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New Constructions of Zero-Correlation
Zone Sequences

Yen-Cheng Liu, Student Member, IEEE, Ching-Wei Chen, and Yu T. Su

Abstract—In this paper, we propose three classes of systematic
approaches for constructing zero-correlation zone (ZCZ) sequence
families. In most cases, these approaches are capable of generating
sequence families that achieve the upper bounds on the family size

and the ZCZ width for a given sequence period . Our
approaches can produce various binary and polyphase ZCZ fam-
ilies with desired parameters and alphabet size. They
also provide additional tradeoffs amongst the above four system
parameters and are less constrained by the alphabet size. Further-
more, the constructed families have nested-like property that can
be either decomposed or combined to constitute smaller or larger
ZCZ sequence sets. We make detailed comparisons with related
works and present some extended properties. For each approach,
we provide examples to numerically illustrate the proposed con-
struction procedure.

Index Terms—Hadamard matrix, mutually orthogonal comple-
mentary set of sequences, periodic correlation, upsampling, zero-
correlation zone (ZCZ) sequence.

I. INTRODUCTION

F AMILIES of sequences with some desired periodic or
aperiodic autocorrelation (AC) and cross-correlation

(CC) properties are useful in communication and radar systems
[1]–[11] for applications in identification, synchronization,
ranging, or/and interference mitigation. For example, to
minimize the multiple access interference (MAI) and self-in-
terference (e.g., intersymbol interference) in a multiuser,
multipath environment or to avoid inter-antenna interference
in a multiple-input, multiple-output system, one would like
to have an ideal sequence set whose periodic AC functions
are nonzero only at the zeroth correlation lag and
whose pairwise periodic CC values are identically zero at any
for all pairs of sequences. Similar aperiodic properties are

called for in designing pulse compressed radar signal or 2-D
array waveforms to have an impulse-like ambiguity function
satisfying the resolution requirements.
Unfortunately, the ideal sequence set does not exist, i.e., it

is impossible to have impulse-like AC functions and zero CC
functions simultaneously in a sequence set. In fact, bounds on
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the magnitude of CC and AC values derived in [2] and [3] sug-
gest that the design of sequence sets involves the tradeoff be-
tween AC and CC values. An alternate compromise is to re-
quire that the ideal AC and CC properties be maintained only at
correlation lags within a window called zero-correlation zone
(ZCZ) [1]. Sequences with such properties are known as ZCZ
sequences. Little or no system performance degradation results
if the correlation values outsides the ZCZ are immaterial to the
application of concern. For example, if the maximum channel
delay spread and the maximum distance between a base
station and co-channel users are known, a direct sequence
spread spectrum-based multiple access system using a family of
ZCZ sequences with ZCZ width , where is
the speed of light, will be able to suppress MAI and multipath
self interference.
Other than the restrictions on the magnitude of correlation

values, practical implementation concerns prefer that the choice
of the sequence period be flexible and the family size be as large
as possible while keeping the desired AC and CC properties in-
tact. One also hope that the elements of the sequences be drawn
from an alphabet set as small as possible. ZCZ sequences with
these desired properties have found applications in code divi-
sion multiple access (CDMA) [1], code-hopping CDMA [4],
orthogonal frequency division multiplexing [5], multiantenna
[6], free-space optical [7], underwater acoustic [8], ultrawide-
band [9], inverse synthetic aperture radar (ISAR) imaging [10],
and radar sensing [11] systems. They are used for spectrum-
spreading [4], [8], [9], [12] and pulse compression [11], and as
pilot sequences for channel estimation [5], timing synchroniza-
tion [6], ranging [13], and frequency offset estimation [14].
Numerous ZCZ sequence generation methods have been pro-

posed. The methods presented in [15]–[17] are based on com-
plementary sequence sets, while in [18]–[20] some novel inter-
leaving techniques were shown to be effective. They can be gen-
eralized to construct 2-D ZCZ arrays [21], [22] as well. Sets of
ZCZ sequences derived from manipulating perfect sequences
were suggested, among others, in [23]–[25]. Park et al. [12]
construct sequences that has nonzero AC only at subperiodic
correlation lags and zero CC across all lags. By requiring the
transform domain sequences to satisfy some special properties,
the authors in [14] and [26] present methods that generate se-
quences having zero CC across all lags. Some ZCZ sequence
sets can be partitioned into smaller subsets so that the zero-CC
zone of any two sequences drawn from different subsets is wider
than that among intrasubset sequences. Ternary or polyphase se-
quences with such a property have been constructed via inter-
leaving techniques [27], [28], and in [29] and [30], quadrature
amplitude-modulated sequences are shown to be derivable from
binary or ternary sequences.
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In this paper, we present three systematic approaches for
generating families of sequences whose periodic AC and CC
functions satisfy a variety of ZCZ requirements. While some
known ZCZ sequence construction methods employ Hadamard
matrices in time domain (e.g., [20] and [25]), our first approach
uses such matrices to meet the desired transform domain prop-
erties of a ZCZ sequence set instead. Sequence sets generated
from this approach are, by construction, optimal in the sense
that the upper bounds for family sizes and ZCZ widths are
achieved. We further employ a filtering operation to convert
sequences of nonconstant modulus symbols into polyphase
ones without changing the correlation properties.
Based upon a basic binary sequence (to be defined in

