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Abstract This study proposes a data mining–based hier-

archical cooperative coevolutionary algorithm (DMHCCA)

for TSK-type neuro-fuzzy networks design. The proposed

DMHCCA consists of two-level evolutions: the neuro-

level evolution (NULE) and the network-level evolution

(NWLE). In NULE, a data mining–based evolutionary

learning algorithm is utilized to evolve neurons. The good

combinations of neurons evolved in NULE are reserved for

being the initial populations of NWLE. In NWLE, the initial

population are mated and mutated to produce new structure

of networks. Similar to NULE, the good neurons of evolved

network in NWLE are inserted into the NULE. Thus, by

interactive two-level evolutions, the neurons and structure

of network can be evolved locally and globally, respec-

tively. Simulation results using DMHCCA are reported and

compared with other existing models. Application of

DMHCCA to a three-dimensional (3D) surface alignment

task is also described, and experimental results are pre-

sented better performance than other alignment systems.

Keywords Hierarchical cooperative coevolutionary

algorithm � Neuro-level evolution � Network-level

evolution � Data mining–based evolutionary learning

algorithm � Three-dimensional surface alignment

1 Introduction

In recent years, a fuzzy system used for several problems

has become a popular research topic [1–10], especially for

solving nonlinear and complex problems [11–14]. The

reason is that fuzzy systems use fuzzy sets, instead of a

mathematical model, for designing controllers. Therefore,

fuzzy systems can solve the problem that inaccurate

mathematical modeling degrades the performance of the

controllers.

The fuzzy system consists of a set of fuzzy if–then rules

that are selected according to a substantial amount of

heuristic observations to express the knowledge of proper

strategies frequently. Thus, it is difficult for human experts

to examine all the input–output data from a complex sys-

tem to find proper rules for a fuzzy system. To face with

this challenge, there are several approaches proposed for

generating if–then rules from numerical data [2, 3, 6].

These methods are all developed for supervised learning;

that is, the correct ‘‘target’’ output value is given for each

input pattern to guide the network’s learning. Among them,

the most well-known supervised learning algorithm is

back-propagation (BP) [3, 6], which is a powerful training

technique when tuning the parameters of networks. In

addition, M. Riemiller and H. Braun [7] proposed a direct

adaptive method for faster back-propagation learning: the

RPROP algorithm. In their results, RPROP has shown a

better performance in comparison with the gradient-des-

cent method. Since the BP and RPROP algorithms are

widespread to minimize the error function when training

the networks, it may reach the local minima but never find

the global solution. In addition, the performance of BP

training depends on the initial values of the system

parameters. Moreover, for different network topologies,

one has to derive new mathematical expressions for each

network layer.

Considering the above disadvantages, one may face with

suboptimal performances, even for a suitable neural fuzzy

network topology. Hence, the techniques capable of
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training the parameters and finding a global solution while

optimizing the overall structure are needed. To this end,

evolutionary algorithms appear to be better candidates than

the BP algorithm. Recently, an evolutionary fuzzy model

has become a popular research field [15–28]. The evolu-

tionary fuzzy model is a learning process to generate a

fuzzy system automatically by incorporating evolutionary

learning procedures. Among these evolutionary fuzzy

models, the well-known algorithms are the genetic fuzzy

models, that is, fuzzy models that are augmented by a

learning process based on genetic algorithms (GAs). In

spite of the genetic fuzzy models being used to seek the

optima solutions, they may have some limitations such as

same lengths of chromosomes, predefined parameters, and

so on. Hence, several improved evolutionary algorithms

have been proposed [22–28] to take into account these

limitations. In [22], Bandyopadhyay et al. used the vari-

able-length genetic algorithm to let chromosomes with

different lengths in a same population. Carse et al. [23]

used the genetic algorithm to evolve fuzzy rule-based

controllers. In [24], authors presented an efficient immune

symbiotic evolution learning algorithm to compensate the

neuro-fuzzy controller. The experimental results showed

that their approach has adopted to solve several nonlinear

control problems. Lin et al. [25] proposed a novel self-

constructing evolutionary algorithm for designing a TSK-

type fuzzy model. Their algorithm exhibited good results

on the water bath temperature control problem. Gomez and

Schmidhuber proposed lots of work to consider these

limitations [26, 27]. In their work, enforced subpopulations

(ESP) are proposed to use subpopulations of neurons for

the fitness evaluation and overall control. As shown in [26],

the subpopulations that use to evaluate the solution locally

can obtain better performance compared to systems with

only one population used to evaluate the solution. Never-

theless, ESP do not reserve the good combinations of

subpopulations whose fitness is high. It indicates that

information about potential combinations of subpopula-

tions is lost. In [28], Lin and Hsu proposed a hybrid evo-

lutionary learning algorithm to combine the compact

genetic algorithm and the modified variable-length genetic

algorithm to perform structure/parameter learning to con-

struct a network dynamically. More recently, Hsu and Lin

[29] proposed a multi-groups cooperation-based symbiotic

evolution (MGCSE) to train a TSK-type neuro-fuzzy net-

work (TNFN). Their results showed that MGCSE can

obtain better performance and convergence than symbiotic

evolution. In spite of MGCSE being a good approach for

training a TNFN, it would not be suitable for complex

problems. The reason is that complex problems lead to

large amount of parameters must be trained. Thus, it could

result in slow rate of convergence. In addition, MGCSE

performed random group combination to construct a

network. In spite of the fact that such action can sustain

diversity, there is no systematic way to identify suitable

groups for selecting chromosomes.

