Applied Mathematics and Computation 219 (2013) 10831-10841

Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

A single-machine bi-criterion scheduling problem with two @ CrossMark
agents

Wen-Chiung Lee **, Yu-Hsiang Chung®, Zong-Ren Huang?

2 Department of Statistics, Feng Chia University, Taichung, Taiwan
b Department of Industrial & Engineering Management, National Chiao Tung University, Hsinchu, Taiwan

ARTICLE INFO ABSTRACT

Keywords: The multiple-agent scheduling problems have received increasing attention recently. How-
Scheduling o ever, most of the research focuses on studying the computational complexity of the intrac-
Total completion time table cases or examining problems with a single criterion. Often a decision maker has to

Maximum tardiness
Two-agent
Single-machine

decide the schedule based on multiple criteria. In this paper, we consider a single machine
problem where the objective is to minimize a linear combination of the total completion
time and the maximum tardiness of jobs from the first agent given that no tardy jobs
are allowed for the second agent. We develop a branch-and-bound algorithm and several
simulated annealing algorithms to search for the optimal solution and near-optimal solu-
tions for the problem, respectively. Computational experiments show that the proposed
branch-and-bound algorithm could solve problems of up to 24 jobs in a reasonable amount
of time and the performance of the combined simulated annealing algorithm is very good
with an average error percentage of less than 0.5% for all the tested cases.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In most scheduling models, there is a common goal to minimize for all the jobs [1-6]. However, jobs might be from dif-
ferent customers which have their own goals to pursue. For instance, Peha [7] gave a telecommunication service example
where various types of packets and service compete for the use of a commercial satellite, and the problem is to satisfy
the service requirements of individual agents to transfer voice, image and text files for their clients. Kim et al. [8] pointed
out that in project scheduling the problem is concerned with negotiation to resolve conflicts whenever the agents find their
own schedules unacceptable. Kubzin and Strusevich [9] presented another example that maintenance operations complete
with the real jobs for machine occupancy on maintenance planning. Balasubramanian et al. [10] provided the manufacturing
examples where the agents belong to different subjects competing for the usage of machines.

Agnetis et al. [11] and Baker and Smith [12] were the pioneers that brought the multi-agent problems into scheduling
field. For more articles with multiple-agent scheduling, readers can refer to [13-23].Since then, many researchers have de-
voted efforts to this area. Recently, Lee et al. [24] studied a two-agent problem with deteriorating jobs on a single machine to
minimize the total weighted completion time of jobs from agent 1 given that no tardy jobs are allowed for agent 2. In their
model, the actual job processing time is o; + fit if its starting time is t where o; is the normal processing time of job j, and f is
the common deterioration rate. They provided the branch-and-bound algorithm to search for the optimal solution for prob-
lems with up to 20 jobs. Moreover, they provided three heuristic algorithms based on linear combinations of processing
times and weights for jobs from agent 1 and linear combinations of processing times and due dates for jobs from agent 2.

* Corresponding author.
E-mail address: wclee@fcu.edu.tw (W.-C. Lee).

0096-3003/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.amc.2013.05.025

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.amc.2013.05.025&domain=pdf
http://dx.doi.org/10.1016/j.amc.2013.05.025
mailto:wclee@fcu.edu.tw
http://dx.doi.org/10.1016/j.amc.2013.05.025
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc

10832 W.-C. Lee et al./Applied Mathematics and Computation 219 (2013) 10831-10841

Wau et al. [25] considered a single-machine scheduling problem with learning effects where the objective is to minimize the
total tardiness of jobs from the first agent with the constraint that no tardy job is allowed for the second agent. The actual
processing time of job j under the model is p;r* if it is scheduled in the rth position where p; is the processing time of job j, a is
learning effect and a < 0. The proposed branch-and-bound algorithm could solve problems with up to 24 jobs optimally, and
the proposed heuristic algorithms sort jobs according to the linear combination of the job processing times and the due
dates. They presented the computational experiment for their heuristics with 50 jobs. Lee et al. [26] studied a two-agent
scheduling problem on two-machine permutation flowshop where the objective is to minimize the total tardiness of jobs
from the first agent given that no tardy job of the second agent is allowed. They provided a branch-and-bound algorithm
to solve problems with 12 jobs optimally. In addition, they presented the computational results of two simulated annealing
algorithms for problems with 25, 50 and 75 jobs. Cheng et al. [27] considered a two-agent single-machine scheduling prob-
lem with deteriorating jobs and learning effects simultaneously. The objective is to minimize the total weighted completion
time of jobs from the first agent with the restriction that no tardy job is allowed for the second agent. They assumed that jobs
from the first agent have a position-based learning effect, and jobs from the second agent have a position-based deteriorating
effect. Their branch-and-bound algorithm could present the optimal solutions for problems with up to 16 jobs. Moreover,
they conducted a computational experiment for the proposed simulated algorithm for problems with 40 and 50 jobs.

Most of the research on multiple-agent focuses on studying the computational complexity of the intractable cases or
examining problems of minimizing a single criterion of one agent given a bound of a single criterion of the other agent. How-
ever, a decision maker has to decide the schedule based on many aspects. For instance, the manufacturer might be interested
in reducing the inventory cost as well as reducing the impact of late delivery. To the best of our knowledge, multi-agent
scheduling problem with the consideration of multiple objectives for the same agent is never been discussed in literature.
Since the total completion time is commonly used to represent the internal efficiency while the maximum tardiness is com-
monly used to represent the external efficiency. We consider these two criteria in this paper. That is, we study a two-agent
scheduling problem on a single machine where the objective is to minimize the weighted combination of the total comple-
tion time and the maximum tardiness of jobs from one agent given that the number of tardy jobs from the other agent is
zero. The rest of the paper is organized as follows. In the next section we describe the formulation of our problem. In Sec-
tion 3, we construct a branch-and-bound algorithm incorporating several elimination rules and a lower bound to speed up
the search for the optimal solution. In Section 4, several simulated annealing algorithms are proposed to solve this problem.
In Section 5, a computational experiment is conducted to evaluate the efficiency of the branch-and-bound algorithm and the
performance of the proposed heuristic algorithms. A conclusion is given in the last section.

