
Applied Mathematics and Computation 219 (2013) 10831–10841
Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc
A single-machine bi-criterion scheduling problem with two
agents
0096-3003/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.amc.2013.05.025

⇑ Corresponding author.
E-mail address: wclee@fcu.edu.tw (W.-C. Lee).
Wen-Chiung Lee a,⇑, Yu-Hsiang Chung b, Zong-Ren Huang a

a Department of Statistics, Feng Chia University, Taichung, Taiwan
b Department of Industrial & Engineering Management, National Chiao Tung University, Hsinchu, Taiwan

a r t i c l e i n f o
Keywords:
Scheduling
Total completion time
Maximum tardiness
Two-agent
Single-machine
a b s t r a c t

The multiple-agent scheduling problems have received increasing attention recently. How-
ever, most of the research focuses on studying the computational complexity of the intrac-
table cases or examining problems with a single criterion. Often a decision maker has to
decide the schedule based on multiple criteria. In this paper, we consider a single machine
problem where the objective is to minimize a linear combination of the total completion
time and the maximum tardiness of jobs from the first agent given that no tardy jobs
are allowed for the second agent. We develop a branch-and-bound algorithm and several
simulated annealing algorithms to search for the optimal solution and near-optimal solu-
tions for the problem, respectively. Computational experiments show that the proposed
branch-and-bound algorithm could solve problems of up to 24 jobs in a reasonable amount
of time and the performance of the combined simulated annealing algorithm is very good
with an average error percentage of less than 0.5% for all the tested cases.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

In most scheduling models, there is a common goal to minimize for all the jobs [1–6]. However, jobs might be from dif-
ferent customers which have their own goals to pursue. For instance, Peha [7] gave a telecommunication service example
where various types of packets and service compete for the use of a commercial satellite, and the problem is to satisfy
the service requirements of individual agents to transfer voice, image and text files for their clients. Kim et al. [8] pointed
out that in project scheduling the problem is concerned with negotiation to resolve conflicts whenever the agents find their
own schedules unacceptable. Kubzin and Strusevich [9] presented another example that maintenance operations complete
with the real jobs for machine occupancy on maintenance planning. Balasubramanian et al. [10] provided the manufacturing
examples where the agents belong to different subjects competing for the usage of machines.

Agnetis et al. [11] and Baker and Smith [12] were the pioneers that brought the multi-agent problems into scheduling
field. For more articles with multiple-agent scheduling, readers can refer to [13–23].Since then, many researchers have de-
voted efforts to this area. Recently, Lee et al. [24] studied a two-agent problem with deteriorating jobs on a single machine to
minimize the total weighted completion time of jobs from agent 1 given that no tardy jobs are allowed for agent 2. In their
model, the actual job processing time is aj þ bt if its starting time is t where aj is the normal processing time of job j, and b is
the common deterioration rate. They provided the branch-and-bound algorithm to search for the optimal solution for prob-
lems with up to 20 jobs. Moreover, they provided three heuristic algorithms based on linear combinations of processing
times and weights for jobs from agent 1 and linear combinations of processing times and due dates for jobs from agent 2.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.amc.2013.05.025&domain=pdf
http://dx.doi.org/10.1016/j.amc.2013.05.025
mailto:wclee@fcu.edu.tw
http://dx.doi.org/10.1016/j.amc.2013.05.025
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


10832 W.-C. Lee et al. / Applied Mathematics and Computation 219 (2013) 10831–10841
Wu et al. [25] considered a single-machine scheduling problem with learning effects where the objective is to minimize the
total tardiness of jobs from the first agent with the constraint that no tardy job is allowed for the second agent. The actual
processing time of job j under the model is pjr

a if it is scheduled in the rth position where pj is the processing time of job j, a is
learning effect and a � 0. The proposed branch-and-bound algorithm could solve problems with up to 24 jobs optimally, and
the proposed heuristic algorithms sort jobs according to the linear combination of the job processing times and the due
dates. They presented the computational experiment for their heuristics with 50 jobs. Lee et al. [26] studied a two-agent
scheduling problem on two-machine permutation flowshop where the objective is to minimize the total tardiness of jobs
from the first agent given that no tardy job of the second agent is allowed. They provided a branch-and-bound algorithm
to solve problems with 12 jobs optimally. In addition, they presented the computational results of two simulated annealing
algorithms for problems with 25, 50 and 75 jobs. Cheng et al. [27] considered a two-agent single-machine scheduling prob-
lem with deteriorating jobs and learning effects simultaneously. The objective is to minimize the total weighted completion
time of jobs from the first agent with the restriction that no tardy job is allowed for the second agent. They assumed that jobs
from the first agent have a position-based learning effect, and jobs from the second agent have a position-based deteriorating
effect. Their branch-and-bound algorithm could present the optimal solutions for problems with up to 16 jobs. Moreover,
they conducted a computational experiment for the proposed simulated algorithm for problems with 40 and 50 jobs.

Most of the research on multiple-agent focuses on studying the computational complexity of the intractable cases or
examining problems of minimizing a single criterion of one agent given a bound of a single criterion of the other agent. How-
ever, a decision maker has to decide the schedule based on many aspects. For instance, the manufacturer might be interested
in reducing the inventory cost as well as reducing the impact of late delivery. To the best of our knowledge, multi-agent
scheduling problem with the consideration of multiple objectives for the same agent is never been discussed in literature.
Since the total completion time is commonly used to represent the internal efficiency while the maximum tardiness is com-
monly used to represent the external efficiency. We consider these two criteria in this paper. That is, we study a two-agent
scheduling problem on a single machine where the objective is to minimize the weighted combination of the total comple-
tion time and the maximum tardiness of jobs from one agent given that the number of tardy jobs from the other agent is
zero. The rest of the paper is organized as follows. In the next section we describe the formulation of our problem. In Sec-
tion 3, we construct a branch-and-bound algorithm incorporating several elimination rules and a lower bound to speed up
the search for the optimal solution. In Section 4, several simulated annealing algorithms are proposed to solve this problem.
In Section 5, a computational experiment is conducted to evaluate the efficiency of the branch-and-bound algorithm and the
performance of the proposed heuristic algorithms. A conclusion is given in the last section.

