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a b s t r a c t

Many automatic graph drawing algorithms implement only one or two aesthetic

criteria since most aesthetics conflict with each other. Empirical research has shown

that although those algorithms are based on different aesthetics, drawings produced by

them have comparable effectiveness.

The comparable effectiveness raises a question about the necessity of choosing one

algorithm against another for drawing graphs when human performance is a main

concern. In this paper, we argue that effectiveness can be improved when algorithms

are designed by making compromises between aesthetics, rather than trying to satisfy

one or two of them to the fullest. We therefore introduce a new algorithm: BIGANGLE.

This algorithm produces drawings with multiple aesthetics being improved at the

same time, compared to a classical spring algorithm. A user study comparing these two

algorithms indicates that BIGANGLE induces a significantly better task performance and

a lower cognitive load, therefore resulting in better graph drawings in terms of human

cognitive efficiency.

Our study indicates that aesthetics should not be considered separately. Improving

multiple aesthetics at the same time, even to small extents, will have a better chance to

make resultant drawings more effective. Although this finding is based on a study of

algorithms, it also applies in general graph visualization and evaluation.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Graphs, defined as a set of vertices and a set of edges
that connect the vertices, have been widely used to model
network data for various purposes. Research in graph
drawing concerns the problem of constructing geometric
representations of graphs. That is to design an algorithm
that takes a graph as an input and calculates the positions
of vertices to optimize a set of pre-defined layout require-
ments. The final representations of graphs are usually in
the form of so-called node-link diagrams.

According to Di Battista et al. [7], layout requirements
used in algorithm design can be classified into three
All rights reserved.

by Shi Kho Chang.
fundamental parameters of graph drawing: drawing con-
ventions, aesthetics and constraints. Drawing conventions
are normally common practices or requirements of real-
life applications. For example, draw each edge as a
straight line, or draw each edge as a chain of horizontal
and vertical line segments. Constraints are rules that only
apply to subsets of a graph or parts of a drawing, rather
than the entire graph or drawing. For example, place a
given vertex close to the center of a drawing, or place a
subset of vertices close to each other. Aesthetics are a
set of visual properties that algorithms are required to
achieve in the final drawings, as much as possible, in
order to improve readability. Examples of aesthetic cri-
teria include the following:
�
 Minimum number of edge crossings.

�
 Maximum size of crossing angles.

�
 Uniform edge lengths.
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�
 Maximum angular resolution of vertices.

�
 Even distribution of vertices.
W. Huang et al. / Jou
Fig. 2. Two drawings of the same graph. Left: maximum degree of

symmetry; right: minimum number of crossings.

Fig. 3. Two examples of the drawings used in the study of Purchase [32].
1.1. Two experiments of purchase

The past two decades have seen a fast growing body of
research dedicated to designing algorithms to construct
aesthetically pleasing drawings of graphs [7]. For excellent
reviews on graph drawing algorithms, see [7,29]. While
judgement of the quality of a drawing is subjective, it is
generally believed that drawings that conform to the aes-
thetic criteria should be more effective in conveying the
embedded information to the viewer. This belief is also
supported by empirical work mostly done by Purchase. In
particular, in her seminal work, Purchase and her colleagues
[34] examined the effects of three aesthetics: crossings, bends
and symmetry. For each aesthetic, the same graph was
drawn three times with the value of the aesthetic in
consideration being varied (see Fig. 1). Then the users were
asked to perform the same graph reading tasks with the
three drawings. The task performance was measured as the
number of errors and they found that, for example, more
errors were made when there were more crossings. In other
words, increasing the number of crossings decreased the
readability of graph drawings.

It is often tempting to optimize aesthetic criteria as many
as possible in the same drawing in order to achieve the best
possible readability. However, this can be practically difficult
to achieve. Firstly, optimization of even a single aesthetic can
sometimes be computationally difficult. For example, mini-
mization of edge crossings is NP-complete [16]. As a result, a
number of algorithms take a heuristic approach by which
the aesthetic in consideration is not necessarily optimized
in the resulting drawings. Secondly, most of the aesthetics
are mutually exclusive; it is difficult, if not impossible, to
implement all of the aesthetics to the fullest at the same time.
For example, look at the two drawings shown in Fig. 2. If we
want to draw the graph with maximum symmetries, then
edge crossings are necessary (left). On the other hand,
minimizing the number of crossings can only be achieved
at the cost of symmetry (right). As a result, many automatic
graph drawing algorithms aim to draw graphs satisfying one
or two aesthetics [9].

