
544 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 4, NO. 6, DECEMBER 1994

High-speed Median Filter Designs Using
Shiftable Content-Addressable Memory

Chen-Yi Lee, Po-Wen Hsieh, and Jer-Min Tsai

Abstract-This paper presents a very efficient VLSI archi-
tecture for real-time median filtering as requested in many
imagefvideo applications. The median is obtained by first sorting
input sequences and then selecting identified order according to
the number of inputs. To reach the goal of high-speed data sort-
ing, an optimized delete-and-insert algorithm is derived and then
mapped onto shiftable content-addressable memory architecture.
The complete design can be decomposed into a set of processor
elements, where each processor element consists of two basic
cells- sort-cell and compare-cell. Thus the design becomes very
regular. More specifically any specified order can be obtained
within one cycle and a high-speed clock rate can be achieved.
A proto-type chip for 64 samples based on this architecture has
been implemented and tested. Results show that a clock rate up
to 50 MHz can be achieved using a 1.2 p m CMOS double metal
technology.

I. INTRODUCTION
MAGE median filters are well known for being able to I remove impulse noise [l], to preserve image edges, and

recently to improve coding efficiency [2] as well as to enhance
color signal processing [3] . Many algorithmic approaches with
hardware implementation can be found in the literature [I], [4],
[5] , [6] and they show that the applicability of this median
filtering technique is very application-dependent. Moreover
different windows and pixel locations may be required to
achieve specified behavior for different target applications.
Although analog implementation of median filters has been
discussed recently [7], its output rate is not high enough to
handle video-rate applications and hence applications are very
limited. Thus only the digital approaches for median filtering
are discussed in this paper.

A good survey paper of VLSI median filters can be found
in [lo], where the author discussed hardware complexity in
terms of number of samples ‘N’, word length ‘l’, and running
size ‘R’. In principle, these digital algorithms and methods
can be classified into two categories: word-level and bit-
level as discussed in [6]. In this paper, only the word-level
median filters are studied since they offer high throughput
capability as required in many real-time imagehide0 systems.
However a very cost-effective hardware solution to meet this

Manuscript received January 8, 1993; revised July 24, 1993, and February
23, 1994. This paper was recommended by Peter Pirsch and the work
supported by the National Science Council of Taiwan, ROC under grant

The authors are with Dept. of Electronics Eng. and Institute of Electronics,
National Chiao Tung University, 1001. University Road, Hsinchu 300, Taiwan,
ROC.

NSC82-0404-EW-184.

IEEE Log Number 9406761.

goal is often difficult to achieve and hence system performance
becomes degraded to allow trade-off between hardware cost
and achievable performance. For example, a fast median
filter based on the bubble sorting algorithm can be found
in [5] . By means of a set of processing elements or PES,
the required values can be obtained with a latency of N
cycles, where N is the number of input samples. Though
this approach is fast, the size of the hardware implementation
complexity, is proportional to the square’ of the number of
input samples. Hence hardware overheads increase rapidly
with the number of input samples. In addition to this sorting
kemel, it is necessary to provide extra hardware in the form
of a data buffer to rearrange input samples for the parallel
processing and hence increase the memory bandwidth. Another
solution is a message passing method [8] realized on a systolic
array architecture [9]. Both deletion and insertion messages
pass through the systolic arrays until certain conditions are
encountered. Although the hardware complexity depends on
the number of input samples (N), the latency remains the same
as that needed in the parallel bubble sorter. This latency of
N cycles may not be allowed when real-time performance is
concemed.