Section IV) whose AC function satisfies the ZCZ requirement,
the second approach generates ZCZ sequence families by a
special nonuniform upsampling on unitary matrices. The con-
struction of basic sequences seems trivial and straightforward,
but from these simple sequences we are able to synthesize
desired polyphase ZCZ sequences through some refining steps
that include nonuniform upsampling and filtering.
Our third approach invokes the notion of complementary set

of sequences [31], [32]. It bears the flavor of the second ap-
proach and makes use of a basic binary sequence which meets
the ZCZ constraint as well as a collection of mutually orthog-
onal complementary sets. While this method is capable of gen-
erating binary sequences with sequence parameters identical to
those given in [15] and [17], it can also produce polyphase se-
quence sets that are unobtainable by the conventional comple-
mentary set-based approaches.
The rest of this paper is organized as follows. We introduce

basic definitions and properties related to our investigation in
the next section. Section III begins with a brief summary of im-
portant transform domain properties, followed by the analysis
and synthesis of the proposed transform domain approach. We
then show some ZCZ sequence sets generated by the transform
domain method in Section III-D. A class of direct synthesis
methods is presented in Section IV and construction examples
are given in Section IV-E. In Section V, a complementary
sequence set-based extension of the second approach is pro-
posed, followed by numerical construction examples given
in Section V-D. For each proposed approach, we tabulate the
parametric constraint comparisons with related methods. More
detailed comparisons and discussions are given in the form
of remarks. Finally, some concluding notes are provided in
Section VI.

II. DEFINITIONS AND FUNDAMENTAL PROPERTIES

Definition 1: An sequence set is a set of se-
quences of period .
Definition 2: The periodic CC function of two period- se-

quences and is defined as

(1)

where denotes the circular convolution.

Thus, the periodic AC function of sequence is simply
. Since these CC and AC functions are also of period

, to simplify the discussion, we shall, throughout in this
paper, limit the representations and examples of sequences
or sequence sets to a single period unless
necessary.
Definition 3: A sequence that has an impulse-like

(or ideal) AC function, i.e., , is called a
perfect sequence, where

(2)

is the Dirac delta function.
Definition 4: A sequence is said to be obtained from

filtering the sequence by the sequence
of the same period if

(3)

Definition 5: An sequence set,
is called an ZCZ se-

quence family (or set) if , ,
and , where is the

ZCZ width and mod .
In [33], the following is proved.
Lemma 1: The sequence period , cardinality , and ZCZ

width of an ZCZ family must satisfy the inequality

(4)

For -valued binary sequence set, the bound becomes tighter
[18]

(5)

This lemma describes the fundamental tradeoff among the se-
quence period, family size, and ZCZ width. For a fixed , in-
creasing the family size must be achieved at the cost of reduced
ZCZ width and vice versa. Note that for a set with a single per-
fect sequence, (4) is automatically satisfied because and

.
Definition 6: An matrix is called a Hadamard

matrix of order if and only if it satisfies two conditions.
(i) Unimodularity: the components of are of the same
magnitude .

(ii) Orthogonality: where is the
identity matrix and denotes the conjugate transpose
of the enclosed matrix.

Definition 7: The matrix

...
...

...
. . .

...

(6)
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is called the -discrete Fourier transform ( -DFT) matrix,
where , and its Hermitian is called
the inverse -DFT ( -IDFT) matrix. The set of complex th
roots of unity, , is called the -ary
phase-shift keying ( -PSK) set and a sequence with elements
from the -PSK constellation is called an -PSK sequence or
a polyphase sequence in general.
Note that DFT matrices form a subclass of the so-called

Butson Hadamard matrices [34].
Definition 8: The th Kronecker power of matrix , denoted

by , is defined as

(7)

where denotes the Kronecker product.
Definition 9: The matrices

(8)

and

(9)

are called Sylvester Hadamard matrices.
The following lemma is essential to derive our construction

methods in Section III.
Lemma 2 [34]: The Kronecker (tensor) product of any two

Hadamard matrices is a Hadamard matrix.

III. TRANSFORM DOMAIN CONSTRUCTION METHODS

We first review some transform domain properties of se-
quences and their correlation functions. A class of ZCZ
sequence construction approaches based on transform domain
properties is then presented. Detailed comparisons with two
related proposals are made and a few construction examples
are provided.