Despite the fact that algorithms may be based on
different aesthetic criteria, Purchase [32] has shown
in another user study that these algorithms produce
Fig. 1. Three crossing drawings of a graph w
visualizations with similar levels of effectiveness. In this
study, eight different algorithms were compared based on
human performance. These algorithms were of a great
variety in terms of aesthetic criteria that each of them
aimed to satisfy. A single graph that had 17 vertices and 29
edges was drawn by the algorithms resulting in eight
stimuli (two examples of the stimuli were shown in
Fig. 3). The stimuli included drawings produced by force-
directed algorithms with few edge crossings, planar grid
drawings with many sloped edges, orthogonal grid draw-
ings with minimum edge bends, drawings with even
distribution of vertices and drawings with maximum sym-
metries. Fifty-five computer science students participated in
ith varied numbers of crossings [34].
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the study. The participants were asked to view the drawings
and answer the following three questions:
1.
 How long is the shortest path between two given
nodes?
2.
 What is the minimum number of nodes that must be
removed to disconnect two given nodes?
3.
Fig. 4. The spring embedder model (modified from Brandes [3]).
What is the minimum number of edges that must be
removed to disconnect two given nodes?

A custom-built system was used to display the draw-
ings so that the participants could perform tasks online.
Times and responses were recorded. The results showed
that with the exception of one algorithm, there were no
statistical differences found between the algorithms in
regard to either response time or accuracy. The study
demonstrated that despite that each algorithm aimed for
different drawing criteria, these algorithms produced
drawings with comparable effectiveness.

1.2. Motivations

According to Purchase [32], the comparable effectiveness
is likely due to the interactions between aesthetics. Indeed,
since graph components (vertices and edges) are interlinked
with each other, moving the components to improve one
aesthetic will inevitably change the status of other aes-
thetics. Further, if that aesthetic is to be implemented to the
fullest, as shown in Fig. 2, other aesthetics will likely be
made worse as a result. The study of Purchase et al. [34]
showed that when one specific aesthetic is considered,
satisfying it could lead to improved human performance.
However, when different aesthetics are considered across
graph drawings, or algorithms, interactions between aes-
thetics could come into play, resulting in drawings being
equally effective, as demonstrated in the study above.

The comparable effectiveness raises a question about the
necessity of choosing one algorithm against another for
drawing graphs when human performance is a main con-
cern. Is there any way that helps us to design more effective
algorithms? In this paper, we argue that algorithms can be
more effective by making compromises between multiple
aesthetics. That is to improve each of the aesthetics to a
certain extent at the same time, instead of trying to satisfy
only one or two of them to the fullest. The work presented
in this paper is intended to validate this argument.

1.3. Our results

To validate this argument, we need an algorithm that
improves multiple aesthetics. We therefore introduce a
new force-directed algorithm: BIGANGLE. This algorithm
is developed based on a classical spring algorithm, called
Classical, with two additional forces: cosine force and sine
force. We first demonstrate that inclusion of these two
forces in Classical leads to multiple aesthetics being
improved at the same time. Then we validate our argu-
ment by presenting a user study, which compares draw-
ings produced by these two algorithms in respect to
human graph reading performance, cognitive load and
visualization efficiency. The contributions of this work
can be summarized as follows:
�
 We have introduced cosine force, which is to increase
the size of crossing angles.

�
 We have introduced sine force, which is to increase the

angular resolution of vertices.

�
 We have introduced and implemented a force-directed

algorithm, which improves multiple aesthetics at the
same time.

�
 We have conducted a human study, which was the

first to examine the collective effect of multiple aes-
thetics on human graph comprehension.

�
 We have presented empirical evidence showing that

improving multiple aesthetics produces better graph
drawings.

�
 We have evaluated two graph drawing algorithms in

ways that have not been used in prior studies of the
same kind: (1) we evaluated algorithms both on visual
aesthetics of drawings and on human graph compre-
hension; (2) apart from performance measures, cogni-
tive load and visualization efficiency were used; (3) a
substantial amount of graphs were used.

1.4. Organization

This paper is an extension of its conference version
[23]. The remainder is organized as follows. In Section 2,
we describe the two algorithms in detail. The statistics of
the resulting drawings are also presented and compared.
We then present our user study in Section 3 with details
of design, data analysis and results, followed by a discus-
sion on the experimental findings and their implications
for future research in Section 4. Finally in Section 5, we
conclude the paper with a brief summary.
2. The two algorithms

We consider the force-directed methods for the purpose
of validation. Force-directed algorithms treat graphs as
physical systems in which vertices are replaced with equally
charged rings repelling each other while edges are replaced
with springs (see Fig. 4 for the spring embedder model).
Springs pull connected rings together when stretched, while
they push rings apart when compressed. Starting with an
arbitrary placement of vertices, the algorithm calculates the



Fig. 5. Illustration of cosine force (1) and sine force (2). Lines with

arrows are forces applied on the vertices and the arrows indicate force

directions.
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combined force on each of the vertices and moves them
accordingly. The final positions are determined by repeating
this process for a fixed number of times. The resulting
pictures can be aesthetically pleasing [3,12].

