and 2.5c(s), 3 and 3c(s), etc.

Note that if there are a few outliers involved in the initially basic subset of size
{n/4}, these outliers are still revealed as outlying because these observations should be
gradually excluded from the subsets with sizes {n/4}+1, {n/4}+2, . . . , respectively.

The diagnostic algorithms for GLDi ,GDFFITSi and GDFBETASi j are similar,
except the cut-off values, and hence they are omitted. Their respective suggested cut-
off values are as follows.

Under the assumption that the weighted matrix ̂W
1/2

X is of full rank, the average
of ̂hi is p/n, and then LDi in (5) becomes

LDi = (

rwwi

)2 p

n − p
.

Hence we suggest to use the cut-off values of 4p/n and 4c2(s)p/s for LDi and GLDi ,
respectively. Under the same assumption, DFFITSi reduces from (6) to

DFFITSi = rwwi

√

̂φ(−i)

̂φ

√

p

n − p
.

Hence we suggest to use the cut-off values of 2
√

p/n and 2c(s)
√

p/s for |DFFITSi |
and |GDFFITSi |, respectively.

On the other hand, in the special case of location, i.e., in the special case with
̂W

1/2
X that is an n × 1 vector of ones, DFBETASi j reduces from (7) to

DFBETASi = y∗
i − μ̂∗

i√
v̂i

√

̂φ(−i)

̂φ

√
n

n − 1

where the quantity (y∗
i − μ̂∗

i )/
√
v̂i is a standardized quantity of y∗

i , since the expec-
tation and variance of the random variable Y ∗

i = log(Yi/(1 − Yi )) are E(Y ∗
i ) = μ∗

i
and V ar(Y ∗

i ) = vi , respectively. Thus, the cut-off values of DFBETASi j and
GDFBETASi j are suggested as 2/

√
n and 2c(s)/

√
s, respectively.

Here it should be pointed out that the proposed diagnostic method has a resemblance
to the forward search (FS) algorithm that was introduced by Hadi and Simonoff (1993)
and Atkinson (1994) for identifying multiple outliers in linear models and in multi-
variate data, respectively. The proposed method and the FS algorithm have two similar
stages. In the first stage, it is attempted to form a basic subset that is presumably free
from potential outliers. In the second stage, it uses an appropriate diagnostic measure
such as the adjusted residual or Cook distance to examine the potential outliers to
see how extreme they are related to the basic subset. The possible outliers are then
declared as outliers if they are greatly inconsistent with the majority of the data. Such
a FS diagnostic technique was also applied to GLMs. For details, see Atkinson and
Riani (2000, Chapter 6). A recent survey of theoretical development in work on the
FS diagnostic was given in Atkinson et al. (2010), who tried to get suitable envelopes
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for the outlier tests as the size of the current [R] set grows. The modified FS diagnostic
procedure has not been applied to beta regression models.

5 Simulations

In this section, simulation studies are carried out to investigate the finite sample
performance of the proposed group deletion diagnostic measures. We consider the
two beta models

Model 1 : logit(μi ) = log (μi/(1 − μi )) = β1 + β2xi,2 + β3xi,3

and

Model 2 : �(μi ) = β1 + β2xi,2 + β3xi,3

with the logit and probit link functions, respectively. To show the different perfor-
mance characters between GSWRi ,GLDi ,GDFFITSi and GDFBETASi , numerical
studies are performed for sample sizes n = 50 and 150 with the first 0.2n observations
generated as outlying observations that have unusual residuals, the next 0.1n observa-
tions generated as outlying data points that are influential on ̂β2, and subsequently the
next 0.1n observations generated as outlying data points that have an influence on ̂β3.

To further contrast the differences between the performances based on the single-case
and group deletion diagnostics, we consider two different outlier scenarios under each
model. These scenarios are chosen because they are situations in which groups of
outliers are influential for regression analyses but they are not easily identified by the
single-case deletion diagnostics.

Let logit−1(·) and �−1(·) be the inverses of logit(·) and �(·), respectively. Now
consider Model 1 with n = 50 and φ = 30. Let β1 = β2 = β3 = −0.01
and ηi = −0.01 − 0.01xi,2 − 0.01xi,3. Then the usual observations y21, . . . , y50
are independently generated from the beta distribution, Beta(μiφ, (1 − μi )φ), with
μi = logit−1(ηi ) in which xi,2 and xi,3 are independently from the uniform distrib-
ution Uniform (0.85, 1.15). Under the outlier scenario (A), the outlying observations
y1, . . . , y10 that have extra small residuals are independently generated as the usual
data points, except their means set byμi = logit−1(ηi )−0.35. The outlying data points
y11, . . . , y15 that are influential on ̂β2 are independently from the beta distribution with
μi = logit−1(−0.01+0.85xi,2 −0.01xi,3)where xi,2 and xi,3 are independently from
Uniform (1.3, 1.4) and Uniform (0.85, 1.15). The outlying data points y16, . . . , y20 that
have an influence on ̂β3 are independently generated by the same processes, except their
means set byμi = logit−1(−0.01−0.01xi,2 + 0.85xi,3)with xi,2 and xi,3 respectively
from Uniform (0.85, 1.15) and Uniform (1.3, 1.4). On the other hand, under the outlier
scenario (B), the outliers y1, . . . , y20 are generated as under the outlier scenario (A),
except their respective corresponding means reset by μi = logit−1(ηi )+ 0.41, μi =
logit−1(− 0.01 − 0.6xi,2 − 0.01xi,3) and μi = logit−1(− 0.01 − 0.01xi,2 − 0.7xi,3)

for observation i, i = 1, . . . , 10, i = 11, . . . , 15 and i = 16, . . . , 20, respectively.
Data for n = 150 are similarly generated by the same steps.