2. Problem description

The problem description is given as follows. There are n jobs ready to be processed on a single machine. Each job belongs
to either one of the two agents AG0 or AG1. For each job j, there is a processing time pj, a due date dj, and an agent code Ij,
where Ij ¼ 0 if j 2 AG0 or Ij ¼ 1 if j 2 AG1. Under a schedule S, let CjðSÞ be the completion time of job j,
TjðSÞ ¼maxf0;CjðSÞ � djg be the tardiness of job j, TmaxðSÞ ¼max1�j�nfTjðSÞð1� IjÞg be the maximum tardiness of jobs from
agent AG0 under schedule S, and UjðSÞ ¼ 1 if TjðSÞ > 0 and zero otherwise. The objective of this paper is to find a schedule that
minimizes the weight combination of the total completion time and the maximum tardiness of jobs from AG0 with the
restriction that no tardy jobs from AG1 are allowed. Using the conventional three fields notation, this problem is denoted
as 1j

P
UjIj ¼ 0ja

P
Cjð1� IjÞ þ ð1� aÞTmax where 0 < a < 1.

3. A branch-and-bound algorithm

Agnetis [28] pointed out that the two-agent problem is NP-hard if both the agents have the sum-type objectives. Thus, the
branch-and-bound algorithm is developed to obtain the optimal solution.

3.1. Dominance properties

In this subsection, we first provide several adjacent dominance properties. Suppose that S and S0 are two job schedules
and the difference between S and S0 is a pairwise interchange of two adjacent jobs i and j. That is, S ¼ ðp; i; j; p0Þ and
S0 ¼ ðp; j; i; p0Þ, where p and p0 each denote a partial sequence. In addition, let t denote the completion time of the last
job in p and B be the maximum tardiness of jobs from agent AG0 under partial sequence p, that is, B ¼maxk2p\AG0fTkðSÞg.
The completion times of jobs i and j in S are
CiðSÞ ¼ t þ pi ð1Þ
and
CjðSÞ ¼ t þ pi þ pj; ð2Þ
whereas the completion times of jobs j and i in S0 are
CjðS0Þ ¼ t þ pj; ð3Þ



W.-C. Lee et al. / Applied Mathematics and Computation 219 (2013) 10831–10841 10833
and
CiðS0Þ ¼ t þ pj þ pi: ð4Þ
Property 1. If jobs i; j 2 AG0, pi < pj, di < dj and t � B > maxfdi � pi; dj � pjg, then S dominates S0.

Proof. Since jobs in p are processed in the same order in both S and S0, we have from Eqs. (2) and (4) that
CkðSÞ ¼ CkðS0Þ if job k 2 p or p0:
Thus, to show S dominates S0, it suffices to show
aCiðSÞ þ aCjðSÞ þ ð1� aÞTmaxðSÞ < aCjðS0Þ þ aCiðS0Þ þ ð1� aÞTmaxðS0Þ: ð5Þ
Since t � B > maxfdi � pi; dj � pjg, we have
TiðSÞ ¼ t þ pi � di; ð6Þ

TjðSÞ ¼ t þ pi þ pj � dj; ð7Þ

TjðS0Þ ¼ t þ pj � dj; ð8Þ
and
TiðS0Þ ¼ t þ pj þ pi � di: ð9Þ
To show Eq. (5) hold, we divide it into the following three cases:
Case I: TmaxðSÞ ¼ TiðSÞ. From pi < pj and Eqs. (6) and (9), we have
aCiðSÞ þ aCjðSÞ þ ð1� aÞTmaxðSÞ ¼ aCiðSÞ þ aCjðSÞ þ ð1� aÞTiðSÞ < aCjðS0Þ þ aCiðS0Þ þ ð1� aÞTiðS0Þ
� aCjðS0Þ þ aCiðS0Þ þ ð1� aÞTmaxðS0Þ:
Case II: TmaxðSÞ ¼ TjðSÞ. From pi < pj, di < dj and Eqs. (7) and (9), we have
aCiðSÞ þ aCjðSÞ þ ð1� aÞTmaxðSÞ ¼ aCiðSÞ þ aCjðSÞ þ ð1� aÞTjðSÞ < aCjðS0Þ þ aCiðS0Þ þ ð1� aÞTiðS0Þ
� aCjðS0Þ þ aCiðS0Þ þ ð1� aÞTmaxðS0Þ:
Case III: TmaxðSÞ ¼ TkðSÞ for some k 2 p or p0. From pi < pj, we have
aCiðSÞ þ aCjðSÞ þ ð1� aÞTmaxðSÞ ¼ aCiðSÞ þ aCjðSÞ þ ð1� aÞTkðSÞ < aCjðS0Þ þ aCiðS0Þ þ ð1� aÞTkðS0Þ
� aCjðS0Þ þ aCiðS0Þ þ ð1� aÞTmaxðS0Þ:
Thus, S dominates S0 since Eq. (5) holds for all the three cases.
Property 2. If jobs i; j 2 AG0, pi < pj, and di < t þ pi � B � dj � pj, then S dominates S0.
Property 3. If jobs i; j 2 AG0, pi < pj, t þ pi � B � di, and t þ pi þ pj � B � dj, then S dominates S0.
Property 4. If jobs i; j 2 AG0, pi < pj, aðpi � pjÞ þ ð1� aÞðt þ pi þ pj � dj � BÞ < 0, and dj � pi < t þ pj � B �minfdi � pi; djg,
then S dominates S0.
Property 5. If jobs i; j 2 AG0, pi < apj and dj < t þ pj � B � di � pi, then S dominates S0.
Property 6. If jobs i; j 2 AG0, pi < pj, di < dj, 0 � B� ðt þ pj � djÞ < pi, and t þ pi � B > di, then S dominates S0.
Property 7. If jobs i; j 2 AG0, pi < apj, and t � B > maxfdi � pi; dj � pjg, then S dominates S0.
Property 8. If jobs i; j 2 AG0, pi < pj, aðpi � pjÞ þ ð1� aÞðdi � djÞ < 0, t þ pj � B > dj, and 0 � B� ðt þ pi � diÞ < pj, then S dom-
inates S0.
Property 9. If jobs i; j 2 AG0, pi < apj, 0 � B� ðt þ pi � diÞ < pj, t þ pj � B > dj and di � pi > dj, then S dominates S0.