2.1. Classical

Classical is a spring algorithm introduced in the book of
Di Battista et al. [7]. In this algorithm, the force exerted by
springs follows Hooke’s law:

f s ¼ ksðd�lÞ ð1Þ

and the repulsive force between all rings follows an
inverse square law:

f r ¼ kr=d2
ð2Þ

where ks and kr are constants, d is the Euclidean distance
between two rings and l is the natural length of the
spring.

Therefore, given a graph G¼ ðV ,EÞ, the combined force
applied on vertex v is

FðvÞ ¼
X

ðu,vÞ2E

f s,uvþ
X

ðu,vÞ2V�V

f r,uv ð3Þ

where f s,uv denotes the spring force and f r,uv denotes the
repulsive ring force.

The spring force is to ensure that edges are as equal to
the natural spring length as possible, while the ring force is
to make sure that vertices are not too close to each other.

2.2. BIGANGLE

The beauty of the spring embedder model is that we
can simply add up force functions, each of which aims
to maximize a specific aesthetic criterion [3,40]. We
expected that those forces could work together resulting
in each aesthetic being improved to a certain extent.

In addition to the above-mentioned spring force and
ring force, BIGANGLE includes two extra forces: one is
called cosine force that is to increase the size of crossing
angles, and the other is called sine force that is to
maximize the angular resolution of vertices.

How cosine force works is shown in Fig. 5(1). Suppose
that two edges (a,b) and (c,d) cross at an angle of y. If
ya901, then the cosine force is applied on each of the
endpoints so that y approaches 901. For example, consider
vertex a: the force is applied along the line parallel to edge
(c,d) with a magnitude determined by the size of y. If y is
acute, vertex a is pulled toward vertex d. If y is obtuse,
vertex a is pulled toward vertex c. If y¼ 901, no force is
applied. The magnitude of the force is computed as follows:

f cos ¼ kcos cos y ð4Þ

where kcos is a constant.
How sine force works is shown in Fig. 5(2). Suppose

that vertex a has at least two incident edges. Let f be the
optimal angle (¼3601/deg(a)), and y be the angle formed
by a pair of two neighboring edges (a,b) and (a,c). If yaf,
then the sine force is applied on vertices b and c so that y
approaches f. The magnitude of the force is computed as
follows:

f sin ¼ ksin sinððf�yÞ=2Þ ð5Þ

where ksin is a constant.
Therefore, given a graph G¼ ðV ,EÞ, let V 0DV be the set

of vertices in which each vertex has at least one incident
edge being crossed, and let V 00DV be the set of vertices in
which each vertex is a neighbor of another vertex that has
at least two incident edges. The combined force applied
on vertex v is

FðvÞ ¼
X

ðu,vÞ2E

f s,uvþ
X

ðu,vÞ2V�V

f r,uvþ
X

ðc,vÞ2C�V 0
f cos,cvþ

X

ðn,vÞ2N�V 00
f sin,nv

ð6Þ

where f s,uv denotes the spring force; f r,uv denotes the
repulsive force; f cos,cv denotes the cosine force; f sin,nv

denotes the sine force; CDE� E denotes the set of pairs
of edges that cross, in which each pair includes an incident
edge of vertex v; NDE� E denotes the set of pairs of
neighboring edges that are incident on neighbors of vertex
v, in which each pair includes an incident edge of vertex v.

It should be noted that to increase crossing angle and
angular resolution, the corresponding forces can also be
implemented using linear functions. For example, an alter-
native to the cosine force can be a linear force calculated by
subtracting y from 901. The reason why the cosine force is
used in BIGANGLE comes from the original experiment of
Huang et al. [27]. The experiment shows that readability
increases with crossing angles. The correlation was non-
linear; we felt that it may be close to a cosine function.
While the experiment does not formally prove this, we
felt that the intuition was worth being embedded in the
algorithm.
2.3. Comparison of the resulting drawings

In this sub-section, we measure and compare the
quality of drawings produced by BIGANGLE and Classical.
We demonstrate that the introduction of the two extra
forces leads to seven aesthetics being improved.

Force-directed algorithms have been widely used in
various application domains to explore real world pro-
blems (e.g., [11,20,30]). Real world graphs often have little
structure and tend to be random [43]. Therefore we chose
testing graphs from ‘‘Rome Graphs’’ to produce drawings.
The Rome graphs [17] are a set of random benchmark



Table 1
Averages of the aesthetic and time measures for the Rome drawings.