2. Problem description

The problem description is given as follows. There are n jobs ready to be processed on a single machine. Each job belongs
to either one of the two agents AG, or AG;. For each job j, there is a processing time p;, a due date d;, and an agent code I;,
where [[=0 if jeAGy, or ;=1 if jeAG,. Under a schedule S, let C;(S) be the completion time of job j,
T;(S) = max{0, C;(S) — d;} be the tardiness of job j, Tmax(S) = max;<j<x{T;(S)(1 — I;)} be the maximum tardiness of jobs from
agent AGy under schedule S, and U;(S) = 1if T;(S) > 0 and zero otherwise. The objective of this paper is to find a schedule that
minimizes the weight combination of the total completion time and the maximum tardiness of jobs from AGy, with the
restriction that no tardy jobs from AG; are allowed. Using the conventional three fields notation, this problem is denoted
as 1|3 Uil; =0ja > Gi(1 —Ij) + (1 — %) Trax Where 0 < o < 1.

3. A branch-and-bound algorithm

Agnetis [28] pointed out that the two-agent problem is NP-hard if both the agents have the sum-type objectives. Thus, the
branch-and-bound algorithm is developed to obtain the optimal solution.

3.1. Dominance properties

In this subsection, we first provide several adjacent dominance properties. Suppose that S and S are two job schedules
and the difference between S and S/ is a pairwise interchange of two adjacent jobs i and j. That is, S = («,i,j, ') and
S = (mj,i, m'), where 7w and 7' each denote a partial sequence. In addition, let ¢t denote the completion time of the last
job in 7w and B be the maximum tardiness of jobs from agent AG, under partial sequence 7, that is, B = maXkerrac, {Tk(S)}
The completion times of jobs i and j in S are

Gi(S) =t+p; (1)
and
Gi(S) =t +p; +pj, 2)

whereas the completion times of jobs j and i in S’ are

G(S) =t+p;, 3)

W.-C. Lee et al./Applied Mathematics and Computation 219 (2013) 10831-10841

and

G(S)=t+p;+p;

Property 1. If jobs i,j € AGo, p; < p;, d; < d; and t — B > max{d; — p;, d; — p;}, then S dominates S.
Proof. Since jobs in 7 are processed in the same order in both S and S, we have from Egs. (2) and (4) that
C(S) = C(S) if job ke or 7.
Thus, to show S dominates S, it suffices to show
aCi(S) + aGi(S) + (1 —) Tmax(S) < aGi(S") + aCi(S) + (1 — o) Tmax(S).
Since t — B > max{d; — p;,d; — p;}, we have
Ti(S) =t +p; —d;,
T;(S) =t+p; +p; - dj,

T;(S’) = t+pj — dj,
and
T,‘(SI) = t+pj +Di— d;.

To show Eq. (5) hold, we divide it into the following three cases:
Case I: Tmax(S) = Ti(S). From p; < p; and Egs. (6) and (9), we have

aCi(S) + oCi(S) + (1 — o) Tmax(S) = aCi(S) + aCi(S) + (1 —) Ti(S) < aCj(S') + aCi(S) + (1 —) Ti(S)
< aGi(S) + aCi(S) + (1 — o) Tmax(S)-
Case II: Tyax(S) = Tj(S). From p; < p;, d; < d; and Eqgs. (7) and (9), we have
aCi(S) + oCi(S) + (1 — o) Tmax(S) = aCi(S) + aCi(S) + (1 —)T;(S) < aCi(S) + aCi(S) + (1 —) Ti(S)
< aGi(S') + aCi(S)) + (1 — o) T (8-
Case III: Trax(S) = Ti(S) for some k € or 7. From p; < p;, we have
aCi(S) + oCi(S) + (1 — o) Tmax(S) = aCi(S) + aCi(S) + (1 —)Tk (S) < aCi(S) + aCi(S) + (1 —) Ti(S")
< oGi(S) + aGi(S") + (1 — &) Trmax(S)-

Thus, S dominates S since Eq. (5) holds for all the three cases.
Property 2. If jobs i,j € AGo, p; < p;, and d; < t + p; — B < d; — p;, then S dominates S'.

Property 3. If jobs i,j € AGo, p; < p;, t +p; — B < d;, and t + p; + p; — B < d;, then S dominates S'.

10833

Property 4. If jobs i,j € AGo, p; <pj, %(p; —p;) + (1 —a)(t+p;+p;—d;j—B) <0, and d; — p; < t+ p; — B < min{d; — p;,d;},

then S dominates S'.
Property 5. If jobs i,j € AGo, p; < ap; and d; < t + p; — B < d; — p;, then S dominates S'.
Property 6. If jobs i,j € AGo, p; < pj, di < d;, 0 < B— (t+p; —d;) < p;, and t + p; — B > d;, then S dominates S'.

Property 7. If jobs i,j € AGo, p; < ap;, and t — B > max{d; — p;,d; — p;}, then S dominates S'.

Property 8. If jobs i,j € AGo, p; < pj, %(p; — p;) + (1 — o)(di —dj) <0, t+p; —B > d;, and 0 < B — (t + p; — d;) < p;, then S dom-

inates S'.

Property 9. If jobs i,j € AGo, p; < op;, 0 < B — (t +p; — di) < p;, t + p; — B> d; and d; — p; > d;, then S dominates S'.

10834 W.-C. Lee et al./Applied Mathematics and Computation 219 (2013) 10831-10841

Property 10. If jobs i,j € AGo, p; < p;, t +p; +p; — B> d;, t — B < min{d; — p;,d; — p;}, and d; < d;, then S dominates S'.

Property 11. If job i € AGy, job j € AGy, and t + p; + p; — d; < 0, then S dominates S'.

To further facilitate the search process, we provide a proposition to determine the feasibility of a partial schedule and a
proposition to determine the ordering of the remaining unscheduled jobs. Assume that (PS, US) is a sequence of jobs where
PS is the scheduled part with k jobs and US is the unscheduled part with (n-k) jobs. It is assumed among the unscheduled
jobs, there are ng jobs from agent AGo and n, jobs from agent AG; where np + n; =n — k. Let S* = (PS", US") be a sequence in
which ng jobs from agent AGq are scheduled first in the shortest processing time (SPT) rule, followed by n; jobs from agent
AG; in the earliest due date (EDD) rule. In addition, let d(ll) < d:z) <...< d:nl) denote the due dates of the remaining n, jobs
from agent AG; when they are arranged in the EDD rule. Moreover, let p/;), pfy), - - -, D{,,, denote their corresponding process-
ing times and Cyy be the completion times of the last job in PS.

Proposition 1. If there is a unscheduled job j from agent AG; such that Cy + Z{Zl p(li) - % > 0, then sequence (PS,US) is
infeasible.

Proposition 2. [f maxcps:ruc, {Tk(S")} < MaXkepsrac, {Tk(S")} and 3 yps- e, Uk(S™) = O, then S* = (PS", US") dominates sequences
of the type (PS, US).