A. Useful Transform Domain Properties

Denote by , the DFT of a periodic sequence
and by , the inverse DFT (IDFT) of a

periodic transform domain sequence . We then imme-
diately have
Lemma 3 [14]: The DFT of the CC function

of two period- sequences, and , is
equal to , where and

.
Since the AC function of can be expressed

as , its DFT is given by
. Therefore, it is straightforward to show the

following.
Corollary 1 [14]: Sequence is a perfect sequence if

and only if is constant for all .
Based on the aforementioned properties, we can easily prove

the following.
Lemma 4: The AC and CC functions of a set of sequences

are invariant (up to a scaling factor) to filtering if the filtering
sequence is a perfect sequence.

It will become clear in subsequent sections that this lemma
makes the filtering operator very useful in transforming a
sequence set into one with entries of the sequences taken
from a desired constellation while maintaining the correlation
properties.

B. Basic Constructions

Definition 10: A sequence in an sequence set
is said to have a subperiod of , where , if it is also periodic
with period , i.e., , for
and .
Now note that Lemma 3 implies

(10)

where . When and ,
regarded as -dimensional vectors, are orthogonal, we have

(11)

If the sequence has a subperiod of , then

The identity

(12)

then gives the following.
Lemma 5: The CC function of two period- se-

quences and is identical zero if the
associated DFT vectors and are orthogonal
and their Hadamard product, , has a subperiod of

, where is a positive integer.
The recursive Kronecker construction of the Sylvester

Hadamard matrices (9) gives at least two sets of row vectors
(i.e., upper and lower half parts of ) that satisfy both the
orthogonality and subperiodicity requirements. This property
still holds when we replace Sylvester Hadamard matrices by
other classes of Hadamard matrices produced by a recursive
Kronecker construction similar to (9). Furthermore, as elements
of a Hadamard matrix have constant modulus, the AC of all
sequences derived by taking IDFT on rows of a Hadamard ma-
trix is 0 for all nonzero correlation lags by Corollary 1. These
two observations suggest that ZCZ families can be obtained by
using proper subsets of row vectors from a Hadamard matrix.
To have a precise definition of “proper subsets,” we need the
following.
Definition 11: A regular th-order -partition on an

matrix , where , is the set of
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submatrices, each formed by nonoverlapping
consecutive rows of .
Proper subsets of row vectors that generate ZCZ families are

obtained by performing th-order -partition on the th Kro-
necker power of a Hadamard matrix.
Lemma 6: Let be a Hadamard matrix of order and

be the Hadamard matrix of order generated by the th Kro-
necker power of , i.e.,

(13)

where , , and is the th row1 of . We
perform a regular th-order -partition on to obtain the

submatrices

(14)

Then, for each , the set of length- sequences
, where , is an

ZCZ sequence family that achieves the upper
bound (4). Furthermore, all member sequences in the family are
perfect sequences.

Proof: The matrix can be expressed in the stacked form,

, where the submatrix is of
the form

where ’s have unit magnitudes and . It follows
immediately that the Hadamard products of two distinct rows of
has a period of .
The aforementioned construction gives ZCZ sequences of

length , . That the upper bound (4) is achieved is a
result of our partition method described by Definition 11. The
sequence length constraint can be relaxed by using Kronecker
construction of Hadamard matrices of different orders. Using
Lemma 2 and an argument similar to that in deriving the afore-
mentioned lemma, we obtain
Theorem 1: Let be the Hadamard matrix

(15)

where , , are (not necessarily
distinct) Hadamard matrices and , . Par-
tition into submatrices of size

(16)

each formed by nonoverlapping consecu-
tive rows of with . Then, for each , the set of

period- sequences , where
, is an ZCZ sequence

family that achieves the upper bound (4).2

1For convenience, all the column, row, and vector elements’ indices start with
0 instead of 1.
2Technically, the theorem is also valid for , as the resulting set has a

ZCZ width 0. We will implicitly ignore this trivial case and assume in
the subsequent discussion.

Note that the recursive generation of Hadamard matrices de-
fined by (9) and (13) is a special case of (15), i.e., the aforemen-
tioned theorem generalize Theorems 1 and 2 of [35].

C. Polyphase ZCZ Sequences

The ZCZ sequences generated by Lemma 6 and Theorem 1
are not necessary of constant modulus but can be converted into
polyphase sequences without altering the desired AC and CC
properties by a proper filtering process; see Definition 4 and
Lemma 4. To find the filtering perfect sequences, we need the
following two properties.
Lemma 7 [36]: Let be a length- polyphase perfect se-

quence with entries drawn from the -PSK constellation. Then,
both and are polyphase perfect sequences.
Lemma 8 [37]: Let be a natural number and .