Measurement BIGANGLE Classical

# of crossings 23 31

Angle size (deg.) 69.09 65.83

Angle dev. (deg.) 12.78 14.82

Edge length 2.04 2.20

Edge dev. 0.52 0.60

Angular res. (deg.) 54.72 64.47

Angular dev. (deg.) 52.22 60.96

Running time (s) 6.56 1.13
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graphs commonly used for testing the efficiency of graph
drawing algorithms.

We chose graphs that were connected and had size
between 10 and 50, which gave us 6138 graphs in total
with an average size of 32. These graphs were chosen
simply because (1) it is commonly acknowledged that
force-directed algorithms were best suitable for con-
nected graphs with a size up to 50 [3], and (2) drawing
graphs with size larger than 50 is unlikely to be useful for
graph perception or reading, without the help of interac-
tion techniques [42].

We have implemented both BIGANGLE and Classical in
Java for the comparison purpose. Experiments were per-
formed on a 2.4 GHz laptop with 2.99 GB RAM. Starting
with the same initial random placement, each graph was
drawn with BIGANGLE and with Classical respectively. To
compare the quality of drawings produced by the two
algorithms, the following aesthetic properties were mea-
sured for each drawing:
1.
 Number of crossings (# of crossings).

2.
 Average size of crossing angles (angle size).

3.
 Standard deviation of crossing angles (angle dev.).

4.
 Average of edge lengths (edge length).

5.
 Standard deviation of edge lengths (edge dev.).

6.
 Angular resolution (angular res.).

7.
 Average of standard deviations of angular resolution

(angular dev.).
Among the above-mentioned aesthetics, angular reso-
lution is a measure of how incident edges of each vertex

are distributed. Usually an even distribution of incident
edges is desirable. In this paper, angular resolution is
measured as an average of differences between the
smallest angle and the optimal angle for each vertex
[14]. A smaller difference implies a better angular resolu-
tion. Average of standard deviations of angular resolution
is an average of standard deviations of all angles formed
by any two neighboring incident edges for each vertex.
A smaller average value indicates a better angular resolu-
tion. Standard deviation of edge lengths is a measure of
uniformity of edges. A smaller value means more uniform
edges. Standard deviation of crossing angles is a measure
of uniformity of crossing angles. A smaller standard
deviation implies more uniform crossing angle sizes.

For each aesthetic measure, we computed the average
across the drawings for BIGANGLE and for Classical respec-
tively. The experimental results including running time are
summarized in Table 1. As can be seen from the table, on
average, BIGANGLE produced improved drawings in terms
of the seven measured aesthetic criteria, compared to
Classical. Given that both the cosine force and sine force
were designed specifically for increasing crossing angles and
for improving angular resolution, it is surprising that they
also improved other aesthetics. In particular, BIGANGLE
reduced the number of crossings by 26%, increased the size
of crossing angles by 5%, shortened the total edge length by
7% and improved the angular resolution by 15%. Also the
drawings produced by BIGANGLE were more uniform in
size of crossing angles (14%), edge length (13%) and angular
resolution (14%).
Given the improvements produced by BIGANGLE, the
next question is whether these improvements together are
significant enough to make a difference in human perfor-
mance. To demonstrate the effectiveness of BIGANGLE, we
conducted a controlled experiment with real users which
we present in the next section.

3. The user study

3.1. Design

To compare the effectiveness of the two algorithms,
we obtain one set of BIGANGLE drawings and one set of
Classical drawings. The two sets of drawings are of the
same graphs. We ask users to perform a typical graph
reading task with these two sets of drawings. Their task
performance (measured as response time and accuracy)
and mental effort devoted for the task are recorded during
the experiment. In this study, the measure of visualization

efficiency of Huang et al. [24] is also considered. This
measure (E) is calculated based on the recorded perfor-
mance and mental effort data, using the equation below:

E¼
A�T�Rffiffiffi

3
p ð7Þ

In the above equation, A, T and R are standardized
z-scores of the accuracy, time and effort data, respectively.
Visualization efficiency gives us the insight of cognitive
gain (response accuracy) relative to cognitive cost devoted
(response time and mental effort) in performing a cognitive
task. As shown in Eq. (7), high efficiency is achieved when
high performance accuracy is attained in association with
low mental effort and a short response time. In contrast,
low efficiency occurs when low accuracy is associated with
high mental effort and a long response time.

Therefore, the experiment employs a within-subject
design. The independent variable is algorithm type, which
has two conditions: BIGANGLE and Classical. The depen-
dent variables include response time, accuracy, mental
effort and visualization efficiency. Based on the testing
data obtained, we compute mean values of each dependent
measure in the two conditions and test whether there is a
statistical difference at the significance level of 0.05.