Although the above evolutionary learning algorithms

[22–29] can improve traditional genetic algorithms, these

algorithms may conduct one or more of the following

problems: (1) the random group selection of fuzzy rules,

(2) low convergence rate as the problem becomes complex,

and (3) potential fuzzy rules combinations is lost.

To this end, this study proposes data mining–based

hierarchical cooperative coevolutionary algorithm (DMH

CCA) for improving the problems of evolutionary learn-

ing algorithms that were mentioned above. The notion of

DMHCCA is to utilize two-level evolutions: the neuro

level and the network level. At the neuro level, to solve

the problem of the random group selection, this paper

utilizes a data mining–based evolutionary learning algo-

rithm (DELA) to evolve neurons. The reason why we

adopt the data mining approach is that data mining has

been widespread used in several fields [30, 31]. Data

mining is a method of mining information from a data-

base called ‘‘transactions.’’ Data mining can be regarded

as a new way for performing data analysis. One aim of

data mining is to find association rules among sets of

items that occur frequently in transactions. To achieve

this aim, several methods have been proposed [32–34],

and a comprehensive survey of discovering frequent item

sets and association rules have been presented in [35]. In

[32], the authors proposed a mining method, which

ascertains large sets of items to find out the association

rules in transactions. Hang et al. [33] proposed frequent

pattern growth (FP-growth) to mine frequent patterns

without candidate generation. In Hang’s work, items that

occur more frequently will have better chances of sharing

information than items that occur less frequently. Wu

et al. [34] proposed a data mining method based on the

GA algorithm that efficiently improves the traditional GA

by using analysis and confidence parameters. Thus, the

DELA method adopts a data mining method to system-

atically select the group of fuzzy rules that can solve the

problem of the random group selection. Besides, the

regularized least square (RLS) is proposed to increase

the convergence rate. At the network level, the good

combinations of neurons (fuzzy rules) are reserved and

evolved into new ones. Moreover, DMHCCA proposed

variable antecedent-part crossover (VAC) and variable

antecedent-part mutation (VAM) at network level such

that the variable length of chromosomes can be mated and

mutated. Therefore, DMHCCA tries to improve hierar-

chical enforced subpopulations (HESP) [27] that only

fixed length of networks can be evaluated in one gener-

ation. In the first example of our experimental section,

DMHCCA is compared with H-ESP, and the results show
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that the proposed DMHCCA is proven superior to H-ESP.

In the second example, a three-dimensional (3D) surface

alignment task is adopted to examine the learning per-

formance of DMHCCA. The experimental results show

that the proposed DMHCCA trained TNFN-based align-

ment approach is better than other alignment systems.

This paper is organized as follows. In Sect. 2, a TSK-

type neuro-fuzzy network is introduced. The proposed

DMHCCA is described in Sect. 3. In Sect. 4, the illustra-

tion examples are presented. The conclusions are given in

the last section.

2 Structure of TSK-type neuro-fuzzy network (TNFN)

A TSK-type neuro-fuzzy network (TNFN) [5] employs

different implication and aggregation methods from a

standard Mamdani fuzzy system. According to [6, 36],

authors have shown that a TSK-type NFN can offer better

network size and learning accuracy than a Mamdani-type

NFN. Thus, instead of using fuzzy sets, the conclusion part

of a fuzzy rule is a linear combination of the crisp inputs.

The fuzzy rule of TNFN is shown in Eq. (1), where n and

j represent the number of the input dimensions and the serial

number of the fuzzy rules, respectively.

IF x1 is A1jðm1j; r1jÞ and x2 is A2jðm2j; r2jÞ
. . .and xn is Anjðmnj; rnjÞ
THEN y0 ¼ w0j þ w1jx1 þ � � � þ wnjxn ð1Þ

The structure of a TNFN is shown in Fig. 1, where

n represents the number of input dimensions. It is a five-

layer network structure. In the TNFN, the firing strength of

a fuzzy rule is calculated by performing the following

‘‘AND’’ operation on the truth values of each variable to its

corresponding fuzzy sets by:

u
ð3Þ
ij ¼

Yn

i¼1

exp �
u
ð1Þ
i � mij

h i2

r2
ij

0
B@

1
CA ð2Þ

where u
ð1Þ
i ¼ xi and u

ð3Þ
ij are the outputs of 1st and 3rd

layers; mij and rij are the center and the width of the

Fig. 1 Structure of the TSK-

type neuro-fuzzy network
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Gaussian membership function of the jth term of the ith

input variable xi, respectively.

The output of the neuro-fuzzy network is computed by:

y ¼ uð5Þ ¼
PM

j¼1 u
ð4Þ
j

PM
j¼1 u

ð3Þ
j

¼
PM

j¼1 u
ð3Þ
j w0j þ

Pn
i¼1 wijxi

� �

PM
j¼1 u

ð3Þ
j

ð3Þ

where u(5) is the output of 5th layer; wij is the weighting

value with ith dimension and jth rule node; and M is the

number of fuzzy rule.

3 Data mining–based hierarchical cooperative

coevolutionary algorithm

The learning process of DMHCCA is shown in Fig. 2.