In this paper, we present a more cost-effective hardware
solution which can be integrated with other hardware without
degrading overall system performance. This is achieved by
reducing the latency of median search on a set of input samples
so that the median can be obtained immediately without
causing a stall on the data flow. For example, the median can
be obtained right after the last sample is presented and then im-
mediately passed to the next stage. In Section 11, an algorithm
suitable for such an implementation is first introduced and then
a transform method is discussed to see how it can be applied to
the selected algorithm for performance improvement. Section
111 presents a shiftable content-addressable memory (SCAM)
VLSI architecture which is a processor element (PE) based
structure. Each PE contains two different cells- one (sort-
cell) stores sorted items and the other (compare-cell) compares
current the input sample with the sorted items so that the
input sample can be placed appropriately to reach high speed
sorting. A proto-type chip based on this design approach
is given in Section IV to evaluate design efficiency. Also
some comparisons with available approaches are included to
highlight the performance of the SCAM VLSI architecture in
sorter designs.

’ More accurately, the number of PES is (N - 1) x 1V/2 for odd numbers
of input samples and N 2 / 2 for even numbers.

1051-8215/94$04.00 0 1994 IEEE

LEE et al.: HIGH-SPEED MEDIAN FILTER DESIGNS USING SHIFTABLE CONTENT-ADDRESSABLE MEMORY 545

(a) (b)

Fig. 1. Illustration of the Insert and Delete sorting operations.

11. ALGORITHM DESCRIFTION AND TRANSFORMATION

Since median search can be decomposed into two stages-
(1) sorting input samples and (2) selecting specified order
from the sorted sequence, and the former is much more
complex than the latter, throughput can only be improved
when complexity of the sorting stage is overcome. We select
the delete-and-insert algorithm [8] due to its low memory
bandwidth requirement.

delete-and-
insert sort algorithm is one of the many available sort
algorithms. Its operations can be described as follows. For
data insertion as shown in Fig. l(a), the current input sample
is known to be 20 and should be placed in between 25 and
16 which are already sorted and stored in a memory. Each
time a new sample is given, it can be placed according to this
scheme. After all samples are processed, the sorted sequence
can be obtained from the memory. For data deletion, it only
needs to identify the sorted item whose value is equal to the
input sample’s value as shown in Fig. l(b). Thus for any
running order operation, this delete operation becomes useful
since only those samples out of the mask region need to be
removed and new input samples need to be sorted. In addition
to these features, this algorithm can also provide an ascending
sequence if smaller items are placed at left side instead of
right side as used for a descending sequence (as illustrated
in Fig. 1).

This algorithm description implies that a lot of comparisons
are needed in order to allocate a position in which the input
sample can be correctly placed or removed. Moreover a lot of
move operations are needed before the input sample is inserted
or deleted. For real-time imagelvideo processing, either insert
or delete operation has to be done in a very stringent timing
constraint. Thus if this algorithm is implemented on a general-
purpose computer, the result is obviously not suitable for
real-time applications and hence the algorithm has to be
modified. A modified version, called optimized delete-and-
insert or OD1 sort algorithm is thus developed to fully explore
parallelism so that a very high throughput requirement can be
obtained by exploiting VLSI advantages such as speed and
density.

The OD1 Sort Algorithm: As described above, the bottle-
neck of enhancing the delete-and-insert sorter’s throughput lies
in two factors- (1) ident$cation of insert/delete target and (2)
data movement among sorted items. The complexity of these
two factors becomes higher as the number of input samples
increases. However if we explore fully parallelism inherent
in the algorithm, then this bottleneck can be overcome. To
see how the parallelism can be explored, we summarize the

The Delete-and-Insert Sort Algorithm: The

algorithm description as below:
/* for insertion */
Sort[] = 0; /* initialize Sorted array Sort[] */
Sort[O] = int-max; /* set boundary condition *I
DataIn = input sample;
Samplecount++;
for (i:= Samplecount; i > 0; i-) {

if (DataIn >= Sort[i]) {
Sort[i+l] := Sort[i]; /* shift right */

I
if (DataIn >= Sort[i]) & & (DataIn < Sort[i-11)

{
Sort[i] := DataIn; /* insert data *I

I
1

/* for deletion */
DataIn = input sample; /* input sample to be
deleted */
for (i:=l; i < = Samplecount; i++) [

if (DataIn >= Sort[il) {
Sort[i] := Sort[i+l]; /* shift left, i.e., delete

data *I
1

I
Samplecount-;

