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High-speed Median Filter Designs Using 
Shiftable Content-Addressable Memory 

Chen-Yi Lee, Po-Wen Hsieh, and Jer-Min Tsai 

Abstract-This paper presents a very efficient VLSI archi- 
tecture for real-time median filtering as requested in many 
imagefvideo applications. The median is obtained by first sorting 
input sequences and then selecting identified order according to 
the number of inputs. To reach the goal of high-speed data sort- 
ing, an optimized delete-and-insert algorithm is derived and then 
mapped onto shiftable content-addressable memory architecture. 
The complete design can be decomposed into a set of processor 
elements, where each processor element consists of two basic 
cells- sort-cell and compare-cell. Thus the design becomes very 
regular. More specifically any specified order can be obtained 
within one cycle and a high-speed clock rate can be achieved. 
A proto-type chip for 64 samples based on this architecture has 
been implemented and tested. Results show that a clock rate up 
to 50 MHz can be achieved using a 1.2 p m  CMOS double metal 
technology. 

I. INTRODUCTION 
MAGE median filters are well known for being able to I remove impulse noise [l], to preserve image edges, and 

recently to improve coding efficiency [ 2 ]  as well as to enhance 
color signal processing [3] .  Many algorithmic approaches with 
hardware implementation can be found in the literature [I], [4], 
[5] ,  [6] and they show that the applicability of this median 
filtering technique is very application-dependent. Moreover 
different windows and pixel locations may be required to 
achieve specified behavior for different target applications. 
Although analog implementation of median filters has been 
discussed recently [7], its output rate is not high enough to 
handle video-rate applications and hence applications are very 
limited. Thus only the digital approaches for median filtering 
are discussed in this paper. 

A good survey paper of VLSI median filters can be found 
in [lo], where the author discussed hardware complexity in 
terms of number of samples ‘N’, word length ‘l’, and running 
size ‘R’.  In principle, these digital algorithms and methods 
can be classified into two categories: word-level and bit- 
level as discussed in [6]. In this paper, only the word-level 
median filters are studied since they offer high throughput 
capability as required in many real-time imagehide0 systems. 
However a very cost-effective hardware solution to meet this 
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goal is often difficult to achieve and hence system performance 
becomes degraded to allow trade-off between hardware cost 
and achievable performance. For example, a fast median 
filter based on the bubble sorting algorithm can be found 
in [5] .  By means of a set of processing elements or PES, 
the required values can be obtained with a latency of N 
cycles, where N is the number of input samples. Though 
this approach is fast, the size of the hardware implementation 
complexity, is proportional to the square’ of the number of 
input samples. Hence hardware overheads increase rapidly 
with the number of input samples. In addition to this sorting 
kemel, it is necessary to provide extra hardware in the form 
of a data buffer to rearrange input samples for the parallel 
processing and hence increase the memory bandwidth. Another 
solution is a message passing method [8] realized on a systolic 
array architecture [9]. Both deletion and insertion messages 
pass through the systolic arrays until certain conditions are 
encountered. Although the hardware complexity depends on 
the number of input samples (N), the latency remains the same 
as that needed in the parallel bubble sorter. This latency of 
N cycles may not be allowed when real-time performance is 
concemed. 

In this paper, we present a more cost-effective hardware 
solution which can be integrated with other hardware without 
degrading overall system performance. This is achieved by 
reducing the latency of median search on a set of input samples 
so that the median can be obtained immediately without 
causing a stall on the data flow. For example, the median can 
be obtained right after the last sample is presented and then im- 
mediately passed to the next stage. In Section 11, an algorithm 
suitable for such an implementation is first introduced and then 
a transform method is discussed to see how it can be applied to 
the selected algorithm for performance improvement. Section 
111 presents a shiftable content-addressable memory (SCAM) 
VLSI architecture which is a processor element (PE) based 
structure. Each PE contains two different cells- one (sort- 
cell) stores sorted items and the other (compare-cell) compares 
current the input sample with the sorted items so that the 
input sample can be placed appropriately to reach high speed 
sorting. A proto-type chip based on this design approach 
is given in Section IV to evaluate design efficiency. Also 
some comparisons with available approaches are included to 
highlight the performance of the SCAM VLSI architecture in 
sorter designs. 