10834 W.-C. Lee et al. / Applied Mathematics and Computation 219 (2013) 10831–10841
Property 10. If jobs i; j 2 AG0, pi < pj, t þ pi þ pj � B > dj, t � B � minfdi � pi; dj � pjg, and di < dj, then S dominates S0.
Property 11. If job i 2 AG0, job j 2 AG1, and t þ pi þ pj � dj � 0, then S dominates S0.

To further facilitate the search process, we provide a proposition to determine the feasibility of a partial schedule and a
proposition to determine the ordering of the remaining unscheduled jobs. Assume that ðPS;USÞ is a sequence of jobs where
PS is the scheduled part with k jobs and US is the unscheduled part with (n–k) jobs. It is assumed among the unscheduled
jobs, there are n0 jobs from agent AG0 and n1 jobs from agent AG1 where n0 þ n1 ¼ n� k. Let S� ¼ ðPS�;US�Þ be a sequence in
which n0 jobs from agent AG0 are scheduled first in the shortest processing time (SPT) rule, followed by n1 jobs from agent

AG1 in the earliest due date (EDD) rule. In addition, let d1
ð1Þ � d1

ð2Þ � . . . � d1
ðn1Þ denote the due dates of the remaining n1 jobs

from agent AG1 when they are arranged in the EDD rule. Moreover, let p1
ð1Þ; p

1
ð2Þ; . . . ; p1

ðn1Þ denote their corresponding process-
ing times and C½k� be the completion times of the last job in PS.

Proposition 1. If there is a unscheduled job j from agent AG1 such that C½k� þ
Pj

i¼1p1
ðiÞ � d1

ðjÞ > 0, then sequence (PS;US) is
infeasible.
Proposition 2. If maxk2PS�\AG0
fTkðS�Þg � maxk2PS\AG0fTkðS�Þg and

P
k2PS�\AG1

UkðS�Þ ¼ 0, then S� ¼ ðPS�;US�Þ dominates sequences
of the type ðPS;USÞ.
3.2. A lower bound

The performance of the branch-and-bound algorithm also depends on the efficiency of the lower bound. Assume that
S ¼ ðPS;USÞ be a schedule in which PS is the scheduled part with k jobs and US is the unscheduled part with (n–k) jobs.
Let t be the completion time of the last job in partial schedule PS, and TPS

max be the maximum tardiness of jobs from agent

AG0 in PS. That is, TPS
max ¼maxj2AG0\PSf0;CjðSÞ � djg. In addition, it is assumed that among the unscheduled jobs, there are

n0 jobs from agent AG0 and n1 jobs from agent AG1. Moreover, let d1
ð1Þ � d1

ð2Þ � . . . � d1
ðn1Þ denote the due dates of the remain-

ing n1 jobs from agent AG1 when they are arranged in the EDD rule and p1
ð1Þ; p

1
ð2Þ; . . . ; p1

ðn1Þ denote their associated processing

times. In addition, let p0
ð1Þ � p0

ð2Þ � . . . � p0
ðn0Þ denote the processing times of the remaining n0 jobs from agent AG0 when they

are arranged in the SPT rule and d0
ð1Þ � d0

ð2Þ � . . . � d0
ðn0Þ denote the due dates of the remaining n0 jobs from agent AG0 when

they are arranged in the EDD rule. Note that p1
ðjÞ and d1

ðjÞ are from the same jobs, but p0
ðjÞ and d0

ðjÞ are not necessarily from the

same job. We then construct n0 pseudo jobs from agent AG0 such that job j from agent AG0 has processing time p0
ðjÞ and due

date d0
ðjÞ for j = 1, . . . ,n0. The basic idea to develop the lower bound is (1) to complete jobs from agent AG1 as late as possible

without violating the assumption of no tardy jobs from agent AG1 are allowed, and (2) to insert n0 pseudo jobs from agent
AG0 into the machine available periods where job preemption is allowed for jobs from agent AG0. The procedures are divided
into two phases, and given as follows.

Phase I:
Step 1: Set i ¼ n1, st ¼ 1, and tn1þ1 ¼ 1.
Step 2: If d1

ðiÞ < st, set ti ¼ d1
ðiÞ � p1

ðiÞ. Otherwise, set ti ¼ st � p1
ðiÞ.

Step 3: Set st ¼ ti and i ¼ i� 1. If i � 1, go to Step 2.
Step 4: Output ðt1; t2; . . . ; tn1 ; tn1þ1Þ.
Phase II:
Step 1: Set i ¼ 1, and k ¼ 0.
Step 2: Set k ¼ kþ 1.
Step 3: If t þ p0

ðiÞ > tk, set p0
ðiÞ ¼ p0

ðiÞ � ðtk � tÞ, t ¼ tk þ p1
ðkÞ and go to Step 2. Otherwise, set t ¼ t þ p0

ðiÞ and C0
ðiÞ ¼ t.

Step 4: If i < n0, set i ¼ iþ 1 and go to Step 3.