Here it is found that for each input sample, N comparisons
are needed in order to find the position where the input sample
should be placed or removed. This parallel-comparison process
can be realized on a content addressable memory (CAM) to
identify the target to be inserted or deleted. Once the target
is identified, the next step is to perform data movement on a
part or all the sorted items. For example, Fig. l(a) illustrates
the insertion of data item whose value is 20. For those sorted
items whose value is less than or equal to the input item,
they have to move one position right; while in data deletion,
those sorted items whose value is less than or equal to the
input item have to move one position left as shown in Fig.
l(b). In other words, the sorted items are divided into two
groups- one is the LE group (i.e. sorted items less than or
equal to input sample) and the other is the GT group (i.e. sorted
items greater than input sample). Thus the data movement
can be replaced by shift operations working on the LE group
instead of readwrite operations on memory and in particular,
these shift operations can be executed in parallel. Thus this
modified OD1 algorithm can operate on every sorted item
simultaneously and generate any request order very fast if both
concepts of content-addressable memory and shift registers are
used.

111. ARCHITECTURE ISSUES

In the previous section, we discussed how the OD1 algorithm
solves the bottleneck of data sorting and then achieves high
throughput by means of the support of content-addressable
memory and shift registers. In this section, we discuss in more
detail how the OD1 algorithm is mapped onto the shiftable
content-addressable memory (SCAM) architecture which is
very suitable for VLSI implementation.

546 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 4, NO. 6, DECEMBER 1994

...

Fig. 2.
structure.

The shiftable content-addressable memory is realized on a PE-based

The PE-Based Structure: Suppose that there are N samples
to be sorted, we would like to obtain any specified order right
after the last sample is given. This is, in fact, the specification
of our high-speed median filter design. We also assume that
the sorted sequence is in a descending order. Thus N storage
spaces are needed to store the sorted samples. Initially all
contents of SCAM are reset to zero. For each input sample, the
content of each storage space is read out and compared with
the input sample in order to identify the position where the
input sample should be placed. Once the position is identified,
the content of each storage space has to be conditionally
shifted according to the newly updated sequence. This implies
that the architecture consists of N processor elements (PES)
and each of which contains two basic cells- (1) sort-cell
and (2) compare-cell (as shown in Fig. 2). The former is a
shift register containing the sorted data and can be shifted
right or left while the latter intends to provide control signals
orchestrating operations of the former.

Detailed Architecture and Circuit Design for the Sort Cell:
From the previous discussions, it can be found that the sort-cell
should have the following functionalities (see Fig. 3(a)):

1) data can be shifted right,
2) data can be shifted left,
3) data can be loaded,
4) data remains unchanged,
5) data can be reset.
Here items 1, 3, and 4 are required in insert operations,

while items 2 and 4 are needed in delete operations. Item 5 is
only used when a new input set is to be processed. With these
pre-defined functionalities, the corresponding circuit for such
a 1-bit cell can be easily derived as shown in Fig. 3(b). Only 3
inverters and 6 pass transistors are needed for each bit cell. The
first inverter acts as an internal buffer for data pre-shifting to
enhance the clock rate (see the last paragraph of this section for
more details). Note that a two-phase non-overlapping clocking
strategy is used here.

Detailed Architecture and Circuit Design for the Compare
Cell: This cell intends to generate all required control signals
for those used in the sort cell. The functional description of
this cell is given in Fig. 4(a). Here the shc control signal is
defined for insertion or deletion mode selection. The other
control signals are generated respectively according to the
following conditions:

shift data right (shr): This occurs when data insertion is
under execution. However only those sorted items whose

gout = SReg; SReg := k,}

else if (shr) {rout = SReg; SRcg := b,}
m= + 9 SReg rin elseif(load)

4 else if (reset)

bout = SReg;

{SRq :=bin;}

rout {SReg := R}

It

(b)

Fig. 3. (a) Behavioral description and (b) circuit diagram of each 1-bt
sort-cell. Note that a weak inverter is placed at INV2 to overcome leakage
paths.