3.2. A lower bound

The performance of the branch-and-bound algorithm also depends on the efficiency of the lower bound. Assume that
S = (PS,US) be a schedule in which PS is the scheduled part with k jobs and US is the unscheduled part with (n-k) jobs.
Let t be the completion time of the last job in partial schedule PS, and T%,, be the maximum tardiness of jobs from agent
AGy in PS. That is, T’;fax = MaXjeac,nes{0, Cj(S) — d;}. In addition, it is assumed that among the unscheduled jobs, there are
ny jobs from agent AG, and n; jobs from agent AG;. Moreover, let d:l) < d(12) <...< dﬁm denote the due dates of the remain-
ing n; jobs from agent AG; when they are arranged in the EDD rule and p/,),ply); - - -, P{,,, denote their associated processing

times. In addition, let p?l) < p?z) <...< p‘(’m denote the processing times of the remaining n, jobs from agent AG, when they

0
(ng)

they are arranged in the EDD rule. Note that pzi) and db) are from the same jobs, but p‘(’n and dg-) are not necessarily from the
same job. We then construct ny pseudo jobs from agent AGy such that job j from agent AGo has processing time pg.) and due

are arranged in the SPT rule and d?l) < d?2> <...<d, , denote the due dates of the remaining ny jobs from agent AG, when

date d(&-) forj=1,...,n% The basic idea to develop the lower bound is (1) to complete jobs from agent AG, as late as possible
without violating the assumption of no tardy jobs from agent AG, are allowed, and (2) to insert ny pseudo jobs from agent
AG, into the machine available periods where job preemption is allowed for jobs from agent AGo,. The procedures are divided
into two phases, and given as follows.

Phase I:

Step 1: Set i = ny, st = oo, and £, 1 = oco.

Step 2: If dgi) < st, set tj = d(l,-) — pj;y- Otherwise, set t; = st — pj;.

Step 3:Setst=t;andi=i—1.1fi > 1, go to Step 2.

Step 4: Output (tl, ty,..., tnl s tn]+1).

Phase II:

Step 1: Seti=1, and k = 0.

Step 2: Set k =k + 1.

Step 3: If ¢ + pf, > &, set p), = p, — (tx — £), t = ty + pj}, and go to Step 2. Otherwise, set ¢ = ¢ + p{} and Cf’l—) =t

Step 4: If i < np, seti =i+ 1 and go to Step 3.

Step 5: Output (C), .-, €0y,)

The purpose of Phase I is to calculate t;, the latest time to start processing job j from agent AG; without violating the no-
tardy jobs assumptions, whereas the main goal of Phase Il is to schedule jobs from agent AG, into the machine available peri-

ods, and the output Cg.) is the completion time for pseudo job j. Thus, the lower bound of the weighted combination of the
total completion time and the maximum tardiness for sequence S is LB(S) = oc[5‘:1C[,-] (PS)(1 —1Iy) + Z?legJ +

PS 0 0
(1 — o) max{T @%{C(” —dy}}

max?’

W.-C. Lee et al./Applied Mathematics and Computation 219 (2013) 10831-10841 10835
3.3. Description of the branch-and-bound algorithm

A depth-first search is adopted in the branching procedure. In this paper, the algorithm assigns jobs in a forward manner
starting from the first position. We first implement the proposed SA algorithms (discussed in the next section) to obtain a
sequence as the initial incumbent solution. In the branching tree, we systematically work down the tree. We apply Propo-
sition 1, Properties 1 to 11 to eliminate the dominated partial sequence. For the non-dominated nodes, we apply Proposition
2 to determine the sequence of the unscheduled jobs or compute the lower bound on the weighted combination of the total
completion time and the maximum tardiness of jobs from agent AG. If the lower bound on the objective function for the
partial sequence is greater than the incumbent solution, eliminate that node. If the objective function of the completed se-
quence is less than the incumbent solution, replace it as the new solution. The procedure is repeated until we explore the
whole tree.

4. The simulated annealing algorithm

Evolutionary heuristic algorithms have been successfully applied to solve many combinatory optimization problems [29-
33]. In this paper, the simulated annealing (SA) algorithm [34] is utilized to derive a near-optimal solution for the proposed
problem. The essential elements of the SA algorithm included:

(1) Initial sequence: In this study, two initial sequences are used. In the first initial sequence, jobs from agent AG, are first
placed according to the EDD rule, followed by jobs from agent AG, according to the SPT first rule, denoted as SAgpp. spr in later
analysis. In the second initial sequence, jobs from agent AG; are first placed according to the EDD rule, followed by jobs from
agent AG, in the EDD rule, denoted as SAepp.epp-

(2) Neighborhood generation: Three neighborhood generation methods are analyzed in this study. They are the pairwise
interchange (PI), the extraction and forward-shifted reinsertion (EFSR), and the extraction and backward-shifted reinsertion
(EBSR) movements. Depending on the initial sequences and the neighborhood generation movements, there are six SA
algorithms considered in this study, and denoted as SAgpp . spr» SAtpp: ser» SAtpm:sers SAEdD 0D+ SAepns eppe AN SAfpn, £pp-

(3) Acceptance probability: The probability of acceptance is generated from an exponential distribution,

P(accept) = exp (—k x ATC/90),

where ATC is the change in the objective function [35]. After some pretests, we choose 0 = 5000. If the weight combination of
the total completion time and the maximum tardiness of jobs from agent AGy increases, the new sequence is accepted with
probability r, where r is a uniform random number between 0 and 1.

(4) Stopping condition: According to our pretests, the procedure is stopped after 300n iterations, where n is the number
of jobs.

5. Computational experiments

In this section, the computational experiments were conducted to evaluate the performance of the branch-and-bound
and the SA algorithms. They were coded in Fortran 90 and run on a personal computer with 3.20 GHz Intel(R) Core(TM)
i5 CPU 650 3.21 GHz and 3.45 GB RAM under Windows XP. The job processing times were generated from a uniform distri-
bution over the integers 1-100 and the due dates of jobs were generated from another uniform distribution over the integers
between T(1 — 7 — R/2) and T(1 — 7 + R/2), where R is the due date range factor, 7 is the tardiness factor, and T is the total
processing times of all the jobs.