’ More accurately, the number of PES is ( N  - 1) x 1V/2 for odd numbers 
of input samples and N 2 / 2  for even numbers. 

1051-8215/94$04.00 0 1994 IEEE 



LEE et al.: HIGH-SPEED MEDIAN FILTER DESIGNS USING SHIFTABLE CONTENT-ADDRESSABLE MEMORY 545 

(a) (b) 

Fig. 1. Illustration of the Insert and Delete sorting operations. 

11. ALGORITHM DESCRIFTION AND TRANSFORMATION 

Since median search can be decomposed into two stages- 
(1) sorting input samples and (2) selecting specified order 
from the sorted sequence, and the former is much more 
complex than the latter, throughput can only be improved 
when complexity of the sorting stage is overcome. We select 
the delete-and-insert algorithm [8] due to its low memory 
bandwidth requirement. 

delete-and- 
insert sort algorithm is one of the many available sort 
algorithms. Its operations can be described as follows. For 
data insertion as shown in Fig. l(a), the current input sample 
is known to be 20 and should be placed in between 25 and 
16 which are already sorted and stored in a memory. Each 
time a new sample is given, it can be placed according to this 
scheme. After all samples are processed, the sorted sequence 
can be obtained from the memory. For data deletion, it only 
needs to identify the sorted item whose value is equal to the 
input sample’s value as shown in Fig. l(b). Thus for any 
running order operation, this delete operation becomes useful 
since only those samples out of the mask region need to be 
removed and new input samples need to be sorted. In addition 
to these features, this algorithm can also provide an ascending 
sequence if smaller items are placed at left side instead of 
right side as used for a descending sequence (as illustrated 
in Fig. 1). 

This algorithm description implies that a lot of comparisons 
are needed in order to allocate a position in which the input 
sample can be correctly placed or removed. Moreover a lot of 
move operations are needed before the input sample is inserted 
or deleted. For real-time imagelvideo processing, either insert 
or delete operation has to be done in a very stringent timing 
constraint. Thus if this algorithm is implemented on a general- 
purpose computer, the result is obviously not suitable for 
real-time applications and hence the algorithm has to be 
modified. A modified version, called optimized delete-and- 
insert or OD1 sort algorithm is thus developed to fully explore 
parallelism so that a very high throughput requirement can be 
obtained by exploiting VLSI advantages such as speed and 
density. 

The OD1 Sort Algorithm: As described above, the bottle- 
neck of enhancing the delete-and-insert sorter’s throughput lies 
in two factors- (1) ident$cation of insert/delete target and (2) 
data movement among sorted items. The complexity of these 
two factors becomes higher as the number of input samples 
increases. However if we explore fully parallelism inherent 
in the algorithm, then this bottleneck can be overcome. To 
see how the parallelism can be explored, we summarize the 

The Delete-and-Insert Sort Algorithm: The 

algorithm description as below: 
/* for insertion */ 
Sort[] = 0; /* initialize Sorted array Sort[] */ 
Sort[O] = int-max; /* set boundary condition *I 
DataIn = input sample; 
Samplecount++; 
for (i:= Samplecount; i > 0; i-) { 

if (DataIn >= Sort[i]) { 
Sort[i+l] := Sort[i]; /* shift right */ 

I 
if (DataIn >= Sort[i]) & & (DataIn < Sort[i-11) 

{ 
Sort[i] := DataIn; /* insert data *I 

I 
1 

/* for deletion */ 
DataIn = input sample; /* input sample to be 
deleted */ 
for (i:=l; i < = Samplecount; i++) [ 

if (DataIn >= Sort[il) { 
Sort[i] := Sort[i+l]; /* shift left, i.e., delete 

data *I 
1 

I 
Samplecount-; 