Define the length- polyphase sequence by

(17)

where is a permutation of
, and is a rational number depending on

. Then, the sequences

(18)

and

(19)

are all polyphase perfect sequences.
Based on the aforementioned results, we propose a transform

domain construction of polyphase ZCZ sequences as follows.
Corollary 2: Let be a length- perfect sequence of the

form (17), for some , and be the th
submatrix defined by (15) and (16) using -DFT or -IDFT
matrices ’s. Then,

is an bound-achieving polyphase
ZCZ sequence set.

Proof: Since the entries in the th row of render the
general expression

for , where (integers) and
, the products are of the forms

(17) and (19) and are integer powers of . Lemmas 7 and 8
imply that the sequence

has polyphase entries. Invoking Theorem 1 and Lemma 4, we
conclude that is an
polyphase ZCZ family.
Remark 1 (Polyphase Constraint and Sequence Length Se-

lection): Theorem 1 provides a general transform domain ap-
proach using Hadamard matrices to construct bound-achieving
sets of arbitrary nonprime length ZCZ sequences. In contrast,
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TABLE I
TRANSFORM DOMAIN-BASED POLYPHASE ZCZ SEQUENCE SETS

Corollary 2 focuses on the generation of polyphase sequences
and can be regarded as an extension of a special case of the
former. The polyphase requirement is satisfied by invoking an
additional filtering operation and the use of special Hadamard
matrices; see Example 1 in the ensuing section. As a result,
the choice of the sequence length is limited to perfect squares

.
Remark 2 (Nested Structure): Every submatrix

can be further partitioned into subma-

trices of size , where , ,

and so that each submatrix can be used to
construct an ZCZ sequence set with larger

ZCZ width and . This partition can be done in
a nested manner, i.e., each subset can be further decomposed to
render even smaller sequence subsets or can be merged with
proper neighboring submatrices to construct a larger set.
Remark 3 (Tradeoff Between AC and CC): The identity (12)

actually gives a stronger CC property than what is specified by
the ZCZ width; it implies that the CC values are identically zero
except at , . This is still weaker than the con-
structions of [14] and [26] which yield perfect (zero) CC at all
lags. Perfect CC is achieved by requiring that each transform do-
main sequence has sparse nonzero elements and support (set of
the nonzero coordinates) disjoint from the supports of all other
transform domain sequences. Nevertheless, their AC functions
are not as good as ours as all the sequences constructed by our
approach are perfect sequences.
Remark 4 (Tradeoff Between Sequence Length and Alphabet

Size): Tsai’s approach [14] is more flexible in the choice of
sequence length but requires a very large constellation for el-
ements of the sequences. Our approach, on the other hand, re-
quires the smallest constellation and is more flexible than [26]
in selecting the sequence length .
We summarize various parameter constraints for our ap-

proach, [14], and [26] in Table I.

D. ZCZ Sequence Sets Generated by Transform Domain
Approach

In this section, we present some construction examples using
the proposed transform domain method. All ZCZ sequences ob-
tained are perfect sequences. To minimize the number of nota-
tions, we use and to denote sequences generated by the
methods of Corollary 2 and Theorem 1, respectively. The same

notation may refer to different sequences in different examples
when there is no danger of ambiguity.
Example 1 (Use of Three DFT Matrices of Unequal Dimen-

sions): Partitioning the Hadamard matrix
into submatrices and performing IDFT on the
rows of , we obtain two sequences

To convert them into ones with constant moduli, we filter them
by the perfect polyphase sequence [14]

(20)

which satisfies (17). The resulting bound-achieving
ZCZ sequence set consists of

If instead we take IDFT on the rows of the first submatrix
of and filter the
resulting sequences through (20), we obtain the
bound-achieving set

Example 2 (Construction Based on Kronecker Power of a
DFT Matrix): Let and denote by

the submatrices obtained by performing reg-
ular third-order 3-partition on . Choosing and performing
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IDFT on its rows, we obtain sequences . Filtering
them by polyphase perfect sequence

we obtain

which form an ZCZ sequence set that satisfies (4).
Example 3 (Quadriphase Sequences Derived From a

Sylvester HadamardMatrix): Partition the Sylvester Hadamard
matrix into four submatrices, , , , , and select
the first submatrix, . Filtering the
IDFT of by

(21)

for each , we have

a quadriphase ZCZ sequence family that satisfies (4).
Note that if a third-order 2-partition is used instead, we have

a set of only two sequences but with a larger ZCZ width, i.e.,
we obtain a quadriphase ZCZ sequence set consisting
of or .

IV. DIRECT SYNTHESIS METHOD

A. Preliminaries

We now present an alternate approach that is capable of gen-
erating ZCZ sequences of arbitrary nonprime periods.
Definition 12: A binary (0- and 1-valued) sequence of period
which satisfies the ZCZwidth constraint on its AC function

is called a basic sequence.
A basic sequence can be obtained by the simple rule given in

the following.
Lemma 9: A binary sequence ,
, is a basic sequence if the minimum run length of

0’s is (in the circular sense), where a run refers to a string of
identical symbols and is also called the minimum spacing of
.