Next consider Model 2 with n = 50 and φ = 30. The usual observations
y21, . . . , y50 are independently from Beta(μiφ, (1 − μi )φ) with μi = �−1(ηi )

123



1650 L.-C. Chien

where xi,2 and xi,3 are independently from Uniform (0.85, 1.15). Under the outlier
scenario (C), the outlying observations y1, . . . , y10 that have extremely large resid-
uals are independently generated as the usual data points, except their means set by
μi = �−1(ηi ) + 0.38. The outlying data points y11, . . . , y15 and y16, . . . , y20 that
respectively have an effect on ̂β2 and ̂β3 are independently from the beta distribution
withμi = �−1(−0.01−0.7xi,2−0.01xi,3) andμi = �−1(−0.01−0.01xi,2−0.7xi,3),

respectively, where xi,2 and xi,3 are generated as in Model 1. Under the outlier sce-
nario (D), the outliers y1, . . . , y20 are generated as under the outlier scenario (C),
except their respective corresponding means reset by μi = �−1(ηi ) − 0.4, μi =
�−1(−0.01+0.4xi,2 −0.01xi,3) andμi = �−1(−0.01−0.01xi,2 +0.5xi,3), respec-
tively. Data for n = 150 are also generated in the same way.

Fig. 1 Scatter plots of the averages of 2000μ̂i against 2000(yi − μ̂i ) for each outlier scenario for sample
size n = 50. Triangle indexes the outlying observations that have unusual residuals; square indexes the
outlying data points that are influential on ̂β2; plus indexes the outlying data points that have an influence
on ̂β3; circle indexes the usual data points
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Two thousand simulation runs are carried out for each case, with the xi,2’s and
xi,3’s being regenerated after every 50 simulations. Figure 1 shows scatter plots of the
averages of 2000μ̂i against 2000(yi −μ̂i ) for each outlier scenario for sample size n =
50. Because the results of sample sizes n = 50 and 150 are similar, we omit the results
for n = 150 to reduce space. From Fig. 1, it is evident that the mean(yi − μ̂i ) values
of the outlying observations that have unusual residuals are greater or less than that of
the usual observations and the outlying data points that are influential on ̂β2 or ̂β3. On
the contrary, the mean(μ̂i ) values of the outlying data points that have an influence
on ̂β2 or ̂β3 are bigger or lower than that of the usual data points and the outlying
observations that have extreme residuals. The indication reveals that the former have
extremely unusual residuals but they don’t have significant impacts on μ̂i , whereas
the latter have influences on μ̂i but they don’t have extraordinarily unusual residuals.

Tables 1, 2, 3 and 4 display the averages of the proportions of observation i, i =
1, . . . , 0.2n, observation i, i = 0.2n + 1, . . . , 0.3n, and observation i, i = 0.3n +
1, . . . , 0.4n, claimed by the single-case and group deletion diagnostics as outlying
observations in the two thousand simulated data sets. Also displayed are the averages
of the proportions of observation i, i = 1, . . . , n, identified as outliers in the 2000
replications, in which no observations are generated as outlying observations in the
simulated data sets. In addition, Tables 1, 2, 3 and 4 also exhibit the results based on
the different diagnostic criteria, in order to compare the results from the suggested
cut-off values.

From Tables 1, 2, 3 and 4, it is clear that, in the cases where no observations
are generated as outliers in the simulated data sets and the diagnostic criteria are
based on the suggested cut-off values, the averages of the proportions of observation
i, i = 1, . . . , n, detected by the single-case and group deletion diagnostics as the
unusual observations in the 2000 replications gradually approach 0.05 as the sample
size n increases. The indications imply that, on the basis of the suggested cut-off values,
the probability that the usual observations are misdiagnosed as unusual observations
by the single-case and group deletion diagnostics is around 0.05. This, in turn, means
that, in the cases where no observations are generated as outliers in the simulated
data sets, the results from the single-case and group deletion diagnostics, based on the
suggested cut-off values, are reasonable.

On the other hand, from Tables 1, 2, 3 and 4, it is clear that, in the cases with
observations generated as outliers in the simulated data sets, the group deletion diag-
nostics are more effective than the single-case deletion diagnostics, in picking up
the outliers from the data sets. As in the case in Model 2 with n = 150 under the
outlier scenario (C), when the cut-off values of DFBETASi2 and GDFBETASi2 are
considered by 2/

√
n and 2c(s)/

√
s, respectively, the average of the proportions of

observation i, i = 31, . . . , 45, highlighted as outlying data points in the 2000 simu-
lations by GDFBETASi2 is 0.9438, bigger than the corresponding result 0.3661 from
DFBETASi2. Similar results are also obtained by comparing differences between the
results from GDFBETASi3 and DFBETASi3 or from GLDi and LDi , etc.