Here it is found that for each input sample, N comparisons 
are needed in order to find the position where the input sample 
should be placed or removed. This parallel-comparison process 
can be realized on a content addressable memory (CAM) to 
identify the target to be inserted or deleted. Once the target 
is identified, the next step is to perform data movement on a 
part or all the sorted items. For example, Fig. l(a) illustrates 
the insertion of data item whose value is 20. For those sorted 
items whose value is less than or equal to the input item, 
they have to move one position right; while in data deletion, 
those sorted items whose value is less than or equal to the 
input item have to move one position left as shown in Fig. 
l(b). In other words, the sorted items are divided into two 
groups- one is the LE group (i.e. sorted items less than or 
equal to input sample) and the other is the GT group (i.e. sorted 
items greater than input sample). Thus the data movement 
can be replaced by shift operations working on the LE group 
instead of readwrite operations on memory and in particular, 
these shift operations can be executed in parallel. Thus this 
modified OD1 algorithm can operate on every sorted item 
simultaneously and generate any request order very fast if both 
concepts of content-addressable memory and shift registers are 
used. 

111. ARCHITECTURE ISSUES 

In the previous section, we discussed how the OD1 algorithm 
solves the bottleneck of data sorting and then achieves high 
throughput by means of the support of content-addressable 
memory and shift registers. In this section, we discuss in more 
detail how the OD1 algorithm is mapped onto the shiftable 
content-addressable memory (SCAM) architecture which is 
very suitable for VLSI implementation. 
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... 

Fig. 2. 
structure. 

The shiftable content-addressable memory is realized on a PE-based 

The PE-Based Structure: Suppose that there are N samples 
to be sorted, we would like to obtain any specified order right 
after the last sample is given. This is, in fact, the specification 
of our high-speed median filter design. We also assume that 
the sorted sequence is in a descending order. Thus N storage 
spaces are needed to store the sorted samples. Initially all 
contents of SCAM are reset to zero. For each input sample, the 
content of each storage space is read out and compared with 
the input sample in order to identify the position where the 
input sample should be placed. Once the position is identified, 
the content of each storage space has to be conditionally 
shifted according to the newly updated sequence. This implies 
that the architecture consists of N processor elements (PES) 
and each of which contains two basic cells- (1) sort-cell 
and (2) compare-cell (as shown in Fig. 2). The former is a 
shift register containing the sorted data and can be shifted 
right or left while the latter intends to provide control signals 
orchestrating operations of the former. 

Detailed Architecture and Circuit Design for  the Sort Cell: 
From the previous discussions, it can be found that the sort-cell 
should have the following functionalities (see Fig. 3(a)): 

1) data can be shifted right, 
2) data can be shifted left, 
3 )  data can be loaded, 
4) data remains unchanged, 
5) data can be reset. 
Here items 1, 3, and 4 are required in insert operations, 

while items 2 and 4 are needed in delete operations. Item 5 is 
only used when a new input set is to be processed. With these 
pre-defined functionalities, the corresponding circuit for such 
a 1-bit cell can be easily derived as shown in Fig. 3(b). Only 3 
inverters and 6 pass transistors are needed for each bit cell. The 
first inverter acts as an internal buffer for data pre-shifting to 
enhance the clock rate (see the last paragraph of this section for 
more details). Note that a two-phase non-overlapping clocking 
strategy is used here. 

Detailed Architecture and Circuit Design for the Compare 
Cell: This cell intends to generate all required control signals 
for those used in the sort cell. The functional description of 
this cell is given in Fig. 4(a). Here the shc control signal is 
defined for insertion or deletion mode selection. The other 
control signals are generated respectively according to the 
following conditions: 

shift data right (shr): This occurs when data insertion is 
under execution. However only those sorted items whose 

gout = SReg; SReg := k,} 

else if (shr) {rout = SReg; SRcg := b,} 
m= + 9 SReg rin elseif(load) 

4 else if (reset) 

bout = SReg; 

{SRq :=bin;} 

rout {SReg := R} 

It 

(b) 

Fig. 3. (a) Behavioral description and (b) circuit diagram of each 1-bt 
sort-cell. Note that a weak inverter is placed at INV2 to overcome leakage 
paths. 