value is less than or equal to that of the current input
sample (or belongs to the LE group as defined above) will
be shifted right and hence the carry (C; in ith compare-
cell) is demanded. Thus the shr is activated whenever
shc is low (for insertion) and C; is high.
shift data left (shl): This shl is activated when data
deletion is performed (i.e. shc is high) and C; is high.
load data (load): Since only one PE requires this signal
at a time, i.e. the input sample can only be placed at one
correct position, the generation of loud signal becomes
more complex than the previous two control signals. Not
only shc and C; are considered, but also the carry from
the previous stage (C;-1) should be taken into account.
This is obvious since the correct storage space for the
current input sample is between those items less than
or equal to the input sample (i.e. C;-l=O, or LE-group
members) and those items greater than the input sample
(i.e. C;=l, or GT-group members).

To speed up the carry generation, a carry-look-ahead tech-
nique [l l] is exploited. The overall circuit diagram for this
compare-cell is shown in Fig. 4(b).

Operation and Clocking Strategy: To speed up the clock
rate, a 2-phase non-overlapping clock is exploited here. All the
control signals are generated at 41 and data shift operations
are performed at 4 2 . In addition, a pre-shift strategy is also
exploited to improve clock speed. This strategy shifts sorted
items to the buffer (the first inverter INVl of the sort-cell) of
next PE during $1 and then are conditionally stored at 4 2 .
The detailed operation for data insertion on the sort-cell is
illustrated in Fig. 5. Note that the first inverter of each sort
cell acts as a buffer during pre-shifting as needed for both
shift right and left operations.

IV. EVALUATION AND DISCUSSIONS
To evaluate this SCAM architecture, a proto-type chip for a

maximum of 64 input samples has been designed. The figure

LEE et al.: HIGH-SPEED MEDIAN FILTER DESIGNS USING SHIFTABLE CONTENT-ADDRESSABLE MEMORY 541

Tin shr shl load
Cj =(Din L Tin),
shr=(Cj&&Ishc);
shl = (q && shc);

h u t load=(IC+l &&Cj&&Ishc);
Compsre Cell Dout = Din;

where
Tin: sorted data from &-cell;
Din. current lnplt sample;
shc: iosat/delete indicator,
Ci- : cany from previous stage;

(a)

+ I I I+& & plefi (W*Shc)

'.r-
shr (+*Ec* q l-Is=F

1 ci-1 FromOutputof f

To Next Stage
Input F

(b)

Fig. 4. (a) Behavioral description and (b) circuit diagram of the compare-cell.
The carry is generated by the cany-look-ahead technique to enhance clock
speed.

of 64 is considered here because we would like to make a
chip for median filtering of variant sizes as well as cascadable
data sorting. In this section, we first present some experimental
results about this OD1 chip and then provide some comparisons
with the two approaches described in the Introduction. Also
some applications where this OD1 chip can be exploited are
presented.

Design of the ODI Chip: Block diagram of this chip is
given in Fig. 6. This chip can be used either as a high-speed
data sorter or as an image median filter. Input samples are first
sorted through the shiftable content-addressable memory. Then
the specified order, such as median, can be identified from
the sorted items by means of a dynamic selection circuit. For
raster scan images, this chip provides an optimal solution since
the required order can be obtained right after the last sample
is given. It should be noted that using the pre-shift strategy,
both phases ($1 and 4 2) are quite balanced. Experimental
results show that a clock rate up to 50 MHz can be achieved.
The micro-photo of this chip design is shown in Fig. 7. Some
key features of this OD1 chip are given below:

Each chip can handle 64 samples and can be cascaded for
more samples when data sorting is considered.

. . i : . . . : nj- .-.-.-.. i " ._ 1 :-. i_ -,- jl - - ..!

I I , x I.._.