From Tables 1, 2, 3 and 4, it is also noted that SWRi and GSWRi identify outlying
observations that have extra unusual residuals as atypical observations, whereas the
outlying data points that have influences on ̂β2 or ̂β3 are not flagged by SWRi and
GSWRi as unusual data points. This is because, the latter don’t have enough extreme
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Table 1 Model 1: logit (μi ) = −0.01 − 0.01xi,2 − 0.01xi,3, i = 1, . . . , 50

Diagnostic Cut-off value Data without
outlying
observations

Data with outlying observationsa

Observations Observations Observations Observations Observations
1–50 1–10 11–15 16–20 21–50

Scenario (A)
SWRi 2 0.0518 0.3205 0.0116 0.0109 0.0008

GSWRi 2c(s) 0.0424 0.3434 0.0037 0.0037 0.0002

LDi 4p/n 0.0658 0.1027 0.1601 0.1562 0.0033

GLDi 4c2(s)p/s 0.0488 0.0431 0.2786 0.2854 0.0005

DFFITSi 2
√

p/n 0.0714 0.1319 0.1616 0.1587 0.0004

GDFFITSi 2c(s)
√

p/s 0.0623 0.1033 0.4049 0.3972 0.0011

DFBETASi2 2/
√

n 0.0810 0.0898 0.3769 0.0134 0.0093

GDFBETASi2 2c(s)/
√

s 0.0787 0.1202 0.8435 0.0061 0.0019

DFBETASi3 2/
√

n 0.0816 0.0855 0.0205 0.3829 0.0126

GDFBETASi3 2c(s)/
√

s 0.0800 0.1100 0.0136 0.8257 0.0024

SWRi 2.5 0.0142 0.1235 0.0015 0.0008 0.0000

GSWRi 2.5c(s) 0.0131 0.1228 0.0012 0.0006 0.0000

LDi 6.25p/n 0.0259 0.0203 0.0728 0.0639 0.0002

GLDi 6.25c2(s)p/s 0.0225 0.0142 0.1096 0.1054 0.0001

DFFITSi 2.5
√

p/n 0.0307 0.0337 0.0767 0.0672 0.0006

GDFFITSi 2.5c(s)
√

p/s 0.0288 0.0309 0.2733 0.2791 0.0001

DFBETASi2 2.5/
√

n 0.0425 0.0344 0.2570 0.0044 0.0020

GDFBETASi2 2.5c(s)/
√

s 0.0423 0.0458 0.7400 0.0018 0.0003

DFBETASi3 2.5/
√

n 0.0446 0.0319 0.0065 0.2606 0.0035

GDFBETASi3 2.5c(s)/
√

s 0.0443 0.0447 0.0039 0.7312 0.0009
Scenario (B)

SWRi 2 0.0518 0.3861 0.0020 0.0016 0.0002

GSWRi 2c(s) 0.0424 0.4485 0.0004 0.0004 0.0000

LDi 4p/n 0.0658 0.1426 0.0742 0.0819 0.0014

GLDi 4c2(s)p/s 0.0488 0.1004 0.1055 0.1483 0.0005

DFFITSi 2
√

p/n 0.0714 0.1727 0.0755 0.0845 0.0017

GDFFITSi 2c(s)
√

p/s 0.0623 0.1876 0.1569 0.2074 0.0004

DFBETASi2 2/
√

n 0.0810 0.1213 0.2585 0.0045 0.0056

GDFBETASi2 2c(s)/
√

s 0.0787 0.1602 0.6769 0.0019 0.0013

DFBETASi3 2/
√

n 0.0816 0.1131 0.0069 0.2886 0.0081

GDFBETASi3 2c(s)/
√

s 0.0800 0.1470 0.0045 0.7397 0.0014

SWRi 2.5 0.0142 0.1609 0.0001 0.0000 0.0000

GSWRi 2.5c(s) 0.0131 0.1726 0.0001 0.0000 0.0000

LDi 6.25p/n 0.0259 0.0351 0.0254 0.0243 0.0002

GLDi 6.25c2(s)p/s 0.0225 0.0317 0.0322 0.0350 0.0002
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Table 1 continued

Diagnostic Cut-off value Data without
outlying
observations

Data with outlying observationsa

Observations Observations Observations Observations Observations
1–50 1–10 11–15 16–20 21–50

DFFITSi 2.5
√

p/n 0.0307 0.0519 0.0266 0.0260 0.0003

GDFFITSi 2.5c(s)
√

p/s 0.0288 0.0531 0.0744 0.1054 0.0002

DFBETASi2 2.5/
√

n 0.0425 0.0537 0.1464 0.0008 0.0009

GDFBETASi2 2.5c(s)/
√

s 0.0423 0.0683 0.5066 0.0003 0.0002

DFBETASi3 2.5/
√

n 0.0446 0.0461 0.0023 0.1681 0.0019

GDFBETASi3 2.5c(s)/
√

s 0.0443 0.0625 0.0011 0.5812 0.0006

The diagnostic results based on single-case and group deletion diagnostics are larger than 0.1, which are
respectively highlighted as the significance of bold and underline values
a observations 1–10 have unusual residuals; observations 11–15 and 16–20 respectively have influences on
̂β2 and ̂β3; observations 21–50 are usual data points

residuals of yi − μ̂i , as the results shown in Fig. 1, in which the mean(yi − μ̂i )

values of the latter are closer to that of the usual observations, in comparison with the
former. On the other hand, it is seen that due to the latter generated as having impacts
on regression parameter estimates, they are more easily identified by DFBETASi and
GDFBETASi as unusual data points.

In addition, it is observed from Tables 1, 2, 3 and 4 that, in general, the averages of
the proportions of the outlying data points that have influences on ̂β2 or ̂β3 detected as
unusual data points are higher than that of the outlying observations that have unusual
residuals. In other words, it is observed that the latter are identified harder than the
former. This is because, the latter are not outlying enough. As compared the results
from Model 2 under the outlier scenarios (C) and (D), it is shown that the latter become
easier to be identified when their residuals become more excessive.