3.2. Stimuli

We randomly chose one hundred graphs from the
testing pool of the Rome graphs used in Section 2.3. For
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each of the graphs, the corresponding BIGANGLE and
Classical drawings were used as experimental stimuli.
Therefore there were 100 pairs of BIGANGLE and Classical
drawings (200 drawings in total). It is worth mentioning
that since these drawings were generated by force-direc-
ted algorithms, it was possible that in some of them, a
vertex or an edge was too close to another edge for the
viewer to discern. However, since we were comparing
effectiveness of two algorithms, the drawings were used
without any additional layout fine-tuning.

3.3. The task

The task was to determine the length of the shortest
path between two vertices. In the field of graph theory, a
path is an alternating sequence of unique vertices and
edges, starting at a vertex and ending at a vertex. The
length of a path is the number of edges in it. It is possible
that there are two or more paths between the same two
vertices. The shortest path is the path that has the least
number of edges. In general, there could be two or more
shortest paths for the same two vertices. Looking for
shortest paths is a component of many graph reading
tasks. Therefore, the shortest-path search task is consid-
ered as being representative and has been widely used in
studies of graph visualizations (e.g., [43]). For each subject,
we first randomly chose the two vertices for each graph
with the following constraints:
1.
 There was only one shortest path between the two
vertices. This was to ensure that the subjects searched
for the same path if the same two vertices were specified.
2.
 The path length was between 3 and 6 inclusive. This was
to ensure that the task was not too simple or too difficult.

The same vertices were used for the two drawings of
the same graph. Therefore, for the same pair of BIGANGLE
and Classical drawings, the target path could be different
from subject to subject, but was the same within the
subject. This helped to make fair and thorough compar-
isons between the drawings of the two algorithms.

3.4. Subjects

Forty-three subjects participated in the experiment.
These subjects had normal or correct-to-normal vision.
They were undergraduate students from the School of
Information technologies at the University of Sydney
studying Computer Science or Information Systems. At
the time of their participation, most of them indicated
that they had no prior experience related to graphs while
some mentioned that they had basic ideas about graphs.
They were paid $20 each for their participation, with the
best performer being awarded an extra $30.

3.5. Online system

The drawings were displayed by an online system. The
system was designed to highlight the two specified ver-
tices as red and display the drawing in the center of the
screen with a resolution of 1240�768. When drawings
were mapped to the screen, the same scale was used for
each pair of BIGANGLE and Classical drawings so that the
relative difference between the two drawings was main-
tained for each aesthetic measure.

When it was started, the system displayed one of the
highlighted vertices first. The subject was asked to look at
the vertex and press the space bar on the keyboard to show
the whole drawing. This was to make sure that every
subject had already identified one of the highlighted vertices
when the drawing was completely visible. However, the
subject was free to start path searching from either of the
highlighted vertices. Once the answer was determined,
the space bar was pressed; the picture disappeared and
the answer screen appeared. On the right side of the answer
screen, there were six boxes with each representing a
possible answer. The subject was asked to click on one of
the boxes. There was also another set of nine boxes for the
subject to click on to indicate the mental effort devoted
for the drawing just viewed. The mental effort was rated
based on a 9-point scale ranging from 1: ‘‘very very low
effort’’ to 9: ‘‘very very high effort’’. After the two answers
were given, the subject pressed the space bar to proceed.
Then the new vertex of the next drawing was displayed.
This process is illustrated in Fig. 6 and was repeated for each
drawing.

For each trial, the subject had to view the 200 draw-
ings one by one. The order of these drawings was random
with one constraint. The constraint was that each pair of
BIGANGLE and Classical drawings should be separated
with at least one drawing from another pair. For each
subject and each drawing, responses and the time taken
for path search were recorded in real time by the system.
The time started when the drawing was completely
shown and ended when the space bar was pressed.

3.6. Procedure

The experiment was conducted in a quiet computer
laboratory room. All subjects performed their tasks inde-
pendently. There were four laptops which allowed at most
four subjects to participate in the study at one time. All the
laptops had the same hardware and software specifications.
First, subjects were given a set of experimental documents
to get familiar with graph concepts and node-link diagrams,
the online system, the task and the procedure. After that,
the subjects were given a chance to practice the system, ask
questions and sign the consent form.

During the introduction session, the subjects were told
to perform tasks as accurately and as quickly as they could.
They were also informed that the best performer would be
chosen based on the following procedure: (1) find the top
five subjects who were most accurate; (2) choose the
quickest from the top five.