The computational experiment consisted of five parts. In the first part of the experiment, the job size was fixed at 10, the
weighted combination of the total completion time and the maximum tardiness o was 0.5, and the proportion of jobs from
agent AG; was fixed at 50% to test the efficiency of the dominance properties and the lower bound separately, and the results
are compared with the enumeration method. Eight combinations of (7,R) values were tested, i.e. (0.25, 0.25), (0.25, 0.50),

Table 1
Results of the branch-and-bound algorithm and enumeration method with n =10, P=0.5, 2=0.5.
T R BB_L Number of nodes BB_P Number of nodes BB_P + L Number of nodes Enumeration Number of nodes
Mean SD Mean SD Mean SD
0.25 0.25 111755.8 85379.2 299.5 134.5 295.1 129.5 3628800
0.50 79758.3 61617.9 299.6 132.8 273.9 104.5 3628800
0.75 51875.5 62046.2 310.1 389.7 2474 229.5 3628800
0.50 0.25 10078.9 14995.6 107.7 74.7 104.1 721 3628800
0.50 9408.5 16062.1 142.6 156.9 136.2 151.5 3628800
0.75 12953.7 29669.8 164.0 167.9 156.5 152.9 3628800
0.75 0.25 812.5 1635.7 41.6 24.0 41.5 24.0 3628800

0.50 772.8 1155.4 45.5 337 44.8 32.8 3628800

10836 W.-C. Lee et al./Applied Mathematics and Computation 219 (2013) 10831-10841

Table 2
The performance of the branch-and-bound algorithm with n =12, P=0.5, 2=0.5.
T R Number of nodes CPU time
Mean SD Mean SD
0.25 0.25 952.26 443.83 0.006 0.008
0.5 961.62 442.47 0.005 0.007
0.75 1239.66 1704.13 0.008 0.011
0.5 0.25 300.98 193.29 0.001 0.004
0.5 465.16 447.05 0.003 0.006
0.75 479.26 440.50 0.003 0.006
0.75 0.25 110.99 81.45 0.001 0.003
0.5 117.65 159.42 0.001 0.004
Table 3
One-way ANOVA table for the number of nodes with n= 12, P=0.5, «=0.5.
Source SS DF MS F p-value
Due date factors 125427020 7 17918146 38.122 0.000
Error 372253902 792 470018
Total 497680922 799
Table 4
Two-way ANOVA table for the number of nodes with n=12, P=0.5, 2=0.5.
Source SS DF MS F p-value
Factor (1) 60683304 1 60683304 97.664 0.000
Factor (R) 5538663 2 2769331 4.457 0.012
Interaction 1759012 2 879506 1.415 0.244
Error 369081068 594 621349
Total 437062047 599

(0.25, 0.75), (0.5, 0.25), (0.5, 0.50), (0.5, 0.75), (0.75, 0.25), and (0.75, 0.50). The branch-and-bound algorithm with the dom-
inance properties is denoted by BB_P, and the branch-and-bound algorithm with only the lower bound is denoted by BB L,
while the branch-and-bound algorithm with the properties and the lower bound is denoted by BB_P + L. The average and
standard deviation of the number of nodes were reported for the branch-and-bound algorithms, while the number of nodes,
10!, was given for the enumeration method. 100 replications were randomly generated for each condition and the results
were presented in Table 1. It is seen that the dominance properties and the lower bound benefit the searching process in
terms of the number of nodes explored. Thus, the branch-and-bound algorithm with the properties and the lower bound
was used in later analysis.

In the second part of the experiment, the effects of the due date factors 7 and R to the performance of the branch-and-
bound algorithm were studied. The values of parameters were the same as those in Table 1, except the job size was fixed at
12. The mean and the standard deviation of the number of nodes and the mean and the standard deviation of the CPU time
(in seconds) were reported for the branch-and-bound algorithm. 100 replications were randomly generated for each case
and the results were presented in Table 2. A one-way analysis of variance (ANOVA) on the number of nodes of the
branch-and-bound algorithm was constructed and given in Table 3. The resulting F-value was 38.122 with a p-value of close
to 0, which indicated that the due date factors 7 or R have statistically significant effects on the difficulty of the problem. To
further analyze the impact of T and R, a two-way ANOVA on the number of nodes for the first six cases was conducted and
the results were presented in Table 4. It indicated that 7 is a significant factor since its resulting F-value is 97.664 and a p-
value of close to 0. In addition, the impact of R is significant with a resulting F-value of 4.457 and a p-value of 0.012. However,
there is no significant indication of the interaction effects between 7t and R since its resulting F-value is 1.415 and its asso-
ciated p-value is 0.244. A closer look at Table 2 revealed that the problems are harder to solve as the value of 7 is smaller. The
main reason is that Proposition 1 and the lower bound are less powerful in that case. In addition, it was noted that the case
(t,R) = (0.25,0.75) has the most number of nodes with an average of 1239.66 among the eight cases. Thus, it was used in the
third part of the experiment.

Similar to the second part of the experiment, the third part was to test the effects of the coefficient « and the proportion of
jobs from the second agent P. The job size was fixed at 12, and (t,R) was (0.25, 0.75). Three different values of « (0.25, 0.5,
0.75), and of P (0.25, 0.50, 0.75) were used. 100 replications were randomly generated for each case and the results were
presented in Table 5. A two-way ANOVA on the number of nodes was utilized to test the effects of the parameters to the
performance of the branch-and-bound algorithm, and the result was reported in Table 6. The resulting F-value of « was

