
A SEMIANALYTICAL SOLUTION FOR RESIDUAL DRAWDOWN AT A FINITE DIAMETER

WELL IN A CONFINED AQUIFER1

Hund-Der Yeh and Chih-Tse Wang2

ABSTRACT: After the end of pumping the water level in the observation well starts to recover and the reduced
drawdown during the recovery period is named as the residual drawdown. Traditional approaches in analyzing
the data of residual drawdown for estimating the aquifer hydraulic parameters are mostly based on the applica-
tion of superposition principle and Theis equation. In addition, the effect of wellbore storage is commonly
ignored in the evaluation even if the test well has a finite diameter. In this article, we develop a mathematical
model for describing the residual drawdown with considering the wellbore storage effect and the existing draw-
down distribution produced by the pumping part of the test. The Laplace-domain solution of the model is
derived using the Laplace transform technique and the time-domain result is inverted based on the Stehfest
algorithm. This new solution shows that the residual drawdown associated with the boundary and initial condi-
tions are related to the well drawdown and the aquifer drawdown, respectively. The well residual drawdown will
be overestimated by the Theis residual drawdown solution in the early recovery part if neglecting the wellbore
storage. On the other hand, the Theis residual drawdown solution can be used to approximate the present resid-
ual drawdown solution in the late recovery part of the test.
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INTRODUCTION

In general, there are three steps involved in the
estimation of hydraulic parameters of confined aqui-
fers, such as the transmissivity and storativity. First,
a continuous or instantaneous stress is applied to the
test well. The response of the aquifer to the stress is
then measured temporally or spatially at the same
well and/or observation wells. Finally, the measured

response, i.e., the drawdown, is analyzed using the
Theis equation (Theis, 1935) or Cooper-Jacob equa-
tion (e.g., Batu, 1998).

The groundwater level will rise after the stoppage
of pumping. The depth to the rising in water levels
during the recovery period minus the depth to the
static water level is known as the residual drawdown.
The analysis of residual drawdown data can provide
an independent check on hydraulic parameters deter-
mined from the analysis of data observed in the

1Paper No. JAWRA-11-0150-N of the Journal of the American Water Resources Association (JAWRA). Received November 30, 2011;
accepted January 22, 2013. © 2013 American Water Resources Association. Discussions are open until six months from print publica-
tion.

2Respectively, Professor (Yeh), Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu,
30010, Taiwan; and Senior Engineer (Wang), Taiwan Branch, MWH Americas Inc., Taipei, 110, Taiwan (E-Mail/Yeh: hdyeh@mail.nctu.edu.
tw).

JAWRA JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION966

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION

Vol. 49, No. 4 AMERICAN WATER RESOURCES ASSOCIATION
August 2013



pumping period (e.g., Todd and Mays, 2005). Gener-
ally speaking, the residual data is more reliable than
the drawdown data because there are no pumping
effects involved. Traditional approaches in analyzing
residual drawdown data are commonly developed
based on the superposition principle and the Theis
equation or Cooper-Jacob equation (e.g., Berg, 1975;
Goode, 1997; Samani and Pasandi, 2003; Singh, 2003;
Zheng et al., 2005). The use of Theis equation in the
analysis of residual drawdown data however implies
that the effects of well radius and wellbore storage
are ignored. Willmann et al. (2007) suggested that
the designed recovery period should not be shorter
than twice the pumping duration if the Theis equa-
tion is employed to analyze the recovery data. An
equation describing the residual drawdown and tak-
ing account of wellbore storage would be helpful in
analyzing the early recovery test data.

Picking (1994) proposed a type-curve match
method for analyzing recovery data based on tabular
well function values computed from of Papadopulos
and Cooper’s solution (1967). Shapiro et al. (1998)
introduced a conceptual model for describing the
early-time recovering water level following the termi-
nation of pumping in a well subject to turbulent head
losses. Their approximation to the recovering water
level in the test well was obtained according to the
principle of superposition and the solutions of Pap-
adopulos and Cooper (1967) and Cooper et al. (1967),
while the former solution is employed to deal with
the response of the formation and the latter is used
to handle the turbulent head loss. Moreover, the
approximation of Shapiro et al. (1998, Equation 5)
assumed that the pumping period is sufficiently large
and the recovery period is very short when Papado-
pulos and Cooper’s solution (1967) is used. No solu-
tion for recovery in finite-diameter wells apart from
those utilizing the principle of superposition has been
presented before. A residual drawdown solution
obtained from theoretical development rather than
the superposition principle has its need in engineer-
ing applications. Yeh and Wang (2009) introduced a
residual drawdown model for the recovery period of
the test after a constant head injection. Recently,
Mills (2010) presented a method for data analysis
based on Papadopulos and Cooper’s solution (1967)
and Picking’s equation (1994) for water level recovery
following pumping of confined aquifers.