Step 5: Output C0
ð1Þ;C

0
ð2Þ; . . . ;C0

ðn0Þ

� �
.

The purpose of Phase I is to calculate tj, the latest time to start processing job j from agent AG1 without violating the no-
tardy jobs assumptions, whereas the main goal of Phase II is to schedule jobs from agent AG0 into the machine available peri-
ods, and the output C0

ðjÞ is the completion time for pseudo job j. Thus, the lower bound of the weighted combination of the

total completion time and the maximum tardiness for sequence S is LBðSÞ ¼ a
Pk

i¼1C½i�ðPSÞð1� I½i�Þ þ
Pn0

i¼1C0
ðiÞ

h i
þ

ð1� aÞmaxfTPS
max; max

1�i�n0

fC0
ðiÞ � d0

ðiÞgg.



W.-C. Lee et al. / Applied Mathematics and Computation 219 (2013) 10831–10841 10835
3.3. Description of the branch-and-bound algorithm

A depth-first search is adopted in the branching procedure. In this paper, the algorithm assigns jobs in a forward manner
starting from the first position. We first implement the proposed SA algorithms (discussed in the next section) to obtain a
sequence as the initial incumbent solution. In the branching tree, we systematically work down the tree. We apply Propo-
sition 1, Properties 1 to 11 to eliminate the dominated partial sequence. For the non-dominated nodes, we apply Proposition
2 to determine the sequence of the unscheduled jobs or compute the lower bound on the weighted combination of the total
completion time and the maximum tardiness of jobs from agent AG0. If the lower bound on the objective function for the
partial sequence is greater than the incumbent solution, eliminate that node. If the objective function of the completed se-
quence is less than the incumbent solution, replace it as the new solution. The procedure is repeated until we explore the
whole tree.

4. The simulated annealing algorithm

Evolutionary heuristic algorithms have been successfully applied to solve many combinatory optimization problems [29–
33]. In this paper, the simulated annealing (SA) algorithm [34] is utilized to derive a near-optimal solution for the proposed
problem. The essential elements of the SA algorithm included:

(1) Initial sequence: In this study, two initial sequences are used. In the first initial sequence, jobs from agent AG1 are first
placed according to the EDD rule, followed by jobs from agent AG0 according to the SPT first rule, denoted as SAEDDþSPT in later
analysis. In the second initial sequence, jobs from agent AG1 are first placed according to the EDD rule, followed by jobs from
agent AG0 in the EDD rule, denoted as SAEDDþEDD.

(2) Neighborhood generation: Three neighborhood generation methods are analyzed in this study. They are the pairwise
interchange (PI), the extraction and forward-shifted reinsertion (EFSR), and the extraction and backward-shifted reinsertion
(EBSR) movements. Depending on the initial sequences and the neighborhood generation movements, there are six SA
algorithms considered in this study, and denoted as SAPI

EDDþSPT, SAEFSR
EDDþSPT, SAEBSR

EDDþSPT, SAPI
EDDþEDD, SAEFSR

EDDþEDD, and SAEBSR
EDDþEDD.

(3) Acceptance probability: The probability of acceptance is generated from an exponential distribution,
Table 1
Results

s

0.25

0.50

0.75
P acceptð Þ ¼ exp �k� DTC=hð Þ;
where DTC is the change in the objective function [35]. After some pretests, we choose h ¼ 5000. If the weight combination of
the total completion time and the maximum tardiness of jobs from agent AG0 increases, the new sequence is accepted with
probability r, where r is a uniform random number between 0 and 1.

(4) Stopping condition: According to our pretests, the procedure is stopped after 300n iterations, where n is the number
of jobs.

5. Computational experiments

In this section, the computational experiments were conducted to evaluate the performance of the branch-and-bound
and the SA algorithms. They were coded in Fortran 90 and run on a personal computer with 3.20 GHz Intel(R) Core(TM)
i5 CPU 650 3.21 GHz and 3.45 GB RAM under Windows XP. The job processing times were generated from a uniform distri-
bution over the integers 1–100 and the due dates of jobs were generated from another uniform distribution over the integers
between Tð1� s� R=2Þ and Tð1� sþ R=2Þ, where R is the due date range factor, s is the tardiness factor, and T is the total
processing times of all the jobs.

The computational experiment consisted of five parts. In the first part of the experiment, the job size was fixed at 10, the
weighted combination of the total completion time and the maximum tardiness a was 0.5, and the proportion of jobs from
agent AG1 was fixed at 50% to test the efficiency of the dominance properties and the lower bound separately, and the results
are compared with the enumeration method. Eight combinations of ðs;RÞ values were tested, i.e. (0.25, 0.25), (0.25, 0.50),
of the branch-and-bound algorithm and enumeration method with n = 10, P = 0.5, a=0.5.

R BB_L Number of nodes BB_P Number of nodes BB_P + L Number of nodes Enumeration Number of nodes

Mean SD Mean SD Mean SD

0.25 111755.8 85379.2 299.5 134.5 295.1 129.5 3628800
0.50 79758.3 61617.9 299.6 132.8 273.9 104.5 3628800
0.75 51875.5 62046.2 310.1 389.7 247.4 229.5 3628800
0.25 10078.9 14995.6 107.7 74.7 104.1 72.1 3628800
0.50 9408.5 16062.1 142.6 156.9 136.2 151.5 3628800
0.75 12953.7 29669.8 164.0 167.9 156.5 152.9 3628800
0.25 812.5 1635.7 41.6 24.0 41.5 24.0 3628800
0.50 772.8 1155.4 45.5 33.7 44.8 32.8 3628800



Table 2
The performance of the branch-and-bound algorithm with n = 12, P = 0.5, a=0.5.

s R Number of nodes CPU time

Mean SD Mean SD

0.25 0.25 952.26 443.83 0.006 0.008
0.5 961.62 442.47 0.005 0.007
0.75 1239.66 1704.13 0.008 0.011

0.5 0.25 300.98 193.29 0.001 0.004
0.5 465.16 447.05 0.003 0.006
0.75 479.26 440.50 0.003 0.006

0.75 0.25 110.99 81.45 0.001 0.003
0.5 117.65 159.42 0.001 0.004

Table 3
One-way ANOVA table for the number of nodes with n = 12, P = 0.5, a=0.5.