As shown in this figure, DMHCCA involves two major

evolutions: neuro-level evolution and network-level

evolution. The blocks of inserting good networks and

inserting good neurons are the connection between the

neuro and network-level evolution. These two operations

indicate that good evolved results in one level evolution

would be transferred to another level evolution. Once

receiving good neurons or networks, the received chro-

mosomes would be mated with other old chromosomes

to yield some new offspring. Therefore, by exchanging

the good information between two levels of evolu-

tion, we have more chance to find the global optimal

solution.

3.1 Neuro-level evolution

In this subsection, we will discuss the neuro-level evo-

lution (NULE). To consider the structure of TNFN,

NULE adopts the variable length of a combination of

chromosomes with RLS method to construct a TNFN.

The structure of chromosomes to construct TSK-type

neuro-fuzzy networks (TNFNs) in NULE is shown in

Fig. 3. In this figure, each antecedent part of a fuzzy rule

represents a chromosome selected from a group, Psize

denotes that there are Psize groups in a population, and

Mk indicates that there are Mk rules used in TNFN

construction.

After discussing the structure of chromosomes to con-

struct TNFNs, details of the coding step for NULE and

RLS method are described as follows:

(1) Coding Step: The coding structure of chromosomes

in the proposed NULE is shown in Fig. 4. This figure

describes an antecedent part of a fuzzy rule that has the

form in Eq. (1), where mij and rij represent a Gaussian

membership function with mean and deviation of ith

dimension and jth rule node, respectively. Besides, a pair

of (m, r) indicates a neuron in Layer 2 of a TNFN.

Evolving an antecedent part of a fuzzy rule is likely to

evolve a neuron. Thus, the evolution of this level is called a

neuro-level evolution.

(2) RLS method: Assume a TSK-type neural fuzzy

model composed of m fuzzy rules as the following form:

Rj : IF x1 is A
j
1. . . and xn is A j

n;

THEN yj ¼ w j
o þ w

j
1x1 þ � � � þ w j

nxn

ð4Þ

where j = 1, …, m and A
j
i is the linguistic part with respect

the input i and Rule j. From Eq. (4), the output can be

written as:

y ¼
Pm

j¼1 ujyjPm
j¼1 uj

¼ û1y1 þ û2y2 þ � � � þ ûmym; ð5Þ

where uj is the firing strength of Rule j, and

ûj ¼ uj=ðu1 þ � � � þ umÞ. Then it is possible to express the

equation above into the form:

y ¼ û1 w1
0 þ w1

1x1 þ � � � þ w1
nxn

� �

þ � � � þ ûm wm
0 þ wm

1 x1 þ � � � þ wm
n xn

� �
¼ aW ð6Þ

where W ¼ ½WT
1 � � �WT

m�
T ; Wj ¼ ½w j

0 � � �w j
n�

T ; j ¼ 1; . . .m,

and

a ¼ ½û1 û1x1. . .û1xn

û2 û2x1. . .û2xn

..

.

ûm ûmx1 � � � ûmxn�T

Since y and a are known values, the only unknown value is

the consequent part W. Suppose a given set of training

inputs and desired outputs is xðtÞ; ydðtÞf gM
t¼1. The Eq. (6)

can be rewritten as:

AW ¼ Yd ð7Þ

where A = [a(1) a(2)…a(M)]T.

In order to get the smooth estimation, the regularization

is adopted. The approximation solution can be written as

follows:

Ŵ ¼ ðAT Aþ kIÞ�1
AT Yd; ð8Þ

where k is a regularization parameter that adjusts the

smoothness. Thus, by getting Eq. (8), we finish the esti-

mation of the consequent part of fuzzy rules.

The learning process of NULE involves seven operators:

initialization, self-organization algorithm, data mining–

based selection method, fitness assignment, reproduction,

crossover, mutation, and insert good networks. The whole

learning process is introduced below:

a. Initialization: Before we start the neuro-level evolu-

tion, the initial groups of individuals should be generated.

Thus, initial groups are generated randomly within a
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Fig. 2 Learning process of DMHCCA

Fig. 3 Structure of chromosomes to TNFN construction in NULE
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predefined range. The following formulations show how to

generate the initial chromosomes in each group:

Deviation: Chrg;c½p� ¼ random½rmin; rmax�;
where p ¼ 2; 4; . . .; 2n;

g ¼ 1; 2; . . .;Psize; c ¼ 1; 2; . . .;NC; ð9Þ

Mean: Chrg;c½p� ¼ random½mmin;mmax�;
where p ¼ 1; 3; . . .; 2n� 1; ð10Þ

where Chrg,c represents cth chromosome in the gth group,

NC is the total number of chromosomes in each group,

p represents the pth gene in a Chrg,c, and [rmin, rmax],

[mmin, mmax] represent the predefined range to generate the

chromosomes.

b. Self-adaptive method (SAM): To select fuzzy rules

automatically, the proposed DMHCCA adopts our previous

research—the self-adaptive method (SAM) [37]—to

determine the suitability of TNFN models with different

fuzzy rules. The self-adaptive method encodes the proba-

bility vector VMk
to stand for the suitability of a TNFN with

Mk rules. In addition, in SAM, the minimum and maximum

number of rules must be predefined to limit the number of

fuzzy rules to a certain bound, that is, [Mmin, Mmax]. The

processing steps of SAM are described as follows:

Step 1. Update the probability vectors VMk
according to

the following equations:

VMk
¼ VMk

þ ðUpt valueMk
� kÞ; if Avg� fitMk

VMk
¼ VMk

� ðUpt valueMk
� kÞ; otherwise

(

ð11Þ

Avg ¼
XMmax

Mk¼Mmin

fitMk
=ðMmax �Mmin þ 1Þ; ð12Þ

Upt valueMk
¼ fitMk

.XMmax

Mk¼Mmin

fitMk
; ð13Þ

if FitnessMk
�ðBest FitnessMk

� ThreadFitnessvalueÞ
then fitMk

¼ fitMk
þ FitnessMk

; ð14Þ

where VMk
is the probability vector, k is a predefined

threshold value, Avg represents the average fitness value in

the whole population, Best FitnessMk
represents the best

fitness value of TNFN with Mk rules, and fitMk
is the sum of

the fitness values of the TNFN with Mk rules.