Obviously, the group deletion diagnostics are able to provide the more valid infer-
ences in the regression diagnostic analyses, under the data sets with multiple outliers.

6 Examples

Two practical applications are presented in this section to illustrate the usefulness of
the proposed group deletion diagnostic measures.

6.1 Example 1: Reading accuracy data

The first application uses the data analyzed by Espinheira et al. (2008a) from 44
children (19 children with dyslexia and 25 controls) recruited from primary schools in
the Australian Capital Territory. The ages of the children ranged from eight years five
months to twelve years three months. The response (y) gives the scores on a test of
reading accuracy, and the explanatory variables represent dyslexia versus non-dyslexia

123



1654 L.-C. Chien

Table 2 Model 1: logit (μi ) = −0.01 − 0.01xi,2 − 0.01xi,3, i = 1, . . . , 150

Diagnostic Cut-off value Data without
outlying
observations

Data with outlying observationsa

Observations Observations Observations Observations Observations
1–150 1–30 31–45 46–60 61–150

Scenario (A)
SWRi 2 0.0481 0.3096 0.0088 0.0087 0.0006

GSWRi 2c(s) 0.0382 0.3290 0.0021 0.0018 0.0001

LDi 4p/n 0.0547 0.1040 0.1173 0.1198 0.0013

GLDi 4c2(s)p/s 0.0377 0.0512 0.1680 0.1618 0.0002

DFFITSi 2
√

p/n 0.0566 0.1120 0.1183 0.1206 0.0015

GDFFITSi 2c(s)
√

p/s 0.0470 0.0765 0.3752 0.3575 0.0003

DFBETASi2 2/
√

n 0.0697 0.0858 0.3299 0.0096 0.0058

GDFBETASi2 2c(s)/
√

s 0.0628 0.0978 0.8951 0.0028 0.0003

DFBETASi3 2/
√

n 0.0688 0.0805 0.0103 0.3301 0.0062

GDFBETASi3 2c(s)/
√

s 0.0622 0.0902 0.0021 0.8973 0.0003

SWRi 2.5 0.0136 0.1226 0.0009 0.0006 0.0000

GSWRi 2.5c(s) 0.0121 0.1235 0.0005 0.0004 0.0000

LDi 6.25p/n 0.0199 0.0228 0.0460 0.0442 0.0001

GLDi 6.25c2(s)p/s 0.0161 0.0169 0.0500 0.0471 0.0000

DFFITSi 2.5
√

p/n 0.0213 0.0269 0.0470 0.0455 0.0001

GDFFITSi 2.5c(s)
√

p/s 0.0191 0.0215 0.1666 0.1497 0.0001

DFBETASi2 2.5/
√

n 0.0345 0.0307 0.2064 0.0023 0.0008

GDFBETASi2 2.5c(s)/
√

s 0.0320 0.0342 0.7709 0.0007 0.0001

DFBETASi3 2.5/
√

n 0.0343 0.0290 0.0025 0.2067 0.0008

GDFBETASi3 2.5c(s)/
√

s 0.0319 0.0317 0.0005 0.7838 0.0001

Scenario (B)

SWRi 2 0.0481 0.3715 0.0009 0.0012 0.0001

GSWRi 2c(s) 0.0382 0.4288 0.0000 0.0001 0.0000

LDi 4p/n 0.0547 0.1429 0.0421 0.0503 0.0004

GLDi 4c2(s)p/s 0.0377 0.1127 0.0315 0.0039 0.0001

DFFITSi 2
√

p/n 0.0566 0.1519 0.0426 0.0507 0.0005

GDFFITSi 2c(s)
√

p/s 0.0470 0.1605 0.0591 0.1038 0.0001

DFBETASi2 2/
√

n 0.0697 0.1176 0.1987 0.0031 0.0028

GDFBETASi2 2c(s)/
√

s 0.0628 0.1383 0.6972 0.0008 0.0002

DFBETASi3 2/
√

n 0.0688 0.1060 0.0024 0.2222 0.0033

GDFBETASi3 2c(s)/
√

s 0.0622 0.1241 0.0006 0.7654 0.0004

SWRi 2.5 0.0136 0.1588 0.0000 0.0001 0.0000

GSWRi 2.5c(s) 0.0121 0.1724 0.0000 0.0000 0.0000

LDi 6.25p/n 0.0199 0.0369 0.0100 0.0128 0.0000

GLDi 6.25c2(s)p/s 0.0161 0.0338 0.0092 0.0114 0.0001
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Table 2 continued

Diagnostic Cut-off value Data without
outlying
observations

Data with outlying observationsa

Observations Observations Observations Observations Observations
1–150 1–30 31–45 46–60 61–150