W.-C. Lee et al./Applied Mathematics and Computation 219 (2013) 10831-10841 10837
Table 5
The performance of the branch-and-bound algorithm with n=12 and 7 = 0.25, R= 0.75.
P o Number of nodes CPU time
Mean SD Mean SD
0.25 0.25 566.6 667.1 0.004 0.007
0.5 474.3 392.7 0.002 0.006
0.75 453.9 374.0 0.003 0.006
0.5 0.25 1136.4 1113.0 0.006 0.009
0.5 1239.7 1704.1 0.008 0.011
0.75 12349 1576.9 0.007 0.011
0.75 0.25 958.7 1324.8 0.005 0.009
0.5 737.6 945.6 0.005 0.008
0.75 1109.8 1765.0 0.006 0.012
Table 6
ANOVA table for the number of nodes with n=12 and 7 =0.25, R=0.75.
Source SS DF MS F p-value
Factor (P) 76059350 2 38029675 26.061 0.000
Factor (o) 2037967 2 1018983 0.698 0.498
Interaction 6371767 4 1592942 1.092 0.359
Error 1300175652 891 1459232
Total 1384644736 899
Table 7
The performance of the branch-and-bound algorithm (2=0.5).
n T R P Number of nodes CPU time
Mean SD Mean SD
16 0.25 0.50 0.25 3654.0 7230.1 0.03 0.06
0.50 14300.7 27645.3 0.12 0.22
0.75 28873.3 43994.4 0.27 0.37
0.75 0.25 5045.4 7508.4 0.04 0.06
0.50 15669.7 18501.6 0.13 0.15
0.75 12879.9 31172.2 0.12 0.27
0.50 0.50 0.25 15844.5 44713.8 0.12 0.35
0.50 5679.1 6499.3 0.05 0.05
0.75 21371 2936.6 0.02 0.03
0.75 0.25 18269.0 56922.6 0.13 0.42
0.50 15293.9 23433.1 0.12 0.18
0.75 7006.8 16149.6 0.06 0.14
20 0.25 0.50 0.25 16499.3 217394 0.19 0.24
0.50 187894.2 436495.2 217 4.93
0.75 653635.3 1258141.5 8.85 15.88
0.75 0.25 111090.4 511446.1 1.13 5.11
0.50 272520.9 560226.2 3.09 6.23
0.75 317470.9 805000.9 4.35 10.93
0.50 0.50 0.25 479755.2 3290233.5 5.30 37.44
0.50 200706.0 539656.7 221 5.82
0.75 36039.8 93098.6 0.50 1.30
0.75 0.25 383251.0 1124434.6 4.08 12.01
0.50 843572.2 3247301.9 9.12 36.53
0.75 112184.1 395111.2 1.41 4.95
24 0.25 0.50 0.25 252867.7 730185.0 3.58 10.20
0.50 2182444.9 5099456.3 32.73 73.43
0.75 10881767.2 20926257.4 198.34 362.17
0.75 0.25 739842.0 1664482.6 10.44 23.52
0.50 12731415.3 28723857.3 186.32 412.87
0.75 28187420.7 110415273.5 486.52 1862.78
0.50 0.50 0.25 21904170.1 94524057.3 299.96 1299.99
0.50 7246913.0 19021221.9 100.86 266.49
0.75 519383.6 1598286.6 8.94 25.94
0.75 0.25 7114554.9 17944690.0 95.45 245.22
0.50 22155286.8 75160846.0 321.92 1102.85
0.75 5764492.3 22341614.3 100.18 375.64

10838 W.-C. Lee et al./Applied Mathematics and Computation 219 (2013) 10831-10841

Table 8
The error percentages of the proposed simulated annealing algorithms.
n T R P SAtbp-spr SATDD. 5P SATDB. spr SAtbo.£0D A+ EDD SAEB:EDD CombinedSA
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

16 025 050 025 0.25 087 1.60 2.76 8.09 7.07 0.13 032 1.28 2.09 8.22 7.89 0.04 0.07
050 0.25 1.06 538 8.57 1457 1499 032 146 4.09 7.01 1121 13.38 0.02 0.06

0.75 0.98 5.00 5.78 9.04 1462 29.03 150 648 6.18 12.68 1254 27.20 0.02 0.20

075 025 0.14 0.26 0.69 1.45 7.76 9.19 0.12 026 0.74 1.29 5.64 5.08 0.04 0.12

050 0.20 0.67 2.06 410 1215 20.18 0.17 0.66 2.42 5.13 8.15 9.89 0.03 0.09

0.75 012 054 1.63 6.26 4.62 12.04 0.58 470 0.62 3.32 565 18.90 0.00 0.00

050 050 025 0.08 0.13 0.61 1.73 9.68 10.16 0.10 0.15 0.80 1.90 4.91 5.57 0.03 0.06
050 0.16 111 1.20 2.94 9.10 1299 021 139 1.04 2.71 5.22 8.00 0.02 0.06

0.75 017 1.66 0.18 1.65 0.81 336 0.17 1.65 033 2.16 0.81 363 0.16 1.65

075 025 0.14 028 0.79 1.28 6.71 9.95 0.10 021 0.62 1.02 4.59 451 0.03 0.11

050 0.29 1.14 1.62 3.26 726 1131 0.20 082 1.85 3.07 6.04 9.06 0.01 0.04

0.75 0.49 265 142 6.23 3.99 7.08 0.49 264 122 4.18 2.93 598 0.10 0.95

20 025 050 025 013 027 130 213 1034 8.06 0.16 040 1.49 227 1000 10.01 0.04 0.08
050 0.74 251 371 5.36 9.00 835 0.65 256 4.84 573 1028 1064 0.13 1.13

075 1.63 6.52 7.69 1129 1034 1433 1.82 734 414 760 1197 1944 0.02 0.12

075 025 0.10 017 1.07 1.64 10.19 891 0.11 020 094 1.62 8.85 845 0.04 0.07

050 0.58 243 266 5.74 8.38 8.82 034 1.26 2.66 4.66 9.97 1318 0.12 0.79

0.75 0.10 038 1.01 4.05 9.05 3558 0.13 039 094 3.29 7.28 1998 0.00 0.02

0.50 050 025 0.09 020 1.14 1.75 1270 1211 0.12 024 0.87 1.48 8.38 842 0.03 0.05
050 0.10 033 147 279 1348 11.05 0.12 0.75 2.14 3.87 9.01 11.05 0.02 0.03

0.75 0.12 1.08 025 1.23 1.26 431 0.12 1.08 044 221 1.16 424 011 1.08

075 025 0.11 020 0.66 091 10.60 8.18 0.17 034 090 1.30 7.43 6.16 0.06 0.16

050 033 132 277 4.08 9.75 9.53 036 1.36 276 3.86 945 1019 0.10 0.65

075 0.24 1.72 1.01 3.39 6.37 1137 030 1.76 272 9.07 562 13.62 0.03 0.24

24 025 050 025 0.26 084 1.58 211 13.84 1022 0.16 0.68 1.63 230 1038 843 0.04 0.11
050 0.68 217 438 6.01 8.45 841 070 230 4.87 7.75 1312 1402 0.14 0.64

075 1.57 579 7.15 10.05 997 1191 0388 459 5.66 1340 1458 2288 045 3.51

075 025 0.17 033 1.20 1.50 12.53 845 0.12 033 1.07 1.39 9.90 8.53 0.06 0.22

050 0.56 1.87 4.05 6.44 8.08 7.77 0.54 195 3.66 5.11 9.10 839 0.08 0.37

0.75 0.55 271 198 6.33 950 2149 0.52 275 184 6.15 9.73 2550 031 221

0.50 050 025 0.13 040 1.20 1.50 15.18 821 0.11 031 134 1.73 11.18 8.06 0.04 0.14
050 0.34 157 236 3.75 1833 1291 0.10 0.74 2.00 3.56 10.19 9.37 0.08 0.73

0.75 0.02 005 0.76 3.42 243 537 0.15 1.27 019 1.47 2.01 5.50 0.00 0.04

075 025 0.14 030 0.93 1.01 1157 735 0.12 026 1.10 1.62 9.55 7.19 0.06 0.22

050 0.28 1.06 2.69 393 12.04 9.52 0.28 125 234 3.01 1034 9.73 0.04 0.22

0.75 047 229 274 5.80 793 1049 095 3.66 2.56 5.73 8.07 1062 0.17 1.48

0.698 with a p-value of 0.498, which implied that « does not affect the performance of the branch-and-bound algorithm. On
the other hand, the statistical test showed that the proportion of jobs from the second agent P is a significant factor with an
F-value of 26.061 and a p-value of close to 0. There was also an indication of no interaction effects between these two factors
since its corresponding F-value and p-value were 1.092 and 0.359. It was seen from Table 5 that the problems are easier to
solve when the value of P is smaller. The main reason was that the properties are more powerful in that case.