Step 2. Determine the selection times of TNFN with dif-

ferent rules according to the probability vectors as follows:

RpMk
¼ ðSelection TimesÞ � ðVMk

=Total VelocyÞ; ð15Þ

Total Velocy ¼
XMmax

Mk¼Mmin

VMk
; ð16Þ

where Mk = Mmin, Mmin?1, …, Mmax, Selection_Times

represents the total selection times in each generation and

RpMk
represents the selection times of TNFN with Mk rules

in one generation.

Step 3. Accumulator calculation: If the current best

combination of chromosomes does not improve, then

accumulator can be computed as below:

if Best Fitnessg ¼ Best Fitness;
then Accumulator ¼ Accumulator þ 1;

ð17Þ

where Best_Fitnessg represents the best fitness value of the

best combination of chromosomes in the gth generation,

and Best_Fitness represents the best fitness value of the

best combination of chromosomes in the current

generations.

c. Data mining–based selection method (DMSM): This

process performs the selection step, which involves the

selection of groups and the selection of chromosomes.

(1) Selection of groups: This paper proposes DMSM to

determine the suitable groups for chromosomes selection to

form a TNFN. In DMSM, suitable groups are selected

according to the groups, which conduct from association

rules that indicate good performance. In contrast, unsuit-

able groups are avoided selecting according to the groups,

which conduct from association rules that demonstrate bad

performance. To perform DMSM, we use a transaction-

built action and an association rule mining action to select

the well-performing groups. The details of these two

actions are described as follows.

Action1: Transaction-built action.

The aims of this action are twofold: accumulate the

transaction set and select groups. Regarding the accumu-

lation of transaction set, the transactions are built using the

following equations:

if FitnessMk
�ðBest FitnessMk

� ThreadFitnessvalueÞ
Transactionj½i� ¼ TFCRuleSetMk

½i�
then

PerformanceIndex ¼ g; ð18Þ

if FitnessMk
\ðBest FitnessMk

� ThreadFitnessvalueÞ
Transactionj½i� ¼ TFCRuleSetMk

½i�
then

PerformanceIndex ¼ b; ð19Þ

where i = 1, 2, …, Mk, Mk = Mmin, Mmin?1, …, Mmax,

j = 1, 2, …, TransactionNum, the FitnessMk
is the fitness

value of TNFN with Mk rules, ThreadFitnessvalue is a

Fig. 4 Coding an antecedent part of a fuzzy rule into a chromosome

in NULE
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predefined value, TransactionNum is the total number of

transactions, Transactionj[i] is the ith item in the jth

transaction, TFCRuleSetMk
½i� is the ith group in the Mk

groups used for chromosomes selection, and Performance

Index = g and Performance Index = b represent the good

and bad performance, respectively. Hence, transactions

have the form shown in Table 1. As shown in Table 1, the

first transaction indicates that the three-rule TNFN formed

by the first, fourth, and eighth groups has ‘‘good’’ perfor-

mance. In contrast, the second transaction indicates that the

four-rule TNFN formed by the second, fourth, seventh, and

the tenth groups has ‘‘bad’’ performance.

Regarding the group selection, DMSM selects groups

using the following equation:

if Accumulator�NormalTimes

then GroupIndex½i� ¼ Random½1;PSize�;
ð20Þ

where i = 1, 2, …, Mk, Mk = Mmin, Mmin?1, …, Mmax,

Accumulator is used to determine which action should be

adopted, GroupIndex[i] is the selected ith group of the Mk

groups, and PSize indicates that there are PSize groups in a

population. If the best fitness value does not improve for a

sufficient number of generations (NormalTimes), then

DMSM selects groups according to the association rule

mining action.

Action 2. Association rule mining action.

In the association rule mining action, suitable groups are

selected according to the association rules. To produce the

association rules with good performance, the frequent

groups must be found in advance. Thus, we adopt FP-

growth method described in [33] to find the frequent

groups. Then, the found frequent groups are compared with

the groups owing bad performance shown in Table 1 to

count the confidence degree, which can be computed by the

following formula:

confidenceðfrequent groups) goodÞ
¼ Pðgoodjfrequent groupsÞ

¼ supp ðfrequent groups [ goodÞ
supp ðfrequent groups [ goodÞ þ supp ðfrequent groups [ badÞ ;

ð21Þ

where P(good|frequent groups) is the conditional

probability, frequent groups [ good or bad is the union

of frequent groups and good or bad performance, and supp

(frequent groups [ good or bad) is the counts of frequent

groups with good or bad performance occurring in

transactions. Then, the rule is valid if

confidenceðfrequent groups) goodÞ�minconf ; ð22Þ

where minconf is the minimal confidence given by a user or

an expert. Hence, we can infer that if a rule satisfies

Eq. (22), then the frequent groups can be considered as the

suitable groups. For example, if the confidence of {2, 5,

8} ) {g} is larger than the minimum confidence, we

produce this association rule, which indicates that the

combination of the second, fifth, and eighth groups have

‘‘good’’ performance. After doing so, the frequent groups

are conducted to produce association rules and generate the

AssociatedGoodPool, which contains all frequent groups

that satisfy Eq. (22).