The objective of this study is to develop a mathe-
matical model for describing the residual drawdown
taking into consideration the existing drawdown dis-
tribution introduced by the previous pumping and
the effects of well radius and wellbore storage. This
model uses the well drawdown after the stoppage of
pumping as the boundary condition along the well-
bore and the drawdown distribution from prior pump-

ing as the initial condition. The Laplace domain
solution for the residual drawdown to such an initial
boundary value problem is obtained based on the
Laplace transform technique and the time-domain
result is evaluated using the Stehfest algorithm
(Stehfest, 1970). This solution is applicable at any
elapsed times in both the pumping and recovery peri-
ods. In addition, this solution can also be employed to
investigate the effect of wellbore storage on well
residual drawdown or to determine the hydraulic
parameters if coupled with an optimization algo-
rithm. The option of using the Theis residual draw-
down solution to approximate the present residual
drawdown solution is also examined.

ANALYSIS METHODS

A radial groundwater flow equation describing the
drawdown distribution in a homogeneous and isotropic
confined aquifer of uniform thickness can be written as

@2s

@r2
þ 1

r

@s

@r
¼ S

T

@s

@t
; rw � r < 1 and t > 0 ð1Þ

where s r; tð Þ is the drawdown; t is the time; r is the
radial distance from the centerline of the test well; rw
is the radius of the well screen; and S and T are the
storativity and the transmissivity of the aquifer,
respectively.

Consider that a test with a constant pumping rate
has been conducted at a finite-diameter well for a per-
iod of time. The water level begins to recover when the
pumping is terminated. Figure 1 shows the schematic
diagram of drawdown distributions at the beginning of
both the pumping period and recovery period of the
test. The drawdown is denoted as s1 r; t1ð Þ at pumping
time t1 and the residual drawdown is s2 r; t2ð Þ at recov-
ery time t2. The well drawdown in the pumping part
and the well residual drawdown in the recovery part
are expressed as H1 t1ð Þ and H2 t2ð Þ, respectively. The
initial drawdown prior to pumping is zero everywhere
(i.e., s1 r; 0ð Þ ¼ 0) while the initial residual drawdown
for the recovery part is equal to the final drawdown
(i.e., s2 r; 0ð Þ ¼ s1ðr; tpÞ) when the pumping is termi-
nated at tp. A semi-analytical expression for residual
drawdown is developed considering the effect of well-
bore storage as following.

Drawdown Distribution in Pumping Period

Both the aquifer drawdown and well drawdown
before pumping are assumed to be zero. The inner
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boundary condition for maintaining a constant pump-
ing rate Q at the test well with the effect of wellbore
storage taken into consideration can be expressed as

�2prwT
@ s1 r; t1ð Þ

@ r

����
r¼rw

þpr2c
dH1 tð Þ
dt

����
t¼t1

¼ Q; t1 > 0

ð2Þ

where rc is the radius of the well casing. Zero draw-
down at infinity is posed as the outer boundary
condition during the pumping period. In addition, the
well drawdown H1 t1ð Þ is equal to the drawdown at
the wellbore s1 rw; t1ð Þ according to the continuity con-
dition. The drawdown solution considering the
wellbore storage given by Papadopulos and Cooper
(1967) is

s1 q;s1ð Þ¼
2Qa
p2T

Z1
0

1�exp � s1
a
x2

� �h i

�J0 qxð Þ xY0 xð Þ�2aY1 xð Þ½ ��Y0 qxð Þ xJ0 xð Þ�2aJ1 xð Þ½ �
xY0 xð Þ�2aY1 xð Þ½ �2þ xJ0 xð Þ�2aJ1 xð Þ½ �2

dx

x2

ð3Þ

where q ¼ r=rw is the dimensionless radial distance,
s1 ¼ Tt1=r

2
c is the dimensionless pumping time,

a ¼ r2wS=r
2
c is the coefficient of wellbore storage, J0

and Y0 are the Bessel functions of the first and sec-
ond kinds of order zero, respectively, J1 and Y1 are
the Bessel functions of the first and second kinds of
order one, respectively, and x is a dummy variable.
The residual drawdown will, therefore, start with
s1 q; sp
� �

for 1 � q < ∞ when pumping is ended at the
dimensionless pumping time τp (i.e., τ1 = τp). The pro-
cedure of numerical evaluation for Equation (3) is
similar to the one used in Yang et al. (2006), which
includes a root search scheme, a numerical integra-
tion method, and the Shanks method (Shanks, 1955).