DFFITSi 2.5
√

p/n 0.0213 0.0424 0.0104 0.0131 0.0000

GDFFITSi 2.5c(s)
√

p/s 0.0191 0.0428 0.0133 0.0247 0.0000

DFBETASi2 2.5/
√

n 0.0345 0.0487 0.0955 0.0005 0.0002

GDFBETASi2 2.5c(s)/
√

s 0.0320 0.0541 0.4334 0.0004 0.0000

DFBETASi3 2.5/
√

n 0.0343 0.0430 0.0003 0.1122 0.0003

GDFBETASi3 2.5c(s)/
√

s 0.0319 0.0471 0.0001 0.5277 0.0001

The diagnostic results based on single-case and group deletion diagnostics are larger than 0.1, which are
respectively highlighted as the significance of bold and underline values
a observations 1–30 have unusual residuals; observations 31–45 and 46–60 respectively have influences on
̂β2 and ̂β3; observations 61–150 are usual data points

status (x2), non-verbal IQ scores converted to z-scores (x3) and an interaction variable
(x4). The variable x2 is coded as 1 when the child is dyslexic and otherwise it is coded
as −1. The non-dyslexic readers’ mean accuracy score is 0.900 whereas the mean for
readers who have dyslexia is 0.606. The overall mean score is 0.773. Following the
suggestions in Espinheira et al. (2008a), we analyze the data set using the GBLM with
the logit link function as

logit (μi ) = β1 + β2xi,2 + β3xi,3 + β4xi,4, i = 1, . . . , 44.

Table 5 displays diagnostic results based on the single-case and group deletion
diagnostics, respectively. Looking at Table 5, some interesting findings are as follows.
First, from GSWRi and SWRi , it is observed that GSWRi suggests observations 8, 9,
15 and 22 as the outlying observations that have unusual residuals, whereas, among
them, only observation 8 is highlighted by SWRi as an unusual observation on the
residual. Then comparing the results from LDi and GLDi , it is noted that LDi detects
observations 6 and 8 as the outlying data points that have an impact on the regression
parameter estimates, ̂β1,̂β2,̂β3 and ̂β4, while GLDi identifies observations 8 and
15 as the atypical observations that are influential on ̂β1,̂β2,̂β3 and ̂β4. The joint
deletion of observations 6 and 8 shows that the relative changes in ̂β1,̂β2,̂β3 and ̂β4
are −1.773, −2.761, 32.77 and 24.36 %, whereas the relative changes in ̂β1,̂β2,̂β3 and
̂β4 are −11.32, −16.03, 117.5 and 86.82 % with observations 8 and 15 deleted. The
indication implies that observations 8 and 15 jointly have more powerful influences
on the regression parameter estimates, in contrast with observations 6 and 8.

Similarly, comparing the results from DFFITSi and GDFFITSi , it is also observed
that GDFFITSi detects observations 5, 8, 9, 15 and 22 as the atypical points on the
weighted fits. Among these atypical points, observations 5, 9, 15 and 22 are obscured
by DFFITSi . Jointly removing observations 5, 8, 9, 15 and 22 from the data results in
the apparently relative variations, −28.10, −39.86, 269.1 and 199.0 % in ̂β1,̂β2,̂β3
and ̂β4.
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Table 3 Model 2: �(μi ) = −0.01 − 0.01xi,2 − 0.01xi,3, i = 1, . . . , 50

Diagnostic Cut-off value Data without
outlying
observations

Data with outlying observationsa

Observations Observations Observations Observations Observations
1–50 1–10 11–15 16–20 21–50

Scenario (C)
SWRi 2 0.0517 0.3082 0.0193 0.0182 0.0003

GSWRi 2c(s) 0.0423 0.3242 0.0087 0.0082 0.0001

LDi 4p/n 0.0657 0.0828 0.1917 0.1907 0.0030

GLDi 4c2(s)p/s 0.0489 0.0231 0.3460 0.3614 0.0003

DFFITSi 2
√

p/n 0.0714 0.1488 0.1099 0.1040 0.0037

GDFFITSi 2c(s)
√

p/s 0.0624 0.1440 0.2729 0.2739 0.0010

DFBETASi2 2/
√

n 0.0425 0.0761 0.4132 0.0189 0.0091

GDFBETASi2 2c(s)/
√

s 0.0424 0.1017 0.8840 0.0079 0.0015

DFBETASi3 2/
√

n 0.0815 0.0723 0.0295 0.4245 0.0122

GDFBETASi3 2c(s)/
√

s 0.0799 0.0981 0.0173 0.8841 0.0016

SWRi 2.5 0.0142 0.1084 0.0028 0.0017 0.0000

GSWRi 2.5c(s) 0.0132 0.1051 0.0025 0.0014 0.0000

LDi 6.25p/n 0.0258 0.0136 0.0908 0.0856 0.0005

GLDi 6.25c2(s)p/s 0.0225 0.0080 0.1467 0.1434 0.0002

DFFITSi 2.5
√

p/n 0.0307 0.0403 0.0451 0.0384 0.0006

GDFFITSi 2.5c(s)
√

p/s 0.0287 0.0393 0.1636 0.1530 0.0003

DFBETASi2 2.5/
√

n 0.0811 0.0260 0.2940 0.0064 0.0019

GDFBETASi2 2.5c(s)/
√

s 0.0787 0.0358 0.8121 0.0013 0.0002

DFBETASi3 2.5/
√

n 0.0446 0.0248 0.0109 0.3007 0.0035

GDFBETASi3 2.5c(s)/
√

s 0.0442 0.0369 0.0049 0.8163 0.0005

Scenario (D)