B. Synthesis Process

Two new operations are needed.
Definition 13: A basic sequence with Hamming

weight can be expressed as the sum (via componentwise
addition) of length- binary sequences, , with dis-
joint nonempty supports so that and

. The sequence set is said to be an or-
thogonal tone decomposition of .
It is trivial to see that is a binary ZCZ

sequence family and each is a basic sequence with
.

Definition 14: Let be a
length- binary sequence with Hamming weight
and be any matrix having columns and arbitrary
number of rows . The -upsampled matrix of is the
matrix defined by

otherwise
(22)

where the coordinate of sequence ’s th nonzero
entry. We denote the aforementioned row-wise nonuniform up-
sampling operation on by .
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TABLE II
POLYPHASE ZCZ SEQUENCE SETS WITH SEQUENCE LENGTH USING -PSK PERFECT SEQUENCE

Obviously, the nonzero entries in all rows of the matrix
are in the same positions. Hence, if is an basic

sequence constructed by the procedure described in Lemma 9,
then each row has the same minimum spacing and all CC
(including AC) values are zero at . Values of all CC
functions at are zero when is unitary in which case
rows of all have ZCZ width . Invoking Lemma 4, we have
the following.
Lemma 10: Let be a basic sequence with

, be an orthogonal tone decomposition of ,
, and be unitarymatrices

(not necessarily distinct). Then, for each , the rows of nonuni-
form upsampled matrix constitute an
ZCZ sequence family, where is the minimum spacing
of . Moreover, the rows of all ’s constitute an
ZCZ sequence set.

C. Polyphase ZCZ Sequences

Lemma 10 does not guarantee a constant modulus constella-
tion for the entries of the generated sequences.We need a special
class of basic sequences and a suitable perfect sequence to gen-
erate polyphase sequence families.
Theorem 2: Let be a length- perfect -PSK

sequence, where and be the perfect sequence
of length derived from -fold upsampling on .
An or ZCZ -PSK sequence
family, where , can be obtained by filtering
the rows of by , where
is the weight- basic sequence defined by

otherwise
(23)

if and are relatively prime, or by

or

where

otherwise

(24)

if , where .
Proof: See the Appendix.

D. Properties, Constraints, and Comparisons

The following three properties about the approach described
above are easily verifiable.
Remark 5 (Parameter Relations): For a fixed and
, ZCZ sequence families generated by (23) achieve the upper

bound (4) and those generated from (24) satisfy the relation
.

Remark 6 (Nested-Like and Interset Properties): The
construction described in Lemma 10 results in a nested-like
structure similar to that of Remark 2. Instead of decomposing a
Hadamard matrix, we decompose a basic sequence of minimum
spacing into several basic sequences of minimum spacing

and use the latter basic sequences to construct sequence
sets whose union constitutes a larger ZCZ set with a ZCZ width
smaller than that of individual subset; see the second part of
Example 7.
The construction of Theorem 2 needs a special choice of

the Hadamard matrix and basic sequence used because of
the polyphase requirement. But as a special case of Lemma
10, it still preserves the nested-like structure. In fact, the
basic sequences defined by (23) and (24) can be cyclically
shifted to generate distinct polyphase ZCZ sequence fam-
ilies with the same . The zero CC zone width
between a sequence from the set based on and one from
the set based on a circularly shifted version of is de-
termined by the CC function of the two basic sequences
used. If, for instance, and

are derived from basic se-
quence and , respectively, then

, and , where is the
zero-CC zone width of . As a result, the set
has the ZCZ width ; see Example 4 in Section IV-E.
Remark 7 (Binary Sequences): To generate binary ZCZ se-

quences, one has to use binary Hadamard matrices, which exist
for , , or [34], to replace the -DFT
matrix, , in constructing and reduce the required alphabet
size to just ; see Examples 9 and 10.
The parameter selection constraints and related properties for

our and some related existing methods are given in Table II. We
provide more comparisons in the following remarks.



LIU et al.: NEW CONSTRUCTIONS OF ZERO-CORRELATION ZONE SEQUENCES 5001

Remark 8: Theorem 2 does not explicitlymention any restric-
tion on the alphabet size. As these constructions need to use a
length- perfect sequence and Hadamard matrices,
which do not always exist for all lengths , matrix dimen-
sion , and all constellation sizes , the ZCZ width,
sequence length, and family size are thus implicitly constrained
by the alphabet size.
Remark 9: Tang and Mow [19] classify the ZCZ sequences

construction methods into two major categories, i.e., 1) those
based on complementary sets and 2) those derived from perfect
sequences. Our approach belongs to the latter category and gen-
erates sequences with length , where is the length
of a perfect sequences. The constructions proposed in [18]–[25]
have similar constraints on the sequence length and those
mentioned in the next three remarks.
Remark 10: In [18], an set is con-