In the numerical procedure, the Newton method is
used to find the root of the integrand and the Gauss-
ian quadrature is employed to perform the numerical
integration within the interval between two consecu-
tive roots. The integral is then transformed to an infi-
nite series, which can be accelerated the convergence
by the Shanks method when summing up the series.

If the effect of wellbore storage is negligible, the
second term on the left-hand side (LHS) of boundary
condition (i.e., Equation 2) should be removed. Then,
the solution of Papadopulos and Cooper (1967), Equa-
tion (3), reduces to (Carslaw and Jaeger, 1959, p. 338)

s1 r; t1ð Þ ¼
Q

p2rwT

Z1
0

1� exp �Tt1
S

x2
� �	 


� Y0 r xð ÞJ1 rwxð Þ � J0 r xð ÞY1 rwxð Þ
J2
1 rwxð Þ þ Y2

1 rwxð Þ
dx

x2

ð4Þ

If the test well is treated as a line source, the well
radius in the first term on the LHS of Equation (2)
approaches zero (e.g., rw ? 0) and the second term
on the LHS of Equation (2) vanishes. Equation (3)
will further reduce to the Theis equation.

Figure 2 shows the curves for the dimensionless
well drawdown s1

�
q ¼ 1; s1

�
=
�
Q=2pT

�
vs. dimension-

less pumping time τ1 plotted based on Equations (3
and 4) and the Theis equation for the coefficient of
wellbore storage a ranging from 10�5 to 10�1. Note that
Equation (4) can also be evaluated using the same
numerical procedure described above. It demonstrates
that the difference in dimensionless well drawdown
between Equation (4) and the Theis equation
decreases rapidly as τ1 increases and/or a decreases. In
addition, the difference in dimensionless well draw-
down between Equation (3) and the Theis equation
also decreases with increasing τ1 and/or decreasing a.
Papadopulos and Cooper (1967) suggested that the
Theis equation can approximate Equation (3) when
τ1 > 2.5 9 102. The difference in dimensionless draw-
down between Equation (3) and the Theis equation is
2 9 10�2 when τ1 = 2.5 9 102 and less than 1 9 10�2

when τ1 > 5 9 102 for a ranging from 10�5 to 10�1.
For real-world well-hydraulics problems, the radius

of the well casing generally ranges from 0.05 m to
0.25 m and the hydraulic conductivity for fine sand is
about 2 m/day (2.28 9 10�3 cm/s) (Batu, 1998).
Accordingly, τ1 equals 103 if t1 = 12 h, rc = 0.10 m
(four inches), and the thickness of the confined aqui-
fer is 10 m. In this case, the difference in dimension-
less well drawdown between Equation (3) and the
Theis equation is less than 1 9 10�3 m when Q is
less than 12.5 m3/day. Under this circumstance, the
Theis equation compares reasonably well with Equa-
tion (3).

FIGURE 1. Schematic Diagram of Initial Conditions for
an Aquifer Test in Pumping and Recovery Periods. The variables

with subscript 1 are in the pumping period while those with
subscript 2 are in the recovery period.
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Residual Drawdown Distribution in Recovery Period

Recovery of water level follows the termination of
the pumping. The following relationship is imposed
according to the continuity requirement for the flow
rate between the aquifer and test well

2prwT
@ s2 r; t2ð Þ

@ r

����
r¼rw

¼ pr2c
dH2 tð Þ
dt

����
t¼t2

; t2 > 0 ð5Þ

The initial conditions for residual drawdown away
from the test well and the water level in the test well
are, respectively, written as

s2 r; 0ð Þ ¼ s1 r; tp
� �

; rw � r < 1 ð6Þ

H2 0ð Þ ¼ s1 rw; tp
� � ð7Þ

Note that Equation (6) is a function of radial distance
and pumping period. The inner and outer boundary con-
ditions for the residual drawdown are, respectively,

s2 rw; t2ð Þ ¼ H2 t2ð Þ; t2 > 0 ð8Þ

and

s2 1; t2ð Þ ¼ 0; t2 > 0 ð9Þ

The detailed derivation for the solution describing
the residual drawdown distribution derived using the
Laplace transform technique is given in Appendix A
and the result is

s2 q; s2ð Þ ¼ L�1 A1 q;pð Þ þ A2 q;pð Þf g ð10Þ

with

A1 q;pð Þ¼ s1 1;sp
� �K0

ffiffiffiffiffiffi
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q
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1
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3
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p
qð Þ
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2
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p
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2
4