When ready, the subjects indicated to the experimen-
ter and started to perform tasks online. The pace of the
experimental session was controlled by the subjects. For
example, a rest could be taken when the answer screen
appeared if their eyes were tired. During the experiment,
there were also two compulsory 2-min breaks that took
place at the time when a half and three quarters of the



Fig. 7. Averages of response time, accuracy, effort and efficiency.

Fig. 6. Illustration of the task process for a drawing.
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drawings had been viewed respectively. The system dis-
played a message indicating the break, and could only
proceed after 2 min had passed. After the online task, the
subjects were informed of the purpose of the experiment,
paid and thanked. The whole experiment took about
80 min on average, including the time taken for introduc-
tion, breaks and debriefing.

3.7. Hypotheses

Based on the argument made in Section 1, we made
hypotheses as follows:
1.
 Drawings of BIGANGLE take less time to read than
those of Classical.
2.
 Drawings of BIGANGLE induce fewer errors than those
of Classical.
3.
 Drawings of BIGANGLE take less mental effort to read
than those of Classical.
4.
 Drawings of BIGANGLE are more efficient to read than
those of Classical.

3.8. Results

The results are illustrated in Fig. 7. It can be seen that
all the four dependent measures were consistently in
favor of BIGANGLE. That is, the subjects were faster and
more accurate to complete their task with less effort with
BIGANGLE drawings than with Classical drawings. Visua-
lization efficiency data indicated that BIGANGLE induced
higher cognitive efficiency.

In particular, the subjects spent 13.86 s with BIGANGLE
drawings on average. That is 12.33% faster compared to
the average time of 15.81 s spent with Classical drawings.
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A paired t test indicated that this difference was statistically
significant, t¼�7:418, po0:01.

The average accuracy with BIGANGLE was 89.54%, which
is 2.86% higher than that with Classical (¼87.05%). A paired t

test indicated that this difference was statistically significant,
t¼�3:665, p¼0.01.

The average mental effort with BIGANGLE was 3.57,
which is 5.56% more than that with Classical (¼3.78).
A paired t test indicated that this difference was statisti-
cally significant, t¼�7:823, po0:01.

The average efficiency for BIGANGLE drawings was
0.68 while it was 0.33 for Classical drawings. That is an
improvement of 106%. A paired t test indicated that this
difference was statistically significant, t¼9.125, po0:01.

3.9. Discussion

The user study confirmed our hypotheses that BIGANGLE
was more effective than Classical in terms of response time,
accuracy and mental effort. The visualization efficiency
measure also indicated that overall, drawings produced by
BIGANGLE were about twice as efficient as those by Classical.

There are two surprising highlights in our work: (1)
although cosine force is designed for increasing crossing
angles and sine force is designed for improving angular
resolution, inclusion of them in BIGANGLE results in other
aesthetics being improved as well. (2) Although improve-
ments made in BIGANGLE drawings are not notably
significant with 26% in the number of crossings being
the biggest, the four human performance measures con-
sistently indicate that BIGANGLE is more effective.

Our finding that the two algorithms are different in
effectiveness and in visualization efficiency is particularly
interesting given the general perception that when unstruc-
tured random graphs are used, it is unlikely that there will be
any difference between algorithms in human performance
[43]. However, this finding should not come as a surprise
if we consider that in perceiving or reading graphs, human
performance is actually a reflection of individual effects of
and interaction effects between all known and unknown
Fig. 8. Two drawings of the same graph (1) produc
aesthetics. When individual aesthetics are universally
improved, the positive benefits can add up and the combined
effects are likely to be positive. In contrast, if the aim is to
bring only one or two aesthetics to extremes, the benefits of
the extremes are likely to be offset by the consequence of
other aesthetics being worsened, due to the fact that some
aesthetics can be satisfied only at the expense of others.

The two drawings in Fig. 8 give us a further example.
The drawing in Fig. 8(1) was produced by an algorithm
implemented in OGDF [5], which draws a planar graph on
a grid without crossings, while the other drawing was
produced by BIGANGLE. It can be seen that there are
crossings in the BIGANGLE drawing while there are no
crossings at all in the OGDF drawing. However, it is fairly
safe to say that tracing paths with the BIGANGLE drawing
should be more straightforward than with the OGDF one.

It is important to note that we only measured seven
aesthetic criteria in this paper. It is not clear whether
other aesthetics, both known and unknown, had been
improved by BIGANGLE. However, our user study demon-
strated that the improvements in these measured aes-
thetics were significant enough to make BIGANGLE a
better algorithm for producing effective drawings.

It is also worth noting that there have been many force-
directed algorithms existing that aim to improve multiple
aesthetics. For example, an algorithm by Fruchterman and
Reingold [15] draws graphs following generally accepted
aesthetics including evenly distributed vertices, minimized
edge crossings and uniform edge lengths. Although this
algorithm was included in Purchase’s study for algorithm
comparison, its performance was not notably better com-
pared with other algorithms [32]. Perhaps improvements
made in it were not big enough to make a difference.