After the association rules are constructed, DMSM

selects groups according to the association rules. The group

indexes are selected from the associated good groups

according to the following equations:

if NormalTimes\Accumulator � ExploreTimes

then GroupIndex½i� ¼ w;

where w ¼ GoodItemSet½q�
¼ Random½AssociatedGoodPool�; ð23Þ

where q = 1, 2, …, AssociatedGoodPoolNum, i = 1, 2, …,

Mk, Mk = Mmin, Mmin?1, …, Mmax, ExploreTimes is a

predefined value that judge to perform the association rule

mining action, AssociatedGoodPool is the sets of good

item set obtained from the association rules, Associated-

GoodPoolNum is the total number of sets in Associated-

GoodPool and GoodItemSet[i] presents a good item set

randomly selected from AssociatedGoodPool. In the

Eq. (23), if Mk is greater than the size of GoodItemSet, the

remaining groups are selected using Eq. (20). If the best

fitness value does not improve for a sufficient number of

generations (ExploreTimes), DMSM selects groups based

on the transaction-built action and sets Accumulator = 0.

(2) Selection of chromosomes: After the Mk groups are

selected, Mk chromosomes are selected from Mk groups as

follows:

ChromosomeIndex½i� ¼ q; ð24Þ

where q = Random[1, Nc], i = 1, 2, …, k, Nc is the total

number of chromosomes in each group, and Chromo-

someIndex[i] is the index of a chromosome that is selected

from the ith group.

d. Fitness assignment: To assign the fitness value of an

individual, the following detailed steps in the fitness value

assignment are performed:

Step 1. Choose Mk antecedent part of fuzzy rules using

RLS method to construct a TNFN RpMk
times from Mk

Table 1 Transactions in the DMSM

Transaction index Groups Performance index

1 1, 4, 8 g

2 2, 4, 7, 10 b

… … …
TransactionNum 1, 3, 4, 6, 8, 9 G
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groups with size NC. The Mk groups are obtained from the

DMSM.

Step 2. Evaluate every TNFN that is generated from

Step 1 to obtain a fitness value. In this paper, the fitness

value is designed according to the following formulation:

Fitness Value ¼ 1=ð1þ Eðy;�yÞÞ; ð25Þ

where

Eðy;�yÞ ¼
XN

i¼1

ðyi � �yiÞ2; ð26Þ

where yi and �yi represents the desired and predicted values

of the ith output, respectively, Eðy;�yÞ is an error function

and N represents the number of the training data in each

generation.

Step 3. Divide the fitness value by Mk and accumulate

the divided fitness value to the selected antecedent part of

fuzzy rules with their fitness value records.

Step 4. Divide the accumulated fitness value of each

chromosome from Mk groups by the number of times that it

has been selected.

e. Reproduction: To perform reproduction, elite-based

reproduction strategy (ERS) [29] is adopted. In ERS, every

chromosome with the best performance is kept. In the

remaining chromosomes in each group, the roulette-wheel

selection method [38] is adopted for proceeding with the

reproduction process. Then the well-performed chromo-

somes in the top half of each group [21] proceed to the next

generation. The other half is generated by performing

crossover and mutation operations on chromosomes in the

top half of the parent individuals.

f. Crossover: In this step, a two-point crossover

strategy [38] is adopted. Once the crossover points are

selected, exchanging the site’s values between the

selected sites of individual parents can create new indi-

viduals. These individuals are offspring that inherent the

parents’ merits.

g. Mutation: The utility of the mutation step can provide

some new information to every group at the site of an

individual by randomly altering the allele of a gene. Thus,

mutation can lead to search new space that would prevent

from falling into the local minimal solution. In the muta-

tion step, uniform mutation [39] is adopted, and the

mutated gene is drawn randomly from the domain of the

corresponding variable.

h. Insert good networks: Since there are ‘‘Selec-

tion_Times’’ networks constructed in every generation, the

fitness value of each network is recorded and compares it

with the network evolution level. If the fitness of the net-

work is better than the worst network in the network

evolution level, then this network is inserted into the net-

work evolution level.

If the number of generations reaches a predefined

maximal iteration value or the best fitness value is greater

than a fitness threshold, DMHCCA is terminated, and

output the final results.

3.2 Network-level evolution

In this subsection, the network-level evolution (NWLE) is

discussed. The main processes of NWLE involve six

operations: receive good networks, reproduction, variable

antecedent-part crossover, variable antecedent-part muta-

tion, evaluation, and insert good neurons. The details of

these operations are described as follows:

a. Receive good networks: Before the network evolution

starts, we receive N well-performed networks from

neuro-level evolution to be chromosomes. The coding

structure of chromosomes in the network-level evolu-

tion is shown in Fig. 5. In this figure, each block of a

chromosome describes an antecedent part of a fuzzy

rule that has the form in Eq. (4), where mij and rij

represent a Gaussian membership function with mean

and deviation of ith dimension and jth rule node,

respectively. The consequent part of a fuzzy rule is

skipped to encode into chromosomes since regularized

least square is proposed to estimate the consequent

part. After that, we sort the chromosomes to prepare

for performing reproduction.

b. Reproduction: Reproduction is a process in which

string are copied according to their fitness value. In

this step, roulette-wheel selection method is adopted

for the reproduction process. The well-performed

chromosomes in the top half of each group proceed

to the next generation. The other half is generated by

executing variable two-part and variable two-part

operations on chromosomes in the top half of the

parent individuals.

c. Variable antecedent-part crossover: In the network-

level evolution, the variable antecedent-part crossover

(VAC) is proposed to perform crossover. In VAC, two

parents are selected by using the roulette-wheel

selection method [38]. Because the selected parents

may be with different length, the misalignment of

individuals must be avoided in the crossover operation.