structed by using a length- perfect sequence, where ,
, but must be of the form , . The interleaving

scheme [19] requires that either 1) or 2)
or to generate an or ZCZ
family. The length constraints in 1) is similar to that for the con-
struction (23) while 2) leads to ZCZ families of the same pa-
rameters as those by the construction (24) except that the latter
is only constrained by .
Remark 11: A length- Frank–Chu perfect se-

quence is used in [25] to generate an family.
This method also calls for the use of an DFT or binary
Hadamard matrix. However, for the case when is a perfect
square and a DFT (or binary Hadamard) matrix is used, our ap-
proach needs an alphabet of size or
instead of , , or required
by [25]. Moreover, as [25] is primarily interested in polyphase
(nonbinary) sequences, their approach is not applicable for bi-
nary set since it requires . Our constructions, on the
other hand, can be applied to generate both binary and nonbinary
families.
Remark 12: The construction based on (23) generates

sequences that possess the same correlation properties as
those of the so-called PS sequences [12]. These sequences
are bound-achieving; they have nonzero AC values only on
subperiodic correlation lags at , , and
zero CC for all lags. While the PS sequences require that

, where is a perfect square, to construct
an family, our method does not impose any
constraint on . Moreover, when is a perfect square, our
approach can generate sequences, which, for the convenience
of reference, are called PS-like sequences that require a con-
stellation of size as opposed to

required by the PS approach [12]. Similarly,
we refer to those families derived from (23) using nonperfect
square as generalized PS sequences for these sequences
cannot be generated by the PS method. Some PS-like and
generalized PS sequence sets are given in Section IV-E.

E. Examples of Direct Synthesized Sequence Sets

Example 4 (PS-Like Sequences): Following the pro-
cedure described in Theorem 2 with , ,

and being the Sylvester

Hadamard matrix , we obtain ,
where

Filtering them by the upsampled perfect sequence
, we have

(25)
It can be shown that

and is an bound-achieving ZCZ
sequence family.
Using cyclically shifted basic sequences
and , we obtain two new

ZCZ sequence sets and
whose members are

It can be shown that ,
, and thus, the interset zero-CC zone width

is 2. Moreover, the set is a bound-achieving
ZCZ sequence set.

Example 5 (Length-12 PS-Like Sequences): The set of three
PS-like sequences

is generated by using , , ,
and IDFT matrix . Filtering them by

, we obtain the ZCZ sequences

(26)
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It is verifiable that , ,

(27)

i.e., is a bound-achieving ZCZ
sequence set. This set also possesses the same PS sequence cor-
relation properties [12]. Moreover, both (25) and (26) require
only and of the alphabet size required by the original
PS construction under the same sequence period constraint.
Example 6 (Generalized PS Sequences): Using the

method of Theorem 2 with , , the
IDFT matrix , , and

, we obtain

which constitute a set of bound-achieving generalized
PS sequences that have the same correlation properties as the
original PS sequences, i.e., ,

(28)

As mentioned previously, the PS method [12] cannot produce
ZCZ sequences of length .
Previous examples are constructed by using coprime and
; we show a set using the construction (24).
Example 7 (Sets Based Noncoprime Parameters and

Nested-Like Sets Using Orthogonal Tone Decomposition): By
choosing , , and upsampling the Sylvester
Hadamard by ,
we obtain a ZCZ sequence family by
filtering each row of through

Alternatively, we can perform orthogonal tone decomposition
on to obtain two weight-2 basic sequences of same minimum
spacing 10

With and

we filter rows of and by [37]

to obtain two smaller polyphase sets of larger ZCZ width,
and , where

Both sets are ZCZ sequence sets and together they
form another set.
Example 8 (Generalized PS Sequence Set): We can also de-

rive a smaller generalized PS sequence set having the same pe-
riod but a larger ZCZ width. For example, if we choose ,

in (23) and use the QPSK perfect sequence [38]

then the three sequences

constitute an bound-achieving
ZCZ family. A family with such ZCZ parameter values cannot
be generated by the method suggested in [12].
Example 9 (Length-16 Ternary and Binary Sequences):

Using the basic sequence , the
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Sylvester Hadamard matrix as , and the perfect sequence
, we obtain

where and denote and , respectively. Time-domain
sequences with zero entries are often undesirable as they require
on–off switching. Filtering by , we obtain the binary

ZCZ sequence family consisting of

Example 10 (Length-32 Binary Sequence
Set): Let and . With

,
, and

, we obtain the binary ZCZ sequence set

The ZCZ families shown in the aforementioned two examples
achieve (5), the bound for binary sequences, but
their ZCZ widths are limited by the facts that there exists only
one binary perfect sequence (whose length ) and bi-
nary Hadamard matrices only exists for certain ; see Remark
7. To increase the ZCZ width and have greater flexibility in
choosing the ZCZ parameters, we can use higher order constel-
lations . For example, quadriphase perfect sequences
of length , 4, 8, or 16 do exist [37], [38]. We introduce in
Section V an alternate method that offers more choices for the
ZCZ width.