Source SS DF MS F p-value

Due date factors 125427020 7 17918146 38.122 0.000
Error 372253902 792 470018
Total 497680922 799

Table 4
Two-way ANOVA table for the number of nodes with n = 12, P = 0.5, a=0.5.

Source SS DF MS F p-value

Factor (s) 60683304 1 60683304 97.664 0.000
Factor (R) 5538663 2 2769331 4.457 0.012
Interaction 1759012 2 879506 1.415 0.244
Error 369081068 594 621349
Total 437062047 599

10836 W.-C. Lee et al. / Applied Mathematics and Computation 219 (2013) 10831–10841
(0.25, 0.75), (0.5, 0.25), (0.5, 0.50), (0.5, 0.75), (0.75, 0.25), and (0.75, 0.50). The branch-and-bound algorithm with the dom-
inance properties is denoted by BB_P, and the branch-and-bound algorithm with only the lower bound is denoted by BB_L,
while the branch-and-bound algorithm with the properties and the lower bound is denoted by BB_P + L. The average and
standard deviation of the number of nodes were reported for the branch-and-bound algorithms, while the number of nodes,
10!, was given for the enumeration method. 100 replications were randomly generated for each condition and the results
were presented in Table 1. It is seen that the dominance properties and the lower bound benefit the searching process in
terms of the number of nodes explored. Thus, the branch-and-bound algorithm with the properties and the lower bound
was used in later analysis.

In the second part of the experiment, the effects of the due date factors s and R to the performance of the branch-and-
bound algorithm were studied. The values of parameters were the same as those in Table 1, except the job size was fixed at
12. The mean and the standard deviation of the number of nodes and the mean and the standard deviation of the CPU time
(in seconds) were reported for the branch-and-bound algorithm. 100 replications were randomly generated for each case
and the results were presented in Table 2. A one-way analysis of variance (ANOVA) on the number of nodes of the
branch-and-bound algorithm was constructed and given in Table 3. The resulting F-value was 38.122 with a p-value of close
to 0, which indicated that the due date factors s or R have statistically significant effects on the difficulty of the problem. To
further analyze the impact of s and R, a two-way ANOVA on the number of nodes for the first six cases was conducted and
the results were presented in Table 4. It indicated that s is a significant factor since its resulting F-value is 97.664 and a p-
value of close to 0. In addition, the impact of R is significant with a resulting F-value of 4.457 and a p-value of 0.012. However,
there is no significant indication of the interaction effects between s and R since its resulting F-value is 1.415 and its asso-
ciated p-value is 0.244. A closer look at Table 2 revealed that the problems are harder to solve as the value of s is smaller. The
main reason is that Proposition 1 and the lower bound are less powerful in that case. In addition, it was noted that the case
ðs;RÞ ¼ ð0:25;0:75Þ has the most number of nodes with an average of 1239.66 among the eight cases. Thus, it was used in the
third part of the experiment.

Similar to the second part of the experiment, the third part was to test the effects of the coefficient a and the proportion of
jobs from the second agent P. The job size was fixed at 12, and ðs;RÞ was (0.25, 0.75). Three different values of a (0.25, 0.5,
0.75), and of P (0.25, 0.50, 0.75) were used. 100 replications were randomly generated for each case and the results were
presented in Table 5. A two-way ANOVA on the number of nodes was utilized to test the effects of the parameters to the
performance of the branch-and-bound algorithm, and the result was reported in Table 6. The resulting F-value of a was



Table 5
The performance of the branch-and-bound algorithm with n = 12 and s = 0.25, R = 0.75.

P a Number of nodes CPU time

Mean SD Mean SD

0.25 0.25 566.6 667.1 0.004 0.007
0.5 474.3 392.7 0.002 0.006
0.75 453.9 374.0 0.003 0.006

0.5 0.25 1136.4 1113.0 0.006 0.009
0.5 1239.7 1704.1 0.008 0.011
0.75 1234.9 1576.9 0.007 0.011

0.75 0.25 958.7 1324.8 0.005 0.009
0.5 737.6 945.6 0.005 0.008
0.75 1109.8 1765.0 0.006 0.012

Table 6
ANOVA table for the number of nodes with n = 12 and s = 0.25, R = 0.75.

Source SS DF MS F p-value

Factor (P) 76059350 2 38029675 26.061 0.000
Factor (a) 2037967 2 1018983 0.698 0.498
Interaction 6371767 4 1592942 1.092 0.359
Error 1300175652 891 1459232
Total 1384644736 899

Table 7
The performance of the branch-and-bound algorithm (a=0.5).

n s R P Number of nodes CPU time

Mean SD Mean SD

16 0.25 0.50 0.25 3654.0 7230.1 0.03 0.06
0.50 14300.7 27645.3 0.12 0.22
0.75 28873.3 43994.4 0.27 0.37

0.75 0.25 5045.4 7508.4 0.04 0.06
0.50 15669.7 18501.6 0.13 0.15
0.75 12879.9 31172.2 0.12 0.27

0.50 0.50 0.25 15844.5 44713.8 0.12 0.35
0.50 5679.1 6499.3 0.05 0.05
0.75 2137.1 2936.6 0.02 0.03

0.75 0.25 18269.0 56922.6 0.13 0.42
0.50 15293.9 23433.1 0.12 0.18
0.75 7006.8 16149.6 0.06 0.14