3
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Z1
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3
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f p; xð Þ ¼ x s1 x; sp
� �

K0
ffiffiffiffiffiffi
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p
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g p; xð Þ ¼ x s1 x; sp
� �

I0
ffiffiffiffiffiffi
ap

p
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h pð Þ ¼ pK0
ffiffiffiffiffiffi
ap

pð Þ þ 2
ffiffiffiffiffiffi
ap

p
K1

ffiffiffiffiffiffi
ap

pð Þ

where L�1 denotes the inverse Laplace transform oper-
ator, p is the Laplace variable, s1 1; sp

� �
and s1 x; sp

� �
are the drawdowns in the test well and aquifer, respec-
tively, at τp, I0 and K0 are the modified Bessel functions
of the first and second kinds of order zero, respectively,
and I1 and K1 are the modified Bessel functions of the
first and second kinds of order one, respectively.

The first and second terms on the right-hand side
(RHS) of Equation (10) are produced from the inner
boundary condition and the initial condition, respec-
tively. Equation (10) can be numerically inverted
using the Stehfest algorithm (Stehfest, 1970; Chang
and Yeh, 2009). Note that this solution can be
employed to assess the effect of wellbore storage on
well residual drawdown or to determine the hydraulic
parameters if coupled with an optimization algorithm
as presented, for example, in Chen and Yeh (2009)
and Yeh and Chen (2007).

Traditional approaches in dealing with the recov-
ery test generally assume a hypothetical recharge
rate equaling the pumping rate at the termination of
pumping (Todd and Mays, 2005). With the applica-
tion of the Theis equation and the superposition prin-
ciple, the residual drawdown distribution may be
expressed as (Batu, 1998)

s2 q; s2ð Þ ¼ Q

4pT
W

aq2

4 sp þ s2
� �

 !
�W

aq2

4s2

� �" #
ð11Þ

where W is the Theis well function. Note that Equa-
tion (11), referred to as the Theis residual drawdown
solution hereinafter, is the same as the one presented
in Picking (1994, Equation 2) but in a slightly
different form. It is obvious that Equation (11) is
much easier to evaluate than the present residual

FIGURE 2. The Curves of Dimensionless Well Drawdown vs.
Dimensionless Pumping Time for a Ranging from 10�5 to 10�1.
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drawdown solution, Equation (10). One can approxi-
mate Equation (10) by Equation (11) for all practical
purposes if the effect of well radius is negligible. In
the next section, we aim to examine the effect of well-
bore storage on the well residual drawdown and com-
pare the presented residual drawdown solution with
the Theis residual drawdown solution.

ANALYSIS RESULTS

As discussed earlier, if the dimensionless pumping
time τp is greater than 5 9 102, the drawdown,
s1 q; sp
� �

for 1 � q < ∞, in Equation (10) can be
approximated by the Theis equation. Assuming τp
>5 9 102 and q = 1, the well residual drawdown
inferred from Equation (10) can then be simplified as

s2
�
1; s2

� ¼ Q

4pT
L�1

(
W

�
a
4sp

�
K0

� ffiffiffiffiffiffi
ap

p �
h
�
p
�

þ 2a

h
�
p
� Z1
1

xW

�
ax2

4sp

�
K0

� ffiffiffiffiffiffi
ap

p
x
�
dx

)
ð12Þ

The first and second terms on the RHS of Equa-
tion (12) arise from the inner boundary condition and
initial condition, respectively. In addition, Equa-
tion (12) can be reduced to the well drawdown equa-
tion given by Cooper et al. (1967, Equation 7) if zero
drawdown is assumed as the initial condition.

According to Equation (12), we define a normalizedwell
residual drawdown as s2

�
1; s2

�
=b�Q=2pT

�
W
�
a=4sp

�c,
where the denominator

�
Q=2pT

�
W
�
a=4sp

�
is the double

of well drawdown at τp and the numerator s2 1; s2ð Þ in
Equation (12) is evaluated using the Stehfest algorithm.