SWRi 2 0.0517 0.3891 0.0024 0.0025 0.0001

GSWRi 2c(s) 0.0423 0.4513 0.0002 0.0002 0.0000

LDi 4p/n 0.0657 0.1448 0.0843 0.1009 0.0018

GLDi 4c2(s)p/s 0.0489 0.0923 0.1229 0.2048 0.0004

DFFITSi 2
√

p/n 0.0714 0.1933 0.0553 0.0601 0.0020

GDFFITSi 2c(s)
√

p/s 0.0624 0.2295 0.0746 0.1109 0.0005

DFBETASi2 2/
√

n 0.0425 0.1192 0.2803 0.0071 0.0056

GDFBETASi2 2c(s)/
√

s 0.0424 0.1537 0.7037 0.0036 0.0014

DFBETASi3 2/
√

n 0.0815 0.1069 0.0083 0.3224 0.0087

GDFBETASi3 2c(s)/
√

s 0.0799 0.1431 0.0045 0.7903 0.0013

SWRi 2.5 0.0142 0.1704 0.0001 0.0001 0.0000

GSWRi 2.5c(s) 0.0132 0.1820 0.0001 0.0000 0.0000

LDi 6.25p/n 0.0258 0.0368 0.0290 0.0314 0.0001

GLDi 6.25c2(s)p/s 0.0225 0.0317 0.0386 0.0535 0.0001
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Table 3 continued

Diagnostic Cut-off value Data without
outlying
observations

Data with outlying observationsa

Observations Observations Observations Observations Observations
1–50 1–10 11–15 16–20 21–50

DFFITSi 2.5
√

p/n 0.0307 0.0619 0.0168 0.0155 0.0001

GDFFITSi 2.5c(s)
√

p/s 0.0287 0.0661 0.0323 0.0457 0.0001

DFBETASi2 2.5/
√

n 0.0811 0.0533 0.1638 0.0015 0.0008

GDFBETASi2 2.5c(s)/
√

s 0.0787 0.0663 0.5440 0.0005 0.0001

DFBETASi3 2.5/
√

n 0.0446 0.0425 0.0027 0.1996 0.0023

GDFBETASi3 2.5c(s)/
√

s 0.0442 0.0578 0.0010 0.6485 0.0005

The diagnostic results based on single-case and group deletion diagnostics are larger than 0.1, which are
respectively highlighted as the significance of bold and underline values
a observations 1–10 have unusual residuals; observations 11–15 and 16–20 respectively have influences on
̂β2 and ̂β3; observations 21–50 are usual data points

On the other hand, DFBETASi3 and DFBETASi4 detect observations 6, 8 and 15
as having a large impact on ̂β3 and ̂β4, while GDFBETASi3 and GDFBETASi4 spot
observations 5, 8, 9, 15 and 22 as influential on the results for ̂β3 and ̂β4. The exclusion
of observations 5, 8, 9, 15 and 22 causes an apparent change 269.1 and 199.0 % in
̂β3 and ̂β4, whereas the relative change in ̂β3 and ̂β4 are 86.31 and 63.88 % with
observations 6, 8 and 15 omitted together. This indicates that observations 5, 8, 9, 15
and 22 have a relatively larger effect on ̂β3 and ̂β4, compared with observations 6, 8
and 15. In addition, it should be explained that, in this example, we don’t consider
the results of GDFBETASi2 and DFBETASi2. This is because, x2 is a binary variable
whose value equals −1 or 1. Thus we are not very interested that which observation
is influential on ̂β2.

Evidently, in reading accuracy data, the group deletion diagnostics detect some mul-
tiple outlying observations that are influential on the results of the regression analysis,
while these unusual observations are ignored by the single-case deletion diagnostics.

6.2 Example 2: Stress, depression, and anxiety

The second example uses data collected from a sample of 166 nonclinical women in
Townsville, Queensland, Australia. The data were analyzed by Smithson and Verkuilen
(2006) using beta regression. The response variable (y) represents the scores on a test of
anxiety symptoms, and the explanatory variable (x2) gives the corresponding scores on
the test of stress symptoms. We follow Smithson and Verkuilen (2006) in considering
the model

logit (μi ) = β1 + β2xi,2, i = 1, . . . , 166.

Table 6 presents diagnostic results based on the single-case and group deletion
diagnostics, respectively. Careful inspection of Table 6 indicates some interesting
findings as follows.
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Table 4 Model 2: �(μi ) = −0.01 − 0.01xi,2 − 0.01xi,3, i = 1, . . . , 150

Diagnostic Cut-off value Data without
outlying
observations

Data with outlying observationsa

Observations Observations Observations Observations Observations
1–150 1–30 31–45 46–60 61–150