The main purpose of the fourth part of the experiment was to study the impact of the number of jobs to the performance
of the branch-and-bound algorithms, and the accuracy of the proposed simulated annealing algorithms. Three different job
sizes (n = 16, 20 and 24) were tested. Since problems were harder to solve if the due date factor T was smaller or R was larger,
and the proportion of jobs from the second agent P were also found to be the significant factors in the previous experiments,
they were also considered in the experiment. Two different values of 7 (0.25, 0.50), two values of R (0.5, 0.75) and three val-
ues of P (0.25, 0.50, 0.75) were used. We recorded the mean and standard deviation of the number of nodes and of the CPU
time (in seconds) for the branch-and-bound algorithm, while only recording the mean and standard deviation of the error
percentages of the SA algorithms, where the last one, denoted as the combined one, is the minimum value of the first six
proposed SA algorithms. The execution time of SA algorithm was not recorded since they were finished within a second.
For each condition, 100 replications were generated and the results were given in Tables 7 and 8. It was seen that the number
of nodes and execution time grows exponentially as the number of jobs increases, and the standard deviations of the num-
bers of nodes are many times of their mean numbers of nodes since the problem is NP-hard. It was also observed that the
branch-and-bound algorithm could solve problems of up to 24 jobs in a reasonable amount of time. The most time-consum-
ing case took an average of 486 s when (t,R, P) = (0.25, 0.75, 0.75). As to the performance of the SA algorithms, it was seen
that SAfp spr @and SAfLp . pp Perform better, followed by SAERY, oo and SAESR ¢op, and SAEb, o and SAfp e, have the worst
performance. It implied that the P movement yields a better result, and the EBSR yields the worst result overall. However,
there was no clear dominance relation between these six algorithms, since the error percentages of the combined SA were
much smaller than those of the six SA algorithms. Moreover, it was noted that average error percentage the combined SA

W.-C. Lee et al./Applied Mathematics and Computation 219 (2013) 10831-10841 10839
Table 9
The RDP and ny of the proposed simulated annealing algorithms for large job-sized problems.
n T R P SA[E)’Dmspr SAGES +SPT SAED B spr SAE’DD+EDD SAGES +EDD SAE]’?}?» EDD
RDP RDP RDP RDP RDP RDP
Mean SD ny Mean SD nr Mean SD nr Mean SD ny Mean SD nr Mean SD nr
100 025 050 025 015 021 39 121 077 2 367 178 0 008 017 59 285 174 0 528 412 O
050 173 179 23 083 098 35 1207 580 0 153 160 24 283 335 20 1532 881 0
075 522 933 37 383 401 25 3340 27.77 3 442 812 40 235 542 49 3305 3392 2
075 025 017 021 28 155 071 0 461 206 O0 004 009 73 239 132 0 674 388 0
050 091 1.04 17 052 073 41 1084 513 0 053 085 40 576 424 2 1452 775 0
0.75 048 2.67 62 0.01 0.07 94 1144 2189 39 048 270 61 0.01 0.08 94 10.00 1743 35
0.50 050 025 004 006 42 167 081 0O 699 253 0 002 005 60 193 1.07 0 1469 461 O
0.50 022 0.56 40 0.81 1.08 15 2434 604 O 030 067 45 321 288 5 2790 856 O
075 011 063 48 030 105 16 823 579 3 009 052 57 056 154 24 735 670 2
0.75 025 003 006 56 210 089 O 1011 254 0 003 006 54 219 100 0 16,64 513 O
050 013 021 44 099 081 2 2087 539 O 011 030 56 7.01 333 0 2465 841 O
075 060 165 46 1.10 178 15 23.14 867 0 094 227 42 454 392 6 2571 1196 0
200 025 050 025 053 032 1 011 015 48 268 113 0 008 012 51 412 167 0 3.01 145 0
050 396 193 1 016 042 83 1399 747 1 275 166 3 344 344 12 1277 693 O
075 7.01 993 16 345 403 18 2556 2328 2 6.02 871 31 258 459 33 2758 2233 1
075 025 045 036 6 065 027 1 353 134 0 001 004 93 346 125 0 375 199 0
050 315 157 1 004 013 89 1654 678 0 138 099 10 1069 451 0 1555 811 O
075 027 150 4 000 000 47 160 952 69 018 117 9 0.00 001 34 105 485 60
050 050 025 009 012 26 069 020 0 581 170 0 002 005 74 327 093 0 1194 424 0
050 059 056 13 021 049 61 2769 518 0 060 060 25 243 164 1 3595 740 O
075 012 048 24 024 064 38 1065 666 O 005 027 40 087 152 12 997 658 1
075 025 008 008 16 075 013 0 926 202 0 000 001 84 324 094 0 1519 423 0
050 034 034 19 016 019 37 2569 422 0 016 023 44 1078 3.10 0 3312 590 O
075 1.16 141 18 021 046 53 3128 876 0 122 142 22 615 457 7 3913 1125 O
Table 10
The CPU times (s) of the proposed simulated annealing algorithms for large job-sized problems.
n T R P SAgbp .spr SAEGD s spr SAEDD s spr SAEDD-EpD SAEGD epD SAEDD EpD
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
100 0.25 0.50 0.25 0.12 0.01 0.09 0.01 0.16 0.01 0.12 0.01 0.09 0.01 0.16 0.01
0.50 0.11 0.01 0.09 0.01 0.16 0.01 0.11 0.01 0.09 0.01 0.17 0.02
0.75 0.12 0.01 0.11 0.01 0.15 0.01 0.12 0.01 0.11 0.01 0.15 0.01
0.75 0.25 0.13 0.01 0.09 0.01 0.19 0.02 0.13 0.01 0.09 0.01 0.20 0.02
0.50 0.13 0.01 0.09 0.01 0.23 0.03 0.13 0.01 0.10 0.01 0.25 0.03
0.75 0.13 0.01 0.11 0.01 0.20 0.02 0.13 0.01 0.11 0.01 0.20 0.02
0.50 0.50 0.25 0.16 0.01 0.09 0.01 0.27 0.03 0.17 0.01 0.10 0.01 0.30 0.04
0.50 0.18 0.02 0.12 0.01 0.29 0.03 0.18 0.02 0.12 0.01 0.30 0.03
0.75 0.21 0.03 0.21 0.03 0.26 0.03 0.22 0.03 0.22 0.03 0.26 0.02
0.75 0.25 0.20 0.02 0.10 0.01 0.47 0.08 0.20 0.02 0.10 0.01 0.51 0.09
0.50 0.24 0.03 0.13 0.01 0.63 0.12 0.25 0.03 0.13 0.01 0.64 0.11
0.75 0.31 0.06 0.20 0.03 0.52 0.10 0.31 0.06 0.21 0.04 0.54 0.09
200 0.25 0.50 0.25 0.45 0.01 0.32 0.01 0.60 0.03 0.45 0.02 033 0.01 0.62 0.03
0.50 0.43 0.02 0.35 0.01 0.68 0.04 0.44 0.02 0.36 0.01 0.70 0.05
0.75 0.45 0.02 0.41 0.02 0.60 0.03 0.45 0.02 0.41 0.02 0.59 0.03
0.75 0.25 0.51 0.02 033 0.01 0.77 0.05 0.51 0.02 0.34 0.01 0.78 0.05
0.50 0.52 0.02 0.37 0.01 1.05 0.08 0.52 0.02 0.38 0.02 1.07 0.10
0.75 0.49 0.03 0.42 0.02 0.82 0.05 0.49 0.03 0.42 0.02 0.84 0.06
0.50 0.50 0.25 0.66 0.03 0.36 0.01 1.06 0.09 0.68 0.03 0.37 0.01 1.20 0.11
0.50 0.69 0.04 0.44 0.02 1.21 0.10 0.70 0.04 0.44 0.02 1.23 0.11
0.75 0.82 0.07 0.81 0.09 1.03 0.08 0.84 0.07 0.81 0.08 1.03 0.07
0.75 0.25 0.82 0.05 0.37 0.01 2.17 0.34 0.83 0.05 0.37 0.01 247 043
0.50 0.95 0.06 0.46 0.02 3.12 043 0.95 0.06 0.50 0.03 3.39 0.46
0.75 1.22 0.22 0.75 0.10 242 0.33 1.23 0.22 0.80 0.12 242 0.33