20 0.25 0.50 0.25 16499.3 21739.4 0.19 0.24
0.50 187894.2 436495.2 2.17 4.93
0.75 653635.3 1258141.5 8.85 15.88

0.75 0.25 111090.4 511446.1 1.13 5.11
0.50 272520.9 560226.2 3.09 6.23
0.75 317470.9 805000.9 4.35 10.93

0.50 0.50 0.25 479755.2 3290233.5 5.30 37.44
0.50 200706.0 539656.7 2.21 5.82
0.75 36039.8 93098.6 0.50 1.30

0.75 0.25 383251.0 1124434.6 4.08 12.01
0.50 843572.2 3247301.9 9.12 36.53
0.75 112184.1 395111.2 1.41 4.95

24 0.25 0.50 0.25 252867.7 730185.0 3.58 10.20
0.50 2182444.9 5099456.3 32.73 73.43
0.75 10881767.2 20926257.4 198.34 362.17

0.75 0.25 739842.0 1664482.6 10.44 23.52
0.50 12731415.3 28723857.3 186.32 412.87
0.75 28187420.7 110415273.5 486.52 1862.78

0.50 0.50 0.25 21904170.1 94524057.3 299.96 1299.99
0.50 7246913.0 19021221.9 100.86 266.49
0.75 519383.6 1598286.6 8.94 25.94

0.75 0.25 7114554.9 17944690.0 95.45 245.22
0.50 22155286.8 75160846.0 321.92 1102.85
0.75 5764492.3 22341614.3 100.18 375.64

W.-C. Lee et al. / Applied Mathematics and Computation 219 (2013) 10831–10841 10837



Table 8
The error percentages of the proposed simulated annealing algorithms.

n s R P SAPI
EDDþSPT SAEFSR

EDDþSPT SAEBSR
EDDþSPT SAPI

EDDþEDD SAEFSR
EDDþEDD SAEBSR

EDDþEDD
CombinedSA

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

16 0.25 0.50 0.25 0.25 0.87 1.60 2.76 8.09 7.07 0.13 0.32 1.28 2.09 8.22 7.89 0.04 0.07
0.50 0.25 1.06 5.38 8.57 14.57 14.99 0.32 1.46 4.09 7.01 11.21 13.38 0.02 0.06
0.75 0.98 5.00 5.78 9.04 14.62 29.03 1.50 6.48 6.18 12.68 12.54 27.20 0.02 0.20

0.75 0.25 0.14 0.26 0.69 1.45 7.76 9.19 0.12 0.26 0.74 1.29 5.64 5.08 0.04 0.12
0.50 0.20 0.67 2.06 4.10 12.15 20.18 0.17 0.66 2.42 5.13 8.15 9.89 0.03 0.09
0.75 0.12 0.54 1.63 6.26 4.62 12.04 0.58 4.70 0.62 3.32 5.65 18.90 0.00 0.00

0.50 0.50 0.25 0.08 0.13 0.61 1.73 9.68 10.16 0.10 0.15 0.80 1.90 4.91 5.57 0.03 0.06
0.50 0.16 1.11 1.20 2.94 9.10 12.99 0.21 1.39 1.04 2.71 5.22 8.00 0.02 0.06
0.75 0.17 1.66 0.18 1.65 0.81 3.36 0.17 1.65 0.33 2.16 0.81 3.63 0.16 1.65

0.75 0.25 0.14 0.28 0.79 1.28 6.71 9.95 0.10 0.21 0.62 1.02 4.59 4.51 0.03 0.11
0.50 0.29 1.14 1.62 3.26 7.26 11.31 0.20 0.82 1.85 3.07 6.04 9.06 0.01 0.04
0.75 0.49 2.65 1.42 6.23 3.99 7.08 0.49 2.64 1.22 4.18 2.93 5.98 0.10 0.95

20 0.25 0.50 0.25 0.13 0.27 1.30 2.13 10.34 8.06 0.16 0.40 1.49 2.27 10.00 10.01 0.04 0.08
0.50 0.74 2.51 3.71 5.36 9.00 8.35 0.65 2.56 4.84 5.73 10.28 10.64 0.13 1.13
0.75 1.63 6.52 7.69 11.29 10.34 14.33 1.82 7.34 4.14 7.60 11.97 19.44 0.02 0.12

0.75 0.25 0.10 0.17 1.07 1.64 10.19 8.91 0.11 0.20 0.94 1.62 8.85 8.45 0.04 0.07
0.50 0.58 2.43 2.66 5.74 8.38 8.82 0.34 1.26 2.66 4.66 9.97 13.18 0.12 0.79
0.75 0.10 0.38 1.01 4.05 9.05 35.58 0.13 0.39 0.94 3.29 7.28 19.98 0.00 0.02

0.50 0.50 0.25 0.09 0.20 1.14 1.75 12.70 12.11 0.12 0.24 0.87 1.48 8.38 8.42 0.03 0.05
0.50 0.10 0.33 1.47 2.79 13.48 11.05 0.12 0.75 2.14 3.87 9.01 11.05 0.02 0.03
0.75 0.12 1.08 0.25 1.23 1.26 4.31 0.12 1.08 0.44 2.21 1.16 4.24 0.11 1.08

0.75 0.25 0.11 0.20 0.66 0.91 10.60 8.18 0.17 0.34 0.90 1.30 7.43 6.16 0.06 0.16
0.50 0.33 1.32 2.77 4.08 9.75 9.53 0.36 1.36 2.76 3.86 9.45 10.19 0.10 0.65
0.75 0.24 1.72 1.01 3.39 6.37 11.37 0.30 1.76 2.72 9.07 5.62 13.62 0.03 0.24