Further, the simulated annealing work of Davidson and
Harel [6] makes compromises between aesthetic criteria.
It does a direct calculation of several aesthetic criteria and
attempts to reduce a weighted sum of them. Brandenburg
et al. [2] performed an extensive empirical analysis of
some widely cited force-directed methods including the
Davidson–Harel method and it was found that those
ed by OGDF and (2) produced by BIGANGLE.
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methods produce drawings with remarkably similar lay-
outs. In this paper we conducted comparisons between
BIGANGLE and Classical because the improvements made
in BIGANGLE were based on Classical. Although both
BIGANGLE and the Davidson–Harel method take multiple
aesthetics into consideration, they are essentially differ-
ent: BIGANGLE is based on the spring embedder model
while the Davidson–Harel uses simulated annealing. Aes-
thetics considered in these two methods are also differ-
ent. It would be interesting to compare these two
methods computationally (in terms of multiple aesthetic
criteria in the resultant drawings) and empirically (in
terms of human graph reading performance). However,
this is beyond the scope of this paper.

4. General discussion

The main focus of human studies in graph drawing has
been on validation and reinforcement of existing aes-
thetics (e.g., [1,25,34]). Recent studies have shown a
growing interest in proposing new aesthetics based on
graph reading behavior and drawing preference of end
users. For example, van Ham and Rogowitz [41] asked
users to create best possible drawings based on initial
layout and found that users often arranged vertices
belonging to the same cluster structure in a convex hull
represented by the cluster’s edges. Dwyer et al. [10] asked
users to optimize existing layouts and user generated
layouts were compared with layouts generated by graph
drawing algorithms. One of their findings was that user
preferred layout could be different from the layout that is
best for task performance. Huang [21,22] asked users to
perform a shortest-path search task while observing their
eye movements and found that increasing crossing angles
improved readability of graph drawings. Purchase et al.
[38] asked users to draw graphs based on adjacency lists
and found that aligning vertices and edges to an under-
lying grid was important. Yu et al. [45] asked user to draw
their personal networks and found that users made use of
both vertex position and line length to differentiate roles
and express intimacy.

Indeed, individual aesthetics have proved to be impor-
tant in their own right in designing human-centered
automatic graph drawing algorithms and visualization
systems. However, the current study suggests alternative
research directions, which we formulate as below.

4.1. An aesthetic of overall visual quality

The current study investigates the collective effect of
commonly applied aesthetics and indicates that aesthetics
should not be considered separately. It is necessary to
consider the effect of an aesthetic criterion, together with
other visual factors. Take a look at two drawings in Fig. 3.
According to Purchase [32], the FD-K drawing was
intended to maximize symmetry with no bends, while
the POGb drawing was drawn with maximum orthogon-
ality, no crossings and minimum bends. Given the largest
effect of crossings found in prior research, the POGb
drawing would be expected to have a better performance,
which was in fact not the case in that study. Perhaps this
was because the effect of crossings in grid-based layout
was not as strong as that in force-directed layout. In other
words, effect of an aesthetic may change when layout
requirements change.

A number of experiments have been conducted in the
graph drawing literature to evaluate performance of specific
algorithms in terms of drawing quality. In those experi-
ments, drawing quality was mainly evaluated using either
the values of pre-specified aesthetic criteria (e.g., [2,8,19]),
expert judgement of the authors (e.g., [18]), or criteria
specific to the algorithms in consideration (e.g., [4,46]),
with few exceptions using performance of real users (e.g.,
[31,32]). Measuring individual aesthetics gives us a sense
of the extent to which the drawing conforms to them.
However, drawings produced by different algorithms satisfy
different sets of layout requirements including drawing
conventions, constraints and aesthetics. This makes it hard
to compare drawings in respect to readability, or overall
visual quality, based on individual aesthetics. For example, it
is difficult to judge whether a drawing with no crossings,
but having long edges with many bends is better or more
readable than a drawing with a few crossings, but having
short uniform straight lines.