algorithm was less than 0.5% for all the tested cases, thus, it was recommended as the ultimate algorithm since all the SA can

be easily implemented.

The last part of the computational experiments was used to test the performance of the proposed SA algorithm when the
number of jobs is large. We tested two job sizes, i.e., n =100 and 200. We randomly generated 100 instances for each situ-
ation and we reported the results in Table 9. We recorded the mean and standard deviation of the relative deviation percent-
age (RDP). For instance, the RDP of the solution produced by SAgyp . <pr is calculated as

10840 W.-C. Lee et al./Applied Mathematics and Computation 219 (2013) 10831-10841

(V’E”Dmspr - v*) JV* x 100%

where Vipp e is the value of the weighted combination of the completion time and the maximum tardiness of jobs from the
first agent generated by SAfyp, spr and V* is the minimum value obtained from the six algorithms. In addition, we recorded
the number of times (nr) it yields the minimum value. The result was presented in Table 9. We also recorded the mean and
standard deviation of the execution time (in seconds) in Table 10. It was seen from Table 9 that SAf),. qpp has the best per-
formance in terms of mean RDP and the number of times it yields the minimum value. However, it did not perform well for

all the cases. For instance, the mean RDP and ny of SAfy,; . gpp, Were 2.75% and 3 when (n, 7, R, P) = (200,0.25,0.5,0.5), in this

case SAfon opr is the best with a mean RDP of 0.16% and ny = 83. Moreover, it was seen from Table 10 that the execution time

of the algorithms was only a few seconds. Thus, the combined simulated annealing algorithm is recommended when the
number of jobs is large.

6. Conclusions

In this paper we studied a two-agent single-machine scheduling problem where the objective is to minimize the
weighted combination of the completion time and maximum tardiness of the jobs of the first agent, given that no tardy jobs
are allowed for the second agent. We proposed a branch-and-bound algorithm to solve the problem, and a combined sim-
ulated annealing algorithm to find near-optimal solutions. We conducted computational experiments to evaluate the perfor-
mance of the proposed algorithms. The computational results showed that the branch-and-bound algorithm can solve
problems with up to 24 jobs in a reasonable amount of time. It also showed that the performance of the combined SA algo-
rithm is very good, yielding an average error percentage error of less than 0.5% for all the tested cases.

Acknowledgements

The authors are grateful to the editor and the referees, whose constructive comments have led to a substantial improve-
ment in the presentation of the paper. This work was supported by the NSC of Taiwan, under NSC 101-2221-E-035-021.