To
Pmious i ---.I.I --.+ I--.- I".-----

Stage *?..

gl.8hhc b*

(b)

Fig. 5. Insert data flow on the I-bit sort-cell. (a) pre-shift stage at 01 and
(b) data shift at 02. Note the dark lines indicate how the circuit works at
different phase.

median out

seledion unit

PE PE PE

Fig. 6. Block diagram of the OD1 chip.

Any specified order can be obtained right after the last
sample is given, i.e. without latency. This is very useful
for pipelined architecture design.
Running order can be handled by exploiting both the
delete and insert operations.
Design is very regular and hardware complexity is lin-
early proportional to the number of input samples.

This chip has been fabricated through the MPC services
supported by Chip Implementation Center (CIC). Test results
show that a maximum clock rate can be up to 50 MHz. Some
characteristics of this chip are given below:

Die size: 5053 pm x 4774 pm;
Pin-count: 67;
Transistor-count: N-type: 13060, P-type: 10141, Totally:

Clock rate: 50 MHz;
23201;

548 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 4, NO. 6, DECEMBER 1994

kdweare aN2 a N a N
c a n d e w
h c Y (L) a N a N (k L r l

clodrate high w
easy W Y erpamibility d i f t i d

Note: (1) a stands forjnupulionullo
degree

Fig. 7. Microphoto of the OD1 chip.

Power consumption: 0.45W@50 MHz;
Technology: 1.2 pm CMOS double-metal technology.

Comparisons with Other Approaches: We only compare
the results based on the bit-parallel approaches as given in
the Introduction since they are more practical for real-time
imagehide0 applications.

The parallel bubble sorter as described in [5] requires a
lot of hardware as the number of input samples increases. In
addition, its input format has to be adjusted so that a set of
input samples can be fed simultaneously to the sorter arrays.
This implies that a large memory bandwidth is needed. In
addition, given a set of N input samples, the required order
can only be obtained right after N cycles. Obviously, our OD1
chip does outperform this bubble sorter in terms of area and
latency.

The ROS sorter from [8] based on a systolic architecture
offers similar hardware complexity compared to our design.
However our design offers higher throughput and expansibil-
ity.

Table I shows some comparison data from these three
approaches. In addition to the specific features of less area and
no data latency, our design also provides a testable strategy
since test patterns can easily be applied to the SCAM and
detected from the selection circuit or from both shift output
ports.

Some Typical Applications: With a clock speed of 50 MHz,
this OD1 chip can handle median filtering for current video
rates in real-time. It can also be exploited in advanced televi-
sion receivers for noise reduction and scan rate up-conversion
[3]. In addition, we can use this chip for recursive median
filtering to improve the efficiency of noise-reduction, where
several mask sizes are demanded. For those running window
applications, line-delays can be added on-chip or off-chip.
However, it should be noted that only one sample can be
handled by this chip at a time.

Based on the SCAM architecture and the experience from
the OD1 chip design, we have also found a lot of applications

TABLE I
SOME COMPARISONS OF OUR OD1 CHIP WITH OTHER BIT-PARALLEL APPROACHES

I

ROS OD1 .el

where this SCAM architecture can be exploited. In such cases,
the OD1 chip can be regarded as a block fitting into the
overall system organization. For example, in adaptive entropy
coding, the SCAM architecture provides a very cost-effective
solution in sorting the occurrences of input samples within
the specified history to enhance compression ratio. Depending
on the number of input samples to be handled, the SCAM
hardware can easily be constructed based on the PE-based
regular structure, and hence the design cycle can be reduced.

V. CONCLUSION

In this paper, we have presented a high-throughput median
filter design based on the OD1 algorithm and the SCAM
architecture. This chip is obtained by first exploring the
inherent parallelism and then exploiting shift operations to
achieve high speed sorting so that any order of input samples
can be obtained. Using the SCAM architecture, we have
developed a very cost-effective hardware solution for median
search as well as for data sorting. Test results from proto-
type chips show that the OD1 chip does outperform available
approaches for median search in terms of both area and
throughput. Also this area-efficient solution can be integrated
with other hardware when median search is demanded in
other system development. We are currently looking into the
applicability of exploiting this high-speed sorting architecture
for adaptive coding which is often used in entropy coding to
enhance compression ratio.