V. SEQUENCES DERIVED FROM COMPLEMENTARY
SETS OF SEQUENCES

In this section, we generalize the above basic sequence-based
approach by replacing rows of an unitary matrix with concate-
nated sequences. The following definitions can be found in [32].

A. Basic Definitions

Definition 15: The aperiodic CC function of two length-
sequences and is defined as

(29)

The aperiodic AC function of sequence is obviously .
Definition 16: A set of equal-length sequences,

, forms a complementary set of
sequences (CSS) if and only if

(30)

Definition 17: A CSS, , is said to
be a mate of the CSS, if
(a) the lengths of all members in and are the same;
(b) for all

(31)

Definition 18: A collection of complementary sets of se-
quences , where each set contains the
same number of sequences, is said to be mutually orthogonal if
every two sets in the collection are mates of each other.
It has been proved in [31] the following.
Corollary 3: The number of mutually orthogonal CSS’s

(MOCSS’s) cannot exceed the cardinality of member CSS,
, i.e., .

B. Synthesis Procedure

Wenow extend the nonuniform upsampling operation defined
in Definition 14.
Definition 19: Let be a length- binary sequence with

and be a collection
of MOCSS’s in which each CSS consists of length-
sequences, i.e., , where

.
The -upsampled concatenated sequence based on ,

is defined
by

otherwise
(32)

where is given in Definition 14.
The operator is similar to : the latter operates on rows of

a matrix, while the former operates on the sequence formed by
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concatenating members of the set and replaces each nonzero
element of a basic sequence by a finite-length sequence.
Lemma 11: Let be a collection

of MOCSS’s in which each set has length- sequences
and be a basic sequence of weight . The set

forms an
ZCZ sequence family.

Proof: Based on Lemma 9 and Definition 19, we can ex-
press as

...

where , , and
. Invoking Definitions 17 and

18, we obtain for all

(33)

Analogously, Definition 16 gives, for all ,
, . Therefore, forms

an ZCZ sequence set.

C. Polyphase ZCZ Sequences

Following the idea described in Section IV-C, we can derive
another class of polyphase ZCZ sequence families by using suit-
able perfect and basic sequences. The proof of the next corollary
is similar to that of Theorem 2 and is given in the last two para-
graphs of Appendix.
Corollary 4: Let be the length- perfect sequence

obtained by -fold upsampling on a length- per-
fect -PSK sequence, , where and

. Denote by
a collection of MOCSS’s, where and each CSS

contains length- -PSK
sequences. An ZCZ -PSK sequence set,

, with if
or if can be obtained by the
following steps.
1) Generate length- sequences

, , where is the
weight- basic sequence of length defined by (24) if

or by (23) if .
2) Replace each zero in by a length- all-zero sequence
to obtain the augmented sequence .

3) Filter each by .
We have the following four remarks on the MOCSS-based

approach.

Remark 13: Similar to Remark 6, the basic sequence
can be cyclically shifted to generate different polyphase ZCZ
families with the same ZCZ parameters and alphabet size.
These families can be combined to form a larger family with
smaller ZCZ width. Likewise, the zero-CC zone width between
and its shifted version determine the interset zero-CC

zone width between the associated families or the ZCZ width
of the combined set. We can also decompose into several
basic sequences to generate multiple sets with different
ZCZ widths.
Remark 14: As mentioned in Section IV, binary sequence

sets constructed by Theorem 2 have less choices in ZCZ width.
The construction described in Corollary 4 takes advantage of the
fact that the member sequence of an MOCSS exists for many
values of and thus allow the ZCZ width to be chosen from the
set with the same basic sequence , set cardinality
, and perfect sequence .
Remark 15: The authors in [15] and [16] present

MOCSS-based methods for generating binary ZCZ sequences.
The approach given in [16] was later generalized by [17]. The
ZCZ parameters realizable by these methods can be obtained
by using our approach described previously. For example,
a method given in [15] needs to use a class of recursively
generated families of binary CSS . Expressing a family
of MOCSS’s in matrix form [32]

...
...

. . .
...