24 0.25 0.50 0.25 0.26 0.84 1.58 2.11 13.84 10.22 0.16 0.68 1.63 2.30 10.38 8.43 0.04 0.11
0.50 0.68 2.17 4.38 6.01 8.45 8.41 0.70 2.30 4.87 7.75 13.12 14.02 0.14 0.64
0.75 1.57 5.79 7.15 10.05 9.97 11.91 0.88 4.59 5.66 13.40 14.58 22.88 0.45 3.51

0.75 0.25 0.17 0.33 1.20 1.50 12.53 8.45 0.12 0.33 1.07 1.39 9.90 8.53 0.06 0.22
0.50 0.56 1.87 4.05 6.44 8.08 7.77 0.54 1.95 3.66 5.11 9.10 8.39 0.08 0.37
0.75 0.55 2.71 1.98 6.33 9.50 21.49 0.52 2.75 1.84 6.15 9.73 25.50 0.31 2.21

0.50 0.50 0.25 0.13 0.40 1.20 1.50 15.18 8.21 0.11 0.31 1.34 1.73 11.18 8.06 0.04 0.14
0.50 0.34 1.57 2.36 3.75 18.33 12.91 0.10 0.74 2.00 3.56 10.19 9.37 0.08 0.73
0.75 0.02 0.05 0.76 3.42 2.43 5.37 0.15 1.27 0.19 1.47 2.01 5.50 0.00 0.04

0.75 0.25 0.14 0.30 0.93 1.01 11.57 7.35 0.12 0.26 1.10 1.62 9.55 7.19 0.06 0.22
0.50 0.28 1.06 2.69 3.93 12.04 9.52 0.28 1.25 2.34 3.01 10.34 9.73 0.04 0.22
0.75 0.47 2.29 2.74 5.80 7.93 10.49 0.95 3.66 2.56 5.73 8.07 10.62 0.17 1.48

10838 W.-C. Lee et al. / Applied Mathematics and Computation 219 (2013) 10831–10841
0.698 with a p-value of 0.498, which implied that a does not affect the performance of the branch-and-bound algorithm. On
the other hand, the statistical test showed that the proportion of jobs from the second agent P is a significant factor with an
F-value of 26.061 and a p-value of close to 0. There was also an indication of no interaction effects between these two factors
since its corresponding F-value and p-value were 1.092 and 0.359. It was seen from Table 5 that the problems are easier to
solve when the value of P is smaller. The main reason was that the properties are more powerful in that case.

The main purpose of the fourth part of the experiment was to study the impact of the number of jobs to the performance
of the branch-and-bound algorithms, and the accuracy of the proposed simulated annealing algorithms. Three different job
sizes (n = 16, 20 and 24) were tested. Since problems were harder to solve if the due date factor s was smaller or R was larger,
and the proportion of jobs from the second agent P were also found to be the significant factors in the previous experiments,
they were also considered in the experiment. Two different values of s (0.25, 0.50), two values of R (0.5, 0.75) and three val-
ues of P (0.25, 0.50, 0.75) were used. We recorded the mean and standard deviation of the number of nodes and of the CPU
time (in seconds) for the branch-and-bound algorithm, while only recording the mean and standard deviation of the error
percentages of the SA algorithms, where the last one, denoted as the combined one, is the minimum value of the first six
proposed SA algorithms. The execution time of SA algorithm was not recorded since they were finished within a second.
For each condition, 100 replications were generated and the results were given in Tables 7 and 8. It was seen that the number
of nodes and execution time grows exponentially as the number of jobs increases, and the standard deviations of the num-
bers of nodes are many times of their mean numbers of nodes since the problem is NP-hard. It was also observed that the
branch-and-bound algorithm could solve problems of up to 24 jobs in a reasonable amount of time. The most time-consum-
ing case took an average of 486 s when ðs;R; PÞ = (0.25, 0.75, 0.75). As to the performance of the SA algorithms, it was seen
that SAPI

EDDþSPT and SAPI
EDDþEDD perform better, followed by SAEFSR

EDDþSPT and SAEFSR
EDDþEDD, and SAEBSR

EDDþSPT and SAEBSR
EDDþEDD have the worst

performance. It implied that the PI movement yields a better result, and the EBSR yields the worst result overall. However,
there was no clear dominance relation between these six algorithms, since the error percentages of the combined SA were
much smaller than those of the six SA algorithms. Moreover, it was noted that average error percentage the combined SA



Table 9
The RDP and nT of the proposed simulated annealing algorithms for large job-sized problems.

n s R P SAPI
EDDþSPT SAEFSR

EDDþSPT SAEBSR
EDDþSPT SAPI

EDDþEDD SAEFSR
EDDþEDD SAEBSR

EDDþEDD

RDP RDP RDP RDP RDP RDP

Mean SD nT Mean SD nT Mean SD nT Mean SD nT Mean SD nT Mean SD nT

100 0.25 0.50 0.25 0.15 0.21 39 1.21 0.77 2 3.67 1.78 0 0.08 0.17 59 2.85 1.74 0 5.28 4.12 0
0.50 1.73 1.79 23 0.83 0.98 35 12.07 5.80 0 1.53 1.60 24 2.83 3.35 20 15.32 8.81 0
0.75 5.22 9.33 37 3.83 4.01 25 33.40 27.77 3 4.42 8.12 40 2.35 5.42 49 33.05 33.92 2

0.75 0.25 0.17 0.21 28 1.55 0.71 0 4.61 2.06 0 0.04 0.09 73 2.39 1.32 0 6.74 3.88 0
0.50 0.91 1.04 17 0.52 0.73 41 10.84 5.13 0 0.53 0.85 40 5.76 4.24 2 14.52 7.75 0
0.75 0.48 2.67 62 0.01 0.07 94 11.44 21.89 39 0.48 2.70 61 0.01 0.08 94 10.00 17.43 35