Figure 3 exhibits the behavior of normalized well
residual drawdown as a function of τ2 for a ranging from
10�5 to 10�1 when the pumping is ended at τp = 103. This
figure indicates that the present solution (i.e., Equa-
tion 12) is close to the Theis residual drawdown solution
(i.e., Equation 11) when τ2 > 50. In addition, this result
also suggests that the effect of wellbore storage is negligi-
ble because the normalized difference between these two
residual drawdown solutions is less than 1 9 10�2 after
τ2 > 50. Note that the curves shown on Figure 3 were
computed from a Fortran code we developed based on
Equation (12) and the Stehfest algorithm.

CONCLUSIONS

Traditionally, the analysis of residual drawdown
from a recovery test involves applying the superposi-

tion principle and Theis equation, which in fact
ignores the effects of well radius and wellbore stor-
age. In this study, we develop a semi-analytical
model for describing the recovery (or residual draw-
down) taking into consideration the effect of wellbore
storage, where the existing drawdown distribution
from the pumping part of the test is treated as the
initial condition. The Laplace-domain solution of this
model is obtained based on the Laplace transform
technique and the time-domain result is inverted by
the Stehfest algorithm. This solution can be applied
to the problems with any elapsed times since the
pumping stopped and recovery began. Based on the
derived solution, the well residual drawdown is con-
tributed from two parts; one is the inner boundary
condition related to the well drawdown while the
other is the initial condition related to the aquifer
drawdown produced during the pumping part of the
test. The presented residual drawdown solution
reduces to the solution of Cooper et al. (1967) if a
zero drawdown is used as the initial condition. In
addition, this residual drawdown solution can be
approximated by the Theis residual drawdown solu-
tion in the case of large recovery time, when the
effect of wellbore storage is negligible. When the
dimensionless recovery time exceeds 50, the differ-
ence in normalized well residual drawdown between
the presented residual drawdown solution and Theis
residual drawdown solution will be less than 1 9 10�2

for the dimensionless pumping time equal to 103.

FIGURE 3. The Curves of Normalized Well Residual
Drawdowns vs. Dimensionless Recovery Time for a Ranging

from 10�5 to 10�1 at τp = 103.
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APPENDIX A: DERIVATION OF EQUATION (10)

By taking the Laplace transform with respect to
time, the subsidiary equations of Equation (1) and
Equations (5-9) can be written as

d2s2
dr2

þ 1

r

ds2
dr

¼ S

T
ps2 � s1 r; tp

� �� 
 ðA1Þ

ds2 r;pð Þ
dr

����
r¼rw

¼ r2c
2rwT

p s2 rw;pð Þ � s1 rw; tp
� �� 
 ðA2Þ

s2 1;pð Þ ¼ 0 ðA3Þ

where s2 r;pð Þ denotes the Laplace transform of
s2 r; tð Þ:

The general solution to (A1) to (A3) can be
expressed as (Kreyszig, 2006)

s2 r;pð Þ ¼ c1I0 qrð Þ þ c2K0 qrð Þ½ � þ /1I0 qrð Þ þ /2K0 qrð Þ½ �
ðA4Þ

with

q ¼
ffiffiffiffiffiffiffiffi
S

T
p

r

c1 ¼ S

T

Z1
rw

xs1 x; tp
� �

K0 qxð Þdx

c2 ¼
r2c

2rwT
s1 rw; tp
� �

r2c
2rwT

pK0 qrwð Þ þ qK1 qrwð Þ

þ qI1 qrwð Þ � r2c
2rwT

pI0 qrwð Þ
r2c

2rwT
pK0 qrwð Þ þ qK1 qrwð Þ

S

T

Z1
rw

xs1 x; tp
� �

K0 qxð Þdx
2
4

3
5

/1 ¼ � S

T

Zr
rw

xs1 x; tp
� �

K0 qxð Þ dx

/2 ¼ S

T

Zr
rw

xs1 x; tp
� �

I0 qxð Þ dx

Equation (A4) is a Laplace-domain solution which
can be reduced to that of Cooper et al. (1967, Equa-

tion 7) if s1 r; tp
� � ¼ 0 for rw � r < ∞. Being expressed

in terms of dimensionless variables and taking the
inverse Laplace transform, the time-domain solution
for the residual drawdown is then given by Equa-
tion (10).
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