(34)

where are length- binary sequences and each row is a
CSS. Then, for

(35)

where , the th entry of the submatrix
, is obtained by concatenating the two sequences,

and . The concatenation of rows of forms
a ZCZ sequence set. On the
other hand, by using , the basic se-
quence defined by (24) and the family of MOCSS
with and elements of being length

sequences, we obtain binary ZCZ sequence sets with
the parameters

via Corollary 4.
Remark 16: Our approach offers more choices in parameter

values and thus produce sets which are not derivable from the
methods of [15] and [17]. More importantly, we can generate
not only binary but also nonbinary sequences and the ZCZ pa-
rameters for the nonbinary class can be flexibly controlled via
, which can be any integer and is not affected by the MOCSS

chosen.
In Table III, we list key parameters for our and some other

MOCSS-based binary ZCZ sequence set constructions.
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TABLE III
ZCZ SEQUENCE SETS (EACH USES A COLLECTION OF

MOCSS’S OF LENGTH- SEQUENCES

D. Examples of CSS-Based Polyphase ZCZ Sequence Sets

Two ZCZ sequence construction examples based on CSS are
given in this section.
Example 11 : Let ,

, , and
and choose a collection of mutually orthogonal complementary
sets from [32], where

(36)

Following the procedure of Corollary 4, we obtain the bound-
achieving binary ZCZ sequence set

With the same , , and as those used in Example 9, this
set extends the ZCZ width without changing the set cardinality.
Example 12 : Using the construction (23)

with (36), , , , and , we

can obtain a ZCZ sequence set of the same (or larger) with
a shorter sequence period and slightly larger constellation

It is worth mentioning that the aforementioned set cannot be
obtained by using the methods of [15] and [17] and, more-
over, although Corollary 4 promises an

family, is actually a one. The larger ZCZ
is due to the inherent correlation properties of MOCSS (36)

(37)

for , , and .

VI. CONCLUSION

Three new systematic approaches—a transform domain
method and two direct (time domain) synthesis methods—for
generating ZCZ sequence families have been presented in
this paper. The transform domain approach exploits the CC
function’s transform domain representation and the recursive
Kronecker structure of a class of Hadamard matrices. The
two other approaches begin with simple binary basic ZCZ se-
quences. Through progressively fine-tuning steps that include
novel basic sequence-based nonuniform upsampling of unitary
matrices or a collections of MOCSS’s, we are able to obtain
polyphase sequences that meet various ZCZ requirements.
The basic sequences are used to ensure that the required ZCZ

width is satisfied during the upsampling process, while the trans-
form domain approach uses the subperiodicity of the Hadamard
product of two transform domain sequences. The orthogonality
among rows of unitary matrices or MOCSS guarantees that the
CC value of any two member sequences at zero lag is zero as
well. We take advantage of the correlation-invariant property of
the filtering-by-perfect-sequence operation to convert a noncon-
stant modulus sequence into a polyphase sequence. Judicious
choices of the basic and perfect sequences used and the associ-
ated upsampling rate are crucial in this operation.
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Our approaches are conceptually simple and require no so-
phisticated algebra but, in some cases, offer more flexibilities in
either the choices of the sequence length, the ZCZ width, and/or
the alphabet size needed. We are therefore able to produce se-
quence families with the same parameters as those by earlier
proposals as well as some that are not achievable by related
known methods. Finally, for each approach, numerical exam-
ples have been provided to further validate the proposed con-
struction methods.

APPENDIX
PROOFS THEOREM 2 AND COROLLARY 4

Let be a row of and
, where . If we can

show that, for any , one and only one of the
products is nonzero, then,
as both and consist 0’s and polyphase elements, is a
polyphase sequence as well. Because of the circular convolution
nature of the filtering operation (Definition 4) and the periodic
run property of , we have only to check if this single nonzero
product assertion is valid for .
For the first construction (23), and both
and are positive, hence unique such that

, where one of the integer coefficients or
must be negative [39]. Without loss of generality, we assume

and multiply both sides of the above Bézout’s identity by
, , to obtain , .
If , then and ;
otherwise, subtract both sides by , where to

obtain . For both cases,
we have, for each positive , unique pair of positive
integers , , such that

mod . That this property holds for is
obvious.
As for the second construction (24), we notice that the

basic sequence admits the orthogonal tone decomposition,
, where

otherwise.
(A.1)

When , there exists positive integers , such
that . Multiplying both sides by , ,
we obtain , where

. For all ,

a unique integer pair , , such
that mod , i.e., the sequence is
identically zero except at indices that are multiples of and the
nonzero terms are the products of two polyphase signals whence
are themselves polyphase signals.
Similarly, we can show that, for , the

sequence has nonzero polyphase terms at only,
where . Hence, the sequence is a
polyphase sequence.
To prove Corollary 4, we first note that the sequences gen-

erated differs from those generated by Theorem 2 in that the

perfect sequence used in Corollary 4 is the -fold upsampled
version of that used in Theorem 2 while the unfiltered ZCZ se-
quences for the former is an -expanded version of those for
the latter, replacing each zero entry of by a length- string
of zeros and each nonzero entry by a complementary sequence

of length .
For the first construction of , (23), we immediately have,

for , unique pair of positive integers ,
, such that

. That is, in computing the filtered

sequence , where and
, there is only one nonzero term in the

summands that add up to , for .
That this single nonzero convolution term property holds for

is obvious because of the special structure
of . The proof for the case when the second construction (24)
is employed follows a similar line of argument.
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