References

[1] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, second ed., Prentice Hall, New Jersey, 2002.
[2] B. Naderi, S.M.T. Fatemi Ghomi, M. Aminnayeri, M. Zandieh, Scheduling open shops with parallel machines to minimize total completion time, J.
Comput. Appl. Math. 235 (2011) 1275-1287.
[3] J.B. Wang, C.M. Wei, Parallel machine scheduling with a deteriorating maintenance activity and total absolute differences penalties, Appl. Math.
Comput. 217 (2011) 8093-8099.
[4] R. Rudek, The strong NP-hardness of the maximum lateness minimization scheduling problem with the processing-time based aging effect, Appl. Math.
Comput. 218 (2012) 6498-6510.
[5] Y.Y. Xiao, R.Q. Zhang, Q.H. Zhao, 1. Kaku, Permutation flow shop scheduling with order acceptance and weighted tardiness, Appl. Math. Comput. 218
(2012) 7911-7916.
[6] W.C. Lee, Z.S. Lu, Group scheduling with deteriorating jobs to minimize the total weighted number of late jobs, Appl. Math. Comput. 218 (2012) 8750-
8757.
[7]]J.M. Peha, Heterogeneous-criteria scheduling: minimizing weighted number of tardy jobs and weighted completion time, Comput. Oper. Res. 22 (1995)
1089-1100.
[8] K. Kim, B.C. Paulson, C]J. Petrie, V.R. Lesser, Compensatory negotiation for agent-based schedule coordination, CIFE working paper #55, Stanford
University, Stanford, CA, 1999.
[9] M.A. Kubzin, V.A. Strusevich, Planning machine maintenance in two-machine shop scheduling, Oper. Res. 54 (2006) 789-800.
[10] H. Balasubramanian, J.W. Fowler, A.B. Keha, M.E. Pfund, Scheduling interfering job sets on parallel machines, Eur. . Oper. Res. 199 (2009) 55-67.
[11] A. Agnetis, P.B. Mirchandani, D. Pacciarelli, A. Pacifici, Scheduling problems with two competing agents, Oper. Res. 52 (2004) 229-242.
[12] K.R. Baker, J.C. Smith, A multiple-criterion model for machine scheduling, J. Sched. 6 (2003) 7-16.
[13] JJ. Yuan, W.P. Shang, Q. Feng, A note on the scheduling with two families of jobs, J. Sched. 8 (2005) 537-542.
[14] T.CE. Cheng, C.T. Ng,].J. Yuan, Multi-agent scheduling on a single machine to minimize total weighted number of tardy jobs, Theor. Comput. Sci. 362
(2006) 273-281.
[15] C.T. Ng, T.C.E. Cheng,].J. Yuan, A note on the complexity of the problem of two-agent scheduling on a single machine, J. Comb. Optim. 12 (2006) 387-
394.
[16] A. Agnetis, D. Pacciarelli, A. Pacifici, Multi-agent single machine scheduling, Ann. Oper. Res. 150 (2007) 3-15.
[17] T.C.E. Cheng, C.T. Ng,].J. Yuan, Multi-agent scheduling on a single machine with max-form criteria, European Journal of Operational Research 188
(2008) 603-609.
[18] K.B. Lee, B.C. Choi, J.Y.T. Leung, M.L. Pinedo, Approximation algorithms for multi-agent scheduling to minimize total weighted completion time, Inf.
Process. Lett. 109 (2009) 913-917.
[19] A. Agnetis, G. Pascale, D. Pacciarelli, A Lagrangian approach to single-machine scheduling problems with two competing agents, J. Sched. 12 (2009)
401-415.
[20] J.Y.T. Leung, M. Pinedo, G.H. Wan, Competitive two agents scheduling and its applications, Oper. Res. 58 (2010) 458-469.
[21] G.H. Wan, S.R. Vakati, J.Y.T. Leung, M. Pinedo, Scheduling two agents with controllable processing times, Eur. J. Oper. Res. 205 (2010) 528-539.
[22] P. Liuy, L. Tang, X. Zhou, Two-agent group scheduling with deteriorating jobs on a single machine, Int. J. Adv. Manuf. Technol. 47 (2010) 657-664.
[23] P. Liu, X. Zhou, L. Tang, Two-agent single-machine scheduling with position- dependent processing times, Int. J. Adv. Manuf. Technol. 48 (2010) 325-
331.
[24] W.C. Lee, WJ. Wang, Y.R. Shiau, C.C. Wu, A single-machine scheduling problem with two-agent and deteriorating jobs, Appl. Math. Modell. 34 (2010)
3098-3107.
[25] C.C. Wu, S.K. Huang, W.C. Lee, Two-agent scheduling with learning consideration, Comput. Ind. Eng. 61 (2011) 1324-1335.
[26] W.C. Lee, S.K. Chen, C.C. Wu, Branch-and-bound and simulated annealing algorithms for a two-agent scheduling problem, Expert Syst. Appl. 37 (2010)
6594-6601.

http://refhub.elsevier.com/S0096-3003(13)00545-6/h0005
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0005
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0010
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0010
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0015
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0015
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0020
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0020
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0025
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0025
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0030
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0030
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0035
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0035
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0045
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0050
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0055
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0060
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0065
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0070
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0070
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0075
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0075
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0080
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0085
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0085
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0090
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0090
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0095
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0095
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0100
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0105
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0110
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0115
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0115
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0120
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0120
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0125
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0130
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0130

W.-C. Lee et al./Applied Mathematics and Computation 219 (2013) 10831-10841 10841

[27] T.C.E. Cheng, W.H. Wu, S.R. Cheng, C.C. Wu, Two-agent scheduling with position-based deteriorating jobs and learning effects, Appl. Math. Comput. 217
(2011) 8804-8824.

[28] A. Agnetis, Combinatorial models for multi-agent scheduling problems, in: Proceedings of the 12th International Conference Devoted to Project
Management and Scheduling, Tours, France, 2010, pp. 37-40.

[29] C.H. Liu, Using genetic algorithms for the coordinated scheduling problem of a batching machine and two-stage transportation, Appl. Math. Comput.
217 (2011) 10095-10104.

[30] T.M. GwizdaHa, The role of crossover operator in the genetic optimization of magnetic models, Appl. Math. Comput. 217 (2011) 9368-9379.

[31] R. Thangaraj, M. Pant, A. Abraham, P. Bouvry, Particle swarm optimization: hybridization perspectives and experimental illustrations, Appl. Math.
Comput. 217 (2011) 5208-5226.

[32] C.Y. Low, CJ. Hsu, C.T. Su, A modified particle swarm optimization algorithm for a single-machine scheduling problem with periodic maintenance,
Expert Syst. Appl. 37 (2010) 6429-6643.

[33] A. Azadeh, M.S. Sangari, A.S. Amiri, A particle swarm algorithm for inspection optimization in serial multi-stage processes, Appl. Math. Modell. 36
(2012) 1455-1464.

[34] S. Kirkpatrick, C. Gelatt, M. Vecchi, Optimization by simulated annealing, Science 220 (1983) 671-680.

[35] D.Ben-Arieh, 0. Maimon, Annealing method for PCB assembly scheduling on two sequential machines, Int. J. Comput. Integr. Manuf. 5 (1992) 361-367.

http://refhub.elsevier.com/S0096-3003(13)00545-6/h0135
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0135
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0145
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0145
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0150
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0155
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0155
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0160
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0160
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0165
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0165
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0170
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0175

	A single-machine bi-criterion scheduling problem with two agents
	1 Introduction
	2 Problem description
	3 A branch-and-bound algorithm
	3.1 Dominance properties
	3.2 A lower bound
	3.3 Description of the branch-and-bound algorithm

	4 The simulated annealing algorithm
	5 Computational experiments
	6 Conclusions
	Acknowledgements
	References