value is less than or equal to that of the current input 
sample (or belongs to the LE group as defined above) will 
be shifted right and hence the carry (C; in ith compare- 
cell) is demanded. Thus the shr is activated whenever 
shc is low (for insertion) and C; is high. 
shift data left (shl):  This shl is activated when data 
deletion is performed (i.e. shc is high) and C; is high. 
load data (load): Since only one PE requires this signal 
at a time, i.e. the input sample can only be placed at one 
correct position, the generation of loud signal becomes 
more complex than the previous two control signals. Not 
only shc and C; are considered, but also the carry from 
the previous stage (C;-1) should be taken into account. 
This is obvious since the correct storage space for the 
current input sample is between those items less than 
or equal to the input sample (i.e. C;-l=O, or LE-group 
members) and those items greater than the input sample 
(i.e. C;=l, or GT-group members). 

To speed up the carry generation, a carry-look-ahead tech- 
nique [ l l ]  is exploited. The overall circuit diagram for this 
compare-cell is shown in Fig. 4(b). 

Operation and Clocking Strategy: To speed up the clock 
rate, a 2-phase non-overlapping clock is exploited here. All the 
control signals are generated at 41 and data shift operations 
are performed at 4 2 .  In addition, a pre-shift strategy is also 
exploited to improve clock speed. This strategy shifts sorted 
items to the buffer (the first inverter INVl of the sort-cell) of 
next PE during $1 and then are conditionally stored at 4 2 .  
The detailed operation for data insertion on the sort-cell is 
illustrated in Fig. 5. Note that the first inverter of each sort 
cell acts as a buffer during pre-shifting as needed for both 
shift right and left operations. 

IV. EVALUATION AND DISCUSSIONS 
To evaluate this SCAM architecture, a proto-type chip for a 

maximum of 64 input samples has been designed. The figure 
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Tin shr shl load 
Cj =(Din L Tin), 
shr=(Cj&&Ishc); 
shl = (q && shc); 

h u t  load=(IC+l &&Cj&&Ishc); 
Compsre Cell Dout = Din; 

where 
Tin: sorted data from &-cell; 
Din. current lnplt sample; 
shc: iosat/delete indicator, 
Ci- : cany from previous stage; 

(a) 

+ I  .................... I I+& & plefi (W*Shc) 

'.r- ...... ............................ 
shr (+*Ec* q l-Is=F 

1 ci-1 FromOutputof f 

To Next Stage 
Input F 

(b) 

Fig. 4. (a) Behavioral description and (b) circuit diagram of the compare-cell. 
The carry is generated by the cany-look-ahead technique to enhance clock 
speed. 

of 64 is considered here because we would like to make a 
chip for median filtering of variant sizes as well as cascadable 
data sorting. In this section, we first present some experimental 
results about this OD1 chip and then provide some comparisons 
with the two approaches described in the Introduction. Also 
some applications where this OD1 chip can be exploited are 
presented. 

Design of the ODI Chip: Block diagram of this chip is 
given in Fig. 6. This chip can be used either as a high-speed 
data sorter or as an image median filter. Input samples are first 
sorted through the shiftable content-addressable memory. Then 
the specified order, such as median, can be identified from 
the sorted items by means of a dynamic selection circuit. For 
raster scan images, this chip provides an optimal solution since 
the required order can be obtained right after the last sample 
is given. It should be noted that using the pre-shift strategy, 
both phases ($1 and 4 2 )  are quite balanced. Experimental 
results show that a clock rate up to 50 MHz can be achieved. 
The micro-photo of this chip design is shown in Fig. 7. Some 
key features of this OD1 chip are given below: 

Each chip can handle 64 samples and can be cascaded for 
more samples when data sorting is considered. 

. .  i :  . .  . :  . .  ..nj- .-.-.-.. .... i " ._ 1 :-. .. ... i_ -, . ...- jl - - ..! 

I I , x  I.._. 