Thus, antecedent-part crossover is proposed to address

Fig. 5 The coding the antecedent part of fuzzy rules into a

chromosome in the network-level evolution
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this problem. The antecedent part means that only the

antecedent of fuzzy rule is performed crossover

operation. In VAC, two-point crossover [38] is adopted

to execute crossover. Thus, new individuals are

generated by exchanging the site’s values between

the selected sites of the parents’ individuals. In VAC,

to avoid the misalignment of individuals in the

crossover, the selection of the crossover points would

not exceed the shortest length chromosome of two

parents. Two individuals with different lengths using

VAC operation are shown in Fig. 6 where ARj

represents the parameters of the antecedent part of

the jth rule in the TNFN, and Rk represents there are

k fuzzy rules in a TNFN. After performing the VAC,

the new offspring can replace the individuals with poor

performance.

d. Variable antecedent-part mutation: The mutation oper-

ator can randomly alter the allele of a gene. It provides

new information to every population at the site of an

individual. In the network-level evolution, the variable

antecedent-part mutation (VAM) is adopted to perform

the mutation operation. The benefit of VAM is to be

applied to different length of chromosomes. The VAM

operation of each individual is shown in Fig. 7 where

AR indicates antecedent part of fuzzy rule In VAM,

uniform mutation [39] is adopted, and the mutated

gene is drawn randomly from the domain of the

corresponding variable.

e. Evaluation: The evaluating step is to evaluate the

fitness of each chromosome that has not already been

evaluated in a population. The higher a fitness value

indicates, the better the performance. Since each

chromosome only includes the antecedent part of

fuzzy rules, the consequent part of fuzzy rules is not

defined. Thus, similar to the fitness assignment in

NULE, RLS method is used to estimate the consequent

part of fuzzy rules.

f. Insert good neurons: After the evaluation operation, if a

network has a higher fitness value than the best

network in the neuro level, insert the neurons into the

corresponding groups of subpopulation in the neuro-

level evolution.

In short, the purpose of NWLE is to reserve the good

combinations of fuzzy rules produced by NULE and evolve

the structure of the produced neural fuzzy networks. Thus,

the utility of NWLE is to fine tune the evolved results of

NULE. To this end, NULE would be a major evolution to

evolve TNFNs and it affects the effectiveness of the pro-

posed DMHCCA model.

4 Illustration examples

To verify the proposed DMHCCA, two examples are dis-

cussed in this section. The first one is a prediction of

Mackey–Glass time series. The second one is a three-

dimensional (3D) surface alignment task. Based on these

examples, this study compares DMHCCA with that of

others methods. The initial parameters for the two exam-

ples are given in Table 2. The initial parameters of the

proposed DMHCCA are determined by parameter explo-

ration in [40], which was the first study in parameter

exploration. As shown in [40], a small population size is

good for the initial performance, and a large population

size is good for long-term performance. Moreover, a low

mutation rate is good for online performance, and a high

mutation rate is good for off-line performance. Thus, we

adjust parameters of DMHCCA according to the criterion

mentioned in parameter exploration method.

4.1 Example 1: Prediction of Mackey–Glass time

series

The Mackey–Glass time series is a common benchmark for

testing different learning algorithms. Thus, we utilize such

chaotic time series to perform an extensive analysis on our

proposed algorithm and other evolutionary algorithms

Fig. 6 The variable antecedent-

part crossover operation in the

network-level evolution

Fig. 7 The variable antecedent-part mutation operation in the

network-level evolution
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The Mackey–Glass time series is generated from the

following delay differential equation:

dxðtÞ
dt
¼ 0:2xðt � sÞ

1þ x10ðt � sÞ � 0:1xðtÞ ð27Þ

Crowder [41] extracted 1,000 input–output data pairs

{x, yd}, which consisted of four past values of x(t), that is

½xðt � 18Þ; xðt � 12Þ; xðt � 6Þ; xðtÞ; xðt þ 6Þ� ð28Þ

where s = 17 and x(0) = 1.2. There are four inputs to

DMHCCA, corresponding to these values of x(t), and one

output representing the value x(t ? Dt), where Dt is a time

prediction into the future. The first 500 pairs [from x(1) to

x(500)] are the training data set, and the remaining 500 pairs

[from x(501) to x(1,000)] are the testing data set used for

validating the proposed method. The values are floating-

point numbers assigned using the DMHCCA initially. The

fitness function in this case is defined in Eqs. (25) and (26)

to train the neural fuzzy network. The evolution learning

processes 500 generations; it is repeated 50 times. For

comparative analysis, the present study adopts the root

mean square error (RMSE), which is defined as follows:

RMSE ¼ 1

Nt

XNt

l¼1

Ylðt þ 6Þ � Yd
l ðt þ 6Þ

� �2

" #1=2

; ð29Þ

where Nt is the number of testing data, Yl
d(t ? 6) =

x(t ? 6) is the desired value, and Yl(t ? 6) is the predicted

value by the model with four inputs and one output.