Scenario (C)
SWRi 2 0.0481 0.2960 0.0147 0.0146 0.0002

GSWRi 2c(s) 0.0381 0.3111 0.0038 0.0049 0.0000

LDi 4p/n 0.0547 0.0843 0.1448 0.1459 0.0011

GLDi 4c2(s)p/s 0.0377 0.0277 0.2434 0.2172 0.0000

DFFITSi 2
√

p/n 0.0566 0.1267 0.0716 0.0723 0.0012

GDFFITSi 2c(s)
√

p/s 0.0470 0.1153 0.1806 0.1648 0.0004

DFBETASi2 2/
√

n 0.0700 0.0731 0.3661 0.0160 0.0050

GDFBETASi2 2c(s)/
√

s 0.0629 0.0807 0.9438 0.0023 0.0001

DFBETASi3 2/
√

n 0.0689 0.0677 0.0159 0.3636 0.0054

GDFBETASi3 2c(s)/
√

s 0.0623 0.0744 0.0027 0.9466 0.0001

SWRi 2.5 0.0135 0.1088 0.0019 0.0022 0.0000

GSWRi 2.5c(s) 0.0120 0.1085 0.0011 0.0010 0.0000

LDi 6.25p/n 0.0200 0.0154 0.0606 0.0608 0.0000

GLDi 6.25c2(s)p/s 0.0161 0.0098 0.0717 0.0675 0.0000

DFFITSi 2.5
√

p/n 0.0213 0.0310 0.0222 0.0212 0.0001

GDFFITSi 2.5c(s)
√

p/s 0.0191 0.0297 0.0458 0.0473 0.0000

DFBETASi2 2.5/
√

n 0.0345 0.0230 0.2409 0.0041 0.0005

GDFBETASi2 2.5c(s)/
√

s 0.0321 0.0252 0.8718 0.0008 0.0001

DFBETASi3 2.5/
√

n 0.0343 0.0220 0.0043 0.2384 0.0005

GDFBETASi3 2.5c(s)/
√

s 0.0319 0.0231 0.0005 0.8763 0.0000

Scenario (D)
SWRi 2 0.0481 0.3723 0.0010 0.0022 0.0001

GSWRi 2c(s) 0.0381 0.4271 0.0000 0.0002 0.0000

LDi 4p/n 0.0547 0.1450 0.0487 0.0657 0.0006

GLDi 4c2(s)p/s 0.0377 0.1092 0.0355 0.0650 0.0001

DFFITSi 2
√

p/n 0.0566 0.1698 0.0259 0.0316 0.0007

GDFFITSi 2c(s)
√

p/s 0.0470 0.1940 0.0208 0.0353 0.0002

DFBETASi2 2/
√

n 0.0700 0.1156 0.2196 0.0044 0.0029

GDFBETASi2 2c(s)/
√

s 0.0629 0.1370 0.7267 0.0001 0.0002

DFBETASi3 2/
√

n 0.0689 0.1013 0.0030 0.2653 0.0036

GDFBETASi3 2c(s)/
√

s 0.0623 0.1196 0.0006 0.8432 0.0002

SWRi 2.5 0.0135 0.1678 0.0000 0.0001 0.0000

GSWRi 2.5c(s) 0.0120 0.1826 0.0000 0.0001 0.0000

LDi 6.25p/n 0.0200 0.0398 0.0118 0.0167 0.0000

GLDi 6.25c2(s)p/s 0.0161 0.0355 0.0110 0.0154 0.0000
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Table 4 continued

Diagnostic Cut-off value Data without
outlying
observations

Data with outlying observationsa

Observations Observations Observations Observations Observations
1–150 1–30 31–45 46–60 61–150

DFFITSi 2.5
√

p/n 0.0213 0.0514 0.0050 0.0006 0.0000

GDFFITSi 2.5c(s)
√

p/s 0.0191 0.0539 0.0044 0.0078 0.0000

DFBETASi2 2.5/
√

n 0.0345 0.0479 0.1091 0.0008 0.0003

GDFBETASi2 2.5c(s)/
√

s 0.0321 0.0530 0.4839 0.0004 0.0000

DFBETASi3 2.5/
√

n 0.0343 0.0408 0.0004 0.1401 0.0003

GDFBETASi3 2.5c(s)/
√

s 0.0319 0.0447 0.0002 0.6547 0.0000

The diagnostic results based on single-case and group deletion diagnostics are larger than 0.1, which are
respectively highlighted as the significance of bold and underline values
a Observations 1–30 have unusual residuals; observations 31–45 and 46–60 respectively have influences
on ̂β2 and ̂β3; observations 61–150 are usual data points

Table 5 The single-case and group deletion diagnostics for example 1

Diagnostic Cut-off
value

Case i
claimed as
an outlier

Cut-off
value

Case i
claimed as
an outlier

Cut-off
value

Case i
claimed as
an outlier

SWRi 2 8 2.5 No
observationsa

3 No
observationsa

GSWRi 2c(s) 8, 9, 15, 22 2.5c(s) 8 3c(s) No
observationsa

LDi 4p/n 6, 8 6.25p/n 8 9p/n 8

GLDi 4c2(s)p/s 8, 15 6.25c2(s)p/s 8 9c2(s)p/s 8

DFFITSi 2
√

p/n 6, 8 2.5
√

p/n 8 3
√

p/n 8

GDFFITSi 2c(s)
√

p/s 5, 8, 9, 15, 22 2.5c(s)
√

p/s 8, 15, 22 3c(s)
√

p/s 8

DFBETASi3 2/
√

n 6, 8, 15 2.5/
√

n 6, 8 3/
√

n 8

GDFBETASi3 2c(s)/
√

s 5, 8, 9, 15, 22 2.5c(s)/
√

s 5, 8, 9, 15, 22 3c(s)/
√

s 8, 9, 15, 22

DFBETASi4 2/
√

n 6, 8, 15 2.5/
√

n 6, 8 3/
√

n 8

GDFBETASi4 2c(s)/
√

s 5, 8, 9, 15, 22 2.5c(s)/
√

s 5, 8, 9, 15, 22 3c(s)/
√

s 8, 9, 15, 22

a No observations are claimed as outliers

From the results of SWRi and GSWRi , it is shown that diagnostic results based
on SWRi and GSWRi are similar. Observations 10, 89, 116 and 136 are flagged by
SWRi and GSWRi as the outlying observations with extra large or small residuals.