ACKNOWLEDGMENT

The authors would like to thank their colleagues within the
VLSVCAD group of NCTU for many fruitful discussions. Also
the MPC support from Chip Implementation Center (CIC) of
NSC is acknowledged. In particular, the authors express their
gratitude to the anonymous reviewers for their help in making
this paper more readable.

REFERENCES

[I] A. K. Jain, “Fundamentals of Digital Image Processing”, Prentice-Hall,
1989.

[2] D. H. Kang, J. H. Choi, Y. H. Lee, and C. Lee, “Applications of a
DPCM System with Median Predictors for Image Coding”, IEEE Trans.
on Consumer Electronics, vol. 38, no. 3, pp. 429435, Aug. 1992.

LEE

[31

er al.: HIGH-SPEED MEDIAN FILTER DESIGNS USING SHIFTABLE CONTENl

H. Rantanen, M. Karlsson, P. Pohjala, and S. Kalli, “Color Video Signal
Processing with Median Filters”, IEEE Trans. on Consumer Electronics,
vol. 38, no. 3, pp. 157-161, Aug. 1992.
H. M. Lin and A. N. Jr. Willson, “Median Filters with Adaptive Length”,
IEEE Trans. on CAS, vol. 35, no. 6, pp. 675-690, Jun. 1988.
J. Offen and R. Raymond, “VLSI Image Processing”, McGraw-Hill,
1985.
C. L. Lee and C.W. Jen, “Bit-sliced Median Filter Design Based on a
Majority Gate”, IEE Proc-G V139, no. 1, pp. 63-71, Feb. 1992.
P. H. Dietz and L. R. Carley, “An Analog Circuit Technique for Finding
the Median”, in Proc. of Custom Integrated Circuits Conference, San
Diego, Mav 9-12, 1993.

[8] A. i.. Fisher, “Systolic Algorithms for Running Order Statistics”, in
Signal and Image Processing, Dept. of Computer Science, Carnegie
Mellon University, Pittsburgh, Jul. 198 1.

[9] H. T. Kung, “Why Systolic architectures”, IEEE Computer, vol. 15, no.
1, Jan. 1982.

[lo] D. S. Richards, “VLSI Median Filters”, IEEE Trans. on Acoustics,
Speech, and Signal Proc., vol. 38, no. 1, Jan. 1990.

[1 I] N. Weste and K. Eshraghian, “Principles of CMOS VLSI Design- A
Sjsfems Perspective”, Addison-Wesley, 1985, pp. 32G335.

Chen-Yi Lee received the B.S. degree in electronics
engineemig from National Chiao Tung University
in 1982 and the M.S.and Ph.D. degrees in electri-
cal engineering from Katholieke University Leuven
(KUL), Belgium in 1986 and 1990.

From 1986 to 1990, he was with IMECNSDM
division, working in the area of architecture syn-
thesis for DSP. He joined the faculty at National
Chiao Tung University in February, 1991, where he
is currently an Associate Professor of Electronics
Engineering. His research interests mainly include

VLSI architectures, visual communications and related VLSI designs, and
CAD for VLSI.

.-ADDRESSABLE MEMORY 549

Po-Wen Hsieh was born in Kaoshiung City, Tai-
wan, on November 10, 1967. He received the B.S.
and M.S. degrees from National Chiao University,
Hsinchu, Taiwan in 1991 and 1993, both in elec-
tronics engineering. His research interests include
image processing, visual communications, VLSI ar-
chitectures, .and high-speed circuit design.

Jer-Min Tsai received the B.S. degree from
National Cheng Kung University, Tainan, Taiwan,
in 1989, and the M.S. degree from National Chiao
Tung University (NCTU), Hsinchu, Taiwan, in
1993, both in electrical engineering. He is currently
working toward the Ph.D. degree at NCTU. His
research interests include VLSI architectures,
high-speed networking, and related VLSI designs.