To compare with other algorithms, in this example,

according the parameter exploration method [40], 12, 12,

10, and 12 fuzzy rules are set for hierarchical enforced

subpopulations (HESP) [27], enforced subpopulations

(ESP) [26], traditional symbiotic evolution (TSE) [42], and

traditional genetic algorithm (TGA) [19], respectively. In

addition, the population size has the range of 10–250 in

increments of 10, the crossover rate has the range of 0.25–1

in increments of 0.05, and the mutation rate has the range

of 0–0.3 in increments of 0.01. Toward this end, the other

parameters setting for HESP, ESP, TSE, and TGA are as

follows: (1) the population sizes are 30, 30, 200, and 50,

respectively; (2) the crossover rates are 0.6, 0.6, 0.4, and

0.7, respectively; (3) the mutation rate of the four methods

are 0.04, 0.05, 0.05, and 0.04, respectively. In addition, as

same with DMHCCA method, the evolution learning of

each method processes for 500 generations and is repeated

50 times.

Table 3 lists the generalization capabilities of the pro-

posed DMHCCA, HESP [27], ESP [26], TSE [42], and

TGA [19]. Clearly, as shown in Table 3, DMHCCA

obtains a lower RMSE than other methods.

Furthermore, this case also compares the running time

of DMHCCA with that of other methods. The running time

defined in this case is used to measure the time when the

fitness of the algorithm converges to the predefined value.

The results of four algorithms over 50 runs are reported in

Table 4. As shown in this table, the proposed DMHCCA is

faster than ESP, TSE, and TGA.

4.2 Example 2: 3D surface alignment task

In this example, we apply DMHCCA to a 3D surface

alignment task. The example of 3D surface alignment is a

real problem that aims to align two surfaces. Figure 8

Table 2 Initial parameters of

DMHCCA before training
Parameters Value Parameters Value

NULE NWLE NULE NWLE

Psize 40 20 Mutation rate 0.2 0.1

Nc 20 None [Mmin, Mmax] [3, 25] None

Selection_Times 50 None [mmin, mmax] [-10, 10] [-10, 10]

NormalTimes 10 None [rmin, rmax] [1, 15] [1, 15]

ExploreTimes 15 None minconf 60 % None

Crossover rate 0.6 0.7 RLS parameter (k) 0.003 0.003

Table 3 Performance comparison of various existing models

Method RMSE

Best Mean Worst STD

DMHCCA 0.0032 0.0048 0.0082 0.0011

HESP 0.0076 0.0092 0.0012 0.0014

ESP 0.0092 0.011 0.015 0.0016

TSE 0.015 0.019 0.024 0.0024

TGA 0.021 0.029 0.064 0.013

Table 4 Comparison of the running time of various algorithms

Method Best (s) Worst (s) Mean (s)

DMHCCA 6.55 57.26 23.39

HESP 15.36 107.86 56.25

ESP 18.76 128.43 66.19

TSE 24.48 192.71 152.75

TGA 47.36 228.59 158.66
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illustrates the procedure of a 3D surface alignment task.

From this figure, the 3D scene is scanned by a 3D imaging

laser scanner where the size of the scanned scene is

256 9 256 with 20� field of view. Each pixel in the range

image reflects a range data that indicates a distance from the

sensed point to the scanner. In other words, the range data

can be considered as a 3D point with respect to the scanner.

Thus, the scanner can be a center of a coordinate system to

represent each sensed range data. To this end, the 3D posi-

tion of each pixel is created by transforming range data to

Cartesian coordinate. The region of interest (ROI) is

extracted by using the segmentation algorithm described in

[43]. The reference model is a target 3D surface that the ROI

wants to align with. Thus, the purpose of the 3D surface

alignment task is to align the ROI with the reference model.

The problem of 3D surface alignment has been imple-

mented by several methods [44–48]. Among them, a

coarse-to-fine technique is a useful way for performing 3D

surface alignment [44, 45]. Coarse alignment provides an

approximate transformation for aligning two surfaces. Such

alignment must be efficient and accurate. Fine alignment

takes the initial gauss of transformation given by coarse

alignment as a starting point to iteratively minimize the

distance between the input surface and the destination

surface. Thus, this study utilizes a TNFN-based coarse-to-

fine method to perform 3D surface alignment.

Regarding coarse alignment of 3D surface, this study

adopts a TNFN-based coarse alignment approach. Such

approach captures VFH of multi-views of a 3D object as

the input of a TNFN. The desired output of the TNFN is the

corresponding pose of the captured feature. Thus, the

desired output and the feature input can be performed for

using DMHCCA to train a TNFN. Once the TNFN has been

trained, input of the VFH of an arbitrary view of an object

into the trained TNFN can yield an estimated pose. Then,

we can utilize the estimated output pose to recover the input

point clouds to coarsely align with the reference model.

Regarding fine alignment of 3D surface, similar to the

neural network method (NNM) [45], a TNFN-based fine

alignment approach is used to combine the DMHCCA

trained TNFN-based surface modeling with the downhill

simplex optimization method to iteratively reduce the

distance from the input 3D surface to the reference surface.