Similarly, from the results of LDi and GLDi , it is shown that GLDi and LDi suggest
observations 10, 55, 77, 89, 116, 125, 132, 151, 152 and 164 as the outlying data points
that are influential on the regression parameter estimates ̂β1 and ̂β2. It is also interesting
to note that, on the basis of cut-off values 9c2(s)p/s and 9p/n,GLDi suggests cases
89, 116, 151 and 152 as having an influence on ̂β1 and ̂β2, while LDi identifies cases
55, 89, 116 and 152 as influential on the results for ̂β1 and ̂β2. The joint deletion of
observations 89, 116, 151 and 152 causes the relative changes in ̂β1 and ̂β2 as 5.21
and 13.80 %, whereas the relative changes in ̂β1 and ̂β2 are 3.47 and 7.74 % with
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Table 6 The single-case and group deletion diagnostics for example 2

Diagnostic Cut-off
value

Case i
claimed as
an outlier

Cut-off
value

Case i
claimed as
an outlier

Cut-off
value

Case i
claimed as
an outlier

SWRi 2 10, 89, 116,
136

2.5 10, 89, 116 3 89

GSWRi 2c(s) 10, 89, 116,
136

2.5c(s) 10, 89, 116 3c(s) 89

LDi 4p/n 10, 55, 77, 89,
116, 125, 132,
151, 152, 164

6.25p/n 55, 77, 89,
116, 125, 132,
151, 152, 164

9p/n 55, 89, 116, 152

GLDi 4c2(s)p/s 10, 55, 77,
89, 116, 125,
132, 151, 152,
164

6.25c2(s)p/s 55, 77, 89,
116, 125, 132,
152, 164

9c2(s)p/s 89, 116, 151,
152

DFFITSi 2
√

p/n 10, 55, 77,
89, 116, 125,
132, 151, 152,
164

2.5
√

p/n 55, 77, 89, 116,
125, 132, 151,
152, 164

3
√

p/n 55, 89, 116, 152

GDFFITSi 2c(s)
√

p/s 10, 51, 55, 77,
89, 116, 125,
132, 133, 151,
152, 164

2.5c(s)
√

p/s 10, 55, 77, 89,
116, 125, 132,
151, 152, 164

3c(s)
√

p/s 55, 77, 89, 116,
125, 132, 152,
164

DFBETASi2 2/
√

n 55, 77, 89, 116,
125, 132, 151,
152, 164

2.5/
√

n 55, 77, 89, 116,
125, 132, 151,
152, 164

3/
√

n 55, 77, 89, 116,
125, 132, 151,
152, 164

GDFBETASi2 2c(s)/
√

s 10, 51, 55, 77,
89, 116, 117,
125, 132, 133,
151, 152, 164

2.5c(s)/
√

s 51, 55, 77,
89, 116, 125,
132, 151, 152,
164

3c(s)/
√

s 55, 77, 89, 116,
125, 132, 151,
152, 164

observations 55, 89, 116 and 152 eliminated. The indication shows that GLDi is more
effective than LDi , in pointing out the outlying data points that have jointly bigger
impacts on ̂β1 and ̂β2.

From the results of DFFITSi and GDFFITSi , it is observed that DFFITSi misses
observations 51 and 133 that are discovered by GDFFITSi as the atypical points on
the weighted fits. The joint deletion of observations 10, 55, 77, 89, 116, 125, 132, 151,
152 and 164 leads to the relative variations in ̂β1 and ̂β2 as 2.60 and 2.00 %, whereas
the joint deletion of observations 10, 51, 55, 77, 89, 116, 125, 132, 133, 151, 152 and
164 leads to the relative variations in ̂β1 and ̂β2 as 2.76 and −1.93 %. It is evident that
observations 51 and 133 that are omitted by DFFITSi are influential, because deleting
the atypical points with observations 51 and 133 results in a relative change of ̂β2 from
2.00 (positive) to −1.93 % (negative).

From the results of DFBETASi2 and GDFBETASi2, it is shown that GDFBETASi2
detects observations 10, 51, 55, 77, 89, 116, 117, 125, 132, 133, 151, 152 and 164 as
having a large impact on ̂β2, while DFBETASi2 suggests observations 55, 77, 89, 116,
125, 132, 151, 152 and 164 as influential on the results for ̂β2. When observations
10, 51, 55, 77, 89, 116, 117, 125, 132, 133, 151, 152 and 164 are simultaneously
discarded, ̂β2 has a positive jump of 0.83 %, whereas the relative change in ̂β2 is a
1.51 % reduction, when observations 55, 77, 89, 116, 125, 132, 151, 152 and 164 are
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jointly deleted. This indicates that the outlying data points, observations 10, 51, 117
and 133, are influential on ̂β2, but they are not found by DFBETASi2.

Clearly, in this illustration, the group deletion diagnostics suggest some multiple
outlying observations that have joint effects on the regression outcome for further
considerations, while these potential outlying data points are camouflaged by the
single-case deletion diagnostics.

7 Conclusions

In this article, we provide a diagnostic way for the identification of multi-
ple outliers in GBLMs. We suggest the group deletion diagnostic measures,
GSWRi ,GLDi ,GDFFITSi and GDFBETASi , respectively, and propose a test pro-
cedure for detecting multiple outlying observations using these. Simulation studies
and analysis of two practical examples show that our proposed methods can assist the
analyst in detecting multiple outlying observations in GBLMs.

Finally, we note that the GBLMs with the constant precision parameter were
recently improved by Simas et al. (2010) who allowed a regression structure for the
precision parameter. In future work we will extend the group deletion diagnostic tech-
niques to beta regression models with regressors for the precision parameter.
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