When overall visual quality is a main concern, an
aesthetic that measures it may come handy and be more
preferable [36]. Based on the discussion above, we there-
fore propose to measure overall visual quality as a
function of aesthetics, with the function itself changing
with drawing conventions and constraints used for draw-
ing construction. That is, given a specific set of drawing
conventions and constraints, overall visual quality (y) can
be theoretically expressed using aesthetics (x) as below:

y¼
Xn

i ¼ 1

f ðxiÞþ
Xn

j,k ¼ 1

f ðxjykÞþe ð8Þ

In Eq. (8), the first term is the sum of aesthetics, the
second is the sum of interaction factors and the third is
the error term that includes measuring errors and aes-
thetics that are not considered. To make this equation
practically useful, some assumptions must be made first.
For example, assume that there is a linear function
between overall visual quality and individual aesthetics.
Further, to make the comparison of overall visual quality
between drawings meaningful, it is necessary to measure
aesthetics based on the same scale. One way of doing that
is to measure aesthetics as usual and standardize the raw
measurement data into z-scores. Another way is to use
the metrics proposed by Purchase [33] which measure all
aesthetics as a real number between 0 and 1 inclusive. It
should be noted that Ware et al. [44] derived a regression
equation based on user performance data and aesthetics,
which predicts the time needed for a task. Eq. (8) is
different in that it measures overall visual quality. The
usability and reliability of our equation needs empirical
validation, and can be validated based on correlations
between user perceived and equation based values of
visual quality. It is hoped that using this single quality
indicator, visualization designers can quickly evaluate
options available and determine whether further improve-
ment is needed.
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4.2. Beyond ranking: quantitative priority list of aesthetics

While often limited by being able to satisfy only one or
two aesthetic criteria to the fullest, many algorithms also
take into account other aesthetics, when possible, in their
attempt to produce visually pleasing and easy-to-read
drawings. Eq. (8) indicates that a similar level of visual
quality can be achieved by considering different sets of
aesthetics. Since different aesthetics affect graph read-
ability to different extents, it is necessary to understand
the relative importance between aesthetics in order to
determine what aesthetics to consider. Such understand-
ing is important in two ways. First, we may want to
implement the least number of aesthetics and achieve
greatest readability. Based on the relative importance, we
are able to choose the most important ones from the
candidate aesthetics. Second, when aesthetics conflict,
relative importance helps us to decide which one should
be given priority.

Attempts have been made to build priority lists of
aesthetics in the literature based on their relative impor-
tance. These lists are made for different domains
and using different methods. Himsolt [19] compared 12
algorithms, in which the aesthetic ranking was obtained
by observing the quality of drawings. Purchase et al. [37]
conducted a questionnaire study for UML diagrams,
in which the priority order was made based on user
preference. Purchase [35] conducted a controlled experi-
ment comparing five aesthetics, in which performance
data were used to determine the perceived importance
of aesthetics for abstract graphs. Other versions of
priority listing were also proposed based on theoretic
discussions and personal judgements of the authors (e.g.,
[13,26,39]).

One limitation of the existing lists is that they only
give us ordering. Quantitative information on the distance
between aesthetics is missing. As an initial step to fill this
gap, Huang and Huang [28] conducted an experimental
study exploring relative importance between crossing
number and crossing angle, in which the quantitative
information was obtained based on multiple regression
analysis. Such quantitative information is important since
we can use it to estimate the cost of choosing one
aesthetic against another, such as ‘‘to achieve the same
benefit of removing one crossing, we need to increase the
crossing angle by at least 10 degrees’’. Further, with this
information Eq. (8) can be refined by assigning weights
(w) to aesthetics to determine the overall visual quality
more accurately:

y¼
Xn

i ¼ 1

wif ðxiÞþ
Xn

j,k ¼ 1

wjwkf ðxjykÞþe ð9Þ

5. Conclusion

Graph visualizations and drawing algorithms are often
designed to optimize one or two important aesthetics.
Empirical research has showed that although algorithms
are based on different aesthetics, drawings produced
by them have comparable effectiveness. In this paper,
we propose and demonstrate that graph drawings can
be more effective if compromises are made between
aesthetics.

We have presented a force-directed algorithm: BIGANGLE.
This algorithm adds two new forces to a classical spring
algorithm: Classical. Statistical data indicate that the intro-
duction of these two forces results in multiple aesthetics
being improved at the same time. A user study is conducted
comparing the readability of drawings produced by these
two algorithms. The results show that users perform better
with BIGANGLE drawings. It is also found that BIGANGLE
drawings induce lower cognitive load and are significantly
more efficient with respect to the measure of visualization
efficiency.

The finding of our user study indicates that aesthetics
should not be considered separately in algorithm design
and visualization evaluation. To be more specific, improv-
ing aesthetics as many as possible at the same time,
even to small extents, will have a better chance to make
resultant drawings more readable. Our study suggests
two research directions: measuring overall visual quality
and building priority lists of aesthetic criteria with quan-
titative information.

Clearly, further research is needed to explore the
feasibility and benefits of making compromises between
aesthetics. It is hoped that more research will be con-
ducted in line with human-centered algorithm and visua-
lization design.
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