To examine the alignment accuracy, 2000 synthesized

point cloud sets are generated randomly within the range

described in Table 5. For training the TNFN, 70 % of point

clouds (1,400) are prepared for training data set and the

remaining 30 % of point clouds (600) are prepared for

testing data set. The initial parameters used by DMHCCA

for the TNFN training are defined in Table 2.

Fig. 8 Procedure of a 3D

surface alignment task

Table 5 Range of 3D rigid transformation parameters

3D rigid transformation

parameter

The range of affine

transformation parameter

/ (degree), for roll [-10, 10]

u (degree), for yaw [-90, 90]

h (degree), for pitch [0, 90]

x(m) [-0.2, 0.2]

y(m) [-0.2, 0.2]

z(m) [-0.2, 0.2]

Neural Comput & Applic (2013) 23:485–498 495

123



For setting the parameters of NNM, according to [45], a

2-layer neural network is used to model the vertebral sur-

face model where the first layer has 20 nodes and the

second layer has 10 nodes. In this example, by practical

experimentations, the first layer setting for 30 nodes and

the second layer setting for 20 nodes would have good

results for modeling the surface of the reference model. In

addition, the back-propagation algorithm is used for

training the neural network, and the training process stops

as the error between the output of the neural network and

the desire distance value is less than 0.001 or the iterations

reach 1000. Thus, NNM adopts the above parameters to

train a neural network to model the reference surface.

Since the execution time and alignment accuracy are

two major issues for a surface alignment system, we take

them as the evaluation conditions to examine the propose

alignment system.

4.2.1 Alignment accuracy

To evaluate the alignment accuracy, we compare the

proposed method with NNM [45] and iterative closest

point (ICP) [48]. About the stopping criterion, to com-

pare all alignment methods, this paper sets the same

criterion for each alignment method. To this end, the

alignment procedure of each method is terminated when

the number of iteration reaches 100 or the alignment

error is less than 0.0005. Therefore, based on the 600

testing sets of point clouds, the alignment error is listed

in Table 6 where RMSE indicates the root mean square

error. From this table, the proposed method exhibits the

lowest coarse and fine alignment error than other sys-

tems. Figure 9a–c presents a real alignment example

(ROI is extracted by Fig. 8) of the proposed TNFN-based

method, NNM, and ICP where the blue and red point

clouds represent the testing and reference model data,

respectively. From this figure, the fine alignment error of

the proposed method, NNM, and ICP are 0.0558, 0.1121,

and 0.0569 m, respectively. This result indicates that the

proposed TNFN-based method can achieve high accuracy

in real 3D point cloud data. Furthermore, regarding

the alignment speed, the execution time of the pro-

posed system, NNM, and ICP are 1.71, 2.13, and 7.93 s,

respectively. Therefore, the proposed method demon-

strates the higher alignment speed than NNM and ICP.

4.2.2 Alignment speed

In consideration of alignment speed, we calculate the

average execution time of aligning 600 testing sets of point

clouds. The results of the alignment speed are also listed in

Table 6. As shown in this table, the execution time of the

Table 6 Results of alignment accuracy and execution time

Method Average

RMSE (m)

Average execution

Time (s)

TNFN-based coarse-to-fine

alignment

0.0651 3.19

NNM 0.1357 4.21

ICP 0.0667 46.26

Fig. 9 Alignment results a proposed TNFN-based method, b NNM, c ICP
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proposed TNFN-based method is shorter than those from

NNM and ICP.

5 Conclusion

In this paper, DMHCCA is proposed for designing TNFNs.

The proposed DMHCCA involves two-level evolutions:

NULE and NWLE. NULE combines DELA and RLS to

not only choose the group of fuzzy rules systematically but

also increase the rate of convergence. NWLE proposed

VAC and VAM to enable the mating and mutating of the

variable length of chromosomes. The mutual evolution of

NULE and NWLE would make the neurons and structure

of network to be evolved locally and globally, respectively.

According to the simulation results on benchmark, the

proposed DMHCCA exhibits better performance than other

learning methods. Besides, a 3D surface alignment task is

utilized to examine the learning ability of DMHCCA. The

experimental results show that the DMHCCA trained

TNFN-based alignment method is superior to other align-

ment systems.

Although DMHCCA can get better results in compari-

son with other learning algorithms, it still has a limitation.

Specifically, the number of hierarchical level is only two to

execute the training of structure and parameters of neural

fuzzy networks. As the application problem become more

complex, there is a need to increase the hierarchical level to

match the complex problem. Thus, in the future work, the

multi-hierarchical level is taken into consideration of fur-

ther investigation of how to cooperate these hierarchical

levels to adapt the model to a complex problem.
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Appendix

The following contents list the abbreviations used in this

paper.

Data mining based hierarchical cooperative coevolution-

ary algorithm, DMHCCA; neuro-level evolution, NULE;

network-level evolution, NWLE; data mining–based evolu-

tionary learning algorithm, DELA; three-dimensional, 3D;

back-propagation, BP; genetic algorithm, GA; enforced sub-

populations, ESP; multi-groups cooperation-based symbiotic

evolution, MGCSE; TSK-type neuro-fuzzy network, TNFN;

regularized least square, RLS; variable antecedent-part

crossover, VAC; variable antecedent-part mutation, VAM;

hierarchical enforced subpopulations, HESP; self-adaptive

method, SAM; data mining–based selection method, DMSM;

elite-based reproduction strategy, ERS; traditional symbiotic

evolution, TSE; traditional genetic algorithm, TGA; region of

interest, ROI; neural network method, NNM; iterative closest

point, ICP.
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