To 
Pmious i ---.I.I --.+ I--.- I".----- 

Stage *?.. 

gl.8hhc b* 

(b) 

Fig. 5. Insert data flow on the I-bit sort-cell. (a) pre-shift stage at 01 and 
(b) data shift at 02. Note the dark lines indicate how the circuit works at 
different phase. 

median out 

seledion unit 

PE PE PE 

Fig. 6.  Block diagram of the OD1 chip. 

Any specified order can be obtained right after the last 
sample is given, i.e. without latency. This is very useful 
for pipelined architecture design. 
Running order can be handled by exploiting both the 
delete and insert operations. 
Design is very regular and hardware complexity is lin- 
early proportional to the number of input samples. 

This chip has been fabricated through the MPC services 
supported by Chip Implementation Center (CIC). Test results 
show that a maximum clock rate can be up to 50 MHz. Some 
characteristics of this chip are given below: 

Die size: 5053 pm x 4774 pm; 
Pin-count: 67; 
Transistor-count: N-type: 13060, P-type: 10141, Totally: 

Clock rate: 50 MHz; 
23201; 
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Fig. 7. Microphoto of the OD1 chip. 

Power consumption: 0.45W@50 MHz; 
Technology: 1.2 pm CMOS double-metal technology. 

Comparisons with Other Approaches: We only compare 
the results based on the bit-parallel approaches as given in 
the Introduction since they are more practical for real-time 
imagehide0 applications. 

The parallel bubble sorter as described in [5]  requires a 
lot of hardware as the number of input samples increases. In 
addition, its input format has to be adjusted so that a set of 
input samples can be fed simultaneously to the sorter arrays. 
This implies that a large memory bandwidth is needed. In 
addition, given a set of N input samples, the required order 
can only be obtained right after N cycles. Obviously, our OD1 
chip does outperform this bubble sorter in terms of area and 
latency. 

The ROS sorter from [8] based on a systolic architecture 
offers similar hardware complexity compared to our design. 
However our design offers higher throughput and expansibil- 
ity. 

Table I shows some comparison data from these three 
approaches. In addition to the specific features of less area and 
no data latency, our design also provides a testable strategy 
since test patterns can easily be applied to the SCAM and 
detected from the selection circuit or from both shift output 
ports. 

Some Typical Applications: With a clock speed of 50 MHz, 
this OD1 chip can handle median filtering for current video 
rates in real-time. It can also be exploited in advanced televi- 
sion receivers for noise reduction and scan rate up-conversion 
[3]. In addition, we can use this chip for recursive median 
filtering to improve the efficiency of noise-reduction, where 
several mask sizes are demanded. For those running window 
applications, line-delays can be added on-chip or off-chip. 
However, it should be noted that only one sample can be 
handled by this chip at a time. 

Based on the SCAM architecture and the experience from 
the OD1 chip design, we have also found a lot of applications 

TABLE I 
SOME COMPARISONS OF OUR OD1 CHIP WITH OTHER BIT-PARALLEL APPROACHES 

I 

ROS OD1 .el 

where this SCAM architecture can be exploited. In such cases, 
the OD1 chip can be regarded as a block fitting into the 
overall system organization. For example, in adaptive entropy 
coding, the SCAM architecture provides a very cost-effective 
solution in sorting the occurrences of input samples within 
the specified history to enhance compression ratio. Depending 
on the number of input samples to be handled, the SCAM 
hardware can easily be constructed based on the PE-based 
regular structure, and hence the design cycle can be reduced. 

V. CONCLUSION 

In this paper, we have presented a high-throughput median 
filter design based on the OD1 algorithm and the SCAM 
architecture. This chip is obtained by first exploring the 
inherent parallelism and then exploiting shift operations to 
achieve high speed sorting so that any order of input samples 
can be obtained. Using the SCAM architecture, we have 
developed a very cost-effective hardware solution for median 
search as well as for data sorting. Test results from proto- 
type chips show that the OD1 chip does outperform available 
approaches for median search in terms of both area and 
throughput. Also this area-efficient solution can be integrated 
with other hardware when median search is demanded in 
other system development. We are currently looking into the 
applicability of exploiting this high-speed sorting architecture 
for adaptive coding which is often used in entropy coding to 
enhance compression ratio. 
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