0.50 0.50 0.25 0.04 0.06 42 1.67 0.81 0 6.99 2.53 0 0.02 0.05 60 1.93 1.07 0 14.69 4.61 0
0.50 0.22 0.56 40 0.81 1.08 15 24.34 6.04 0 0.30 0.67 45 3.21 2.88 5 27.90 8.56 0
0.75 0.11 0.63 48 0.30 1.05 16 8.23 5.79 3 0.09 0.52 57 0.56 1.54 24 7.35 6.70 2

0.75 0.25 0.03 0.06 56 2.10 0.89 0 10.11 2.54 0 0.03 0.06 54 2.19 1.00 0 16.64 5.13 0
0.50 0.13 0.21 44 0.99 0.81 2 20.87 5.39 0 0.11 0.30 56 7.01 3.33 0 24.65 8.41 0
0.75 0.60 1.65 46 1.10 1.78 15 23.14 8.67 0 0.94 2.27 42 4.54 3.92 6 25.71 11.96 0

200 0.25 0.50 0.25 0.53 0.32 1 0.11 0.15 48 2.68 1.13 0 0.08 0.12 51 4.12 1.67 0 3.01 1.45 0
0.50 3.96 1.93 1 0.16 0.42 83 13.99 7.47 1 2.75 1.66 3 3.44 3.44 12 12.77 6.93 0
0.75 7.01 9.93 16 3.45 4.03 18 25.56 23.28 2 6.02 8.71 31 2.58 4.59 33 27.58 22.33 1

0.75 0.25 0.45 0.36 6 0.65 0.27 1 3.53 1.34 0 0.01 0.04 93 3.46 1.25 0 3.75 1.99 0
0.50 3.15 1.57 1 0.04 0.13 89 16.54 6.78 0 1.38 0.99 10 10.69 4.51 0 15.55 8.11 0
0.75 0.27 1.50 4 0.00 0.00 47 1.60 9.52 69 0.18 1.17 9 0.00 0.01 34 1.05 4.85 60

0.50 0.50 0.25 0.09 0.12 26 0.69 0.20 0 5.81 1.70 0 0.02 0.05 74 3.27 0.93 0 11.94 4.24 0
0.50 0.59 0.56 13 0.21 0.49 61 27.69 5.18 0 0.60 0.60 25 2.43 1.64 1 35.95 7.40 0
0.75 0.12 0.48 24 0.24 0.64 38 10.65 6.66 0 0.05 0.27 40 0.87 1.52 12 9.97 6.58 1

0.75 0.25 0.08 0.08 16 0.75 0.13 0 9.26 2.02 0 0.00 0.01 84 3.24 0.94 0 15.19 4.23 0
0.50 0.34 0.34 19 0.16 0.19 37 25.69 4.22 0 0.16 0.23 44 10.78 3.10 0 33.12 5.90 0
0.75 1.16 1.41 18 0.21 0.46 53 31.28 8.76 0 1.22 1.42 22 6.15 4.57 7 39.13 11.25 0

Table 10
The CPU times (s) of the proposed simulated annealing algorithms for large job-sized problems.

n s R P SAPI
EDDþSPT SAEFSR

EDDþSPT SAEBSR
EDDþSPT SAPI

EDDþEDD SAEFSR
EDDþEDD SAEBSR

EDDþEDD

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

100 0.25 0.50 0.25 0.12 0.01 0.09 0.01 0.16 0.01 0.12 0.01 0.09 0.01 0.16 0.01
0.50 0.11 0.01 0.09 0.01 0.16 0.01 0.11 0.01 0.09 0.01 0.17 0.02
0.75 0.12 0.01 0.11 0.01 0.15 0.01 0.12 0.01 0.11 0.01 0.15 0.01

0.75 0.25 0.13 0.01 0.09 0.01 0.19 0.02 0.13 0.01 0.09 0.01 0.20 0.02
0.50 0.13 0.01 0.09 0.01 0.23 0.03 0.13 0.01 0.10 0.01 0.25 0.03
0.75 0.13 0.01 0.11 0.01 0.20 0.02 0.13 0.01 0.11 0.01 0.20 0.02

0.50 0.50 0.25 0.16 0.01 0.09 0.01 0.27 0.03 0.17 0.01 0.10 0.01 0.30 0.04
0.50 0.18 0.02 0.12 0.01 0.29 0.03 0.18 0.02 0.12 0.01 0.30 0.03
0.75 0.21 0.03 0.21 0.03 0.26 0.03 0.22 0.03 0.22 0.03 0.26 0.02

0.75 0.25 0.20 0.02 0.10 0.01 0.47 0.08 0.20 0.02 0.10 0.01 0.51 0.09
0.50 0.24 0.03 0.13 0.01 0.63 0.12 0.25 0.03 0.13 0.01 0.64 0.11
0.75 0.31 0.06 0.20 0.03 0.52 0.10 0.31 0.06 0.21 0.04 0.54 0.09

200 0.25 0.50 0.25 0.45 0.01 0.32 0.01 0.60 0.03 0.45 0.02 0.33 0.01 0.62 0.03
0.50 0.43 0.02 0.35 0.01 0.68 0.04 0.44 0.02 0.36 0.01 0.70 0.05
0.75 0.45 0.02 0.41 0.02 0.60 0.03 0.45 0.02 0.41 0.02 0.59 0.03

0.75 0.25 0.51 0.02 0.33 0.01 0.77 0.05 0.51 0.02 0.34 0.01 0.78 0.05
0.50 0.52 0.02 0.37 0.01 1.05 0.08 0.52 0.02 0.38 0.02 1.07 0.10
0.75 0.49 0.03 0.42 0.02 0.82 0.05 0.49 0.03 0.42 0.02 0.84 0.06

0.50 0.50 0.25 0.66 0.03 0.36 0.01 1.06 0.09 0.68 0.03 0.37 0.01 1.20 0.11
0.50 0.69 0.04 0.44 0.02 1.21 0.10 0.70 0.04 0.44 0.02 1.23 0.11
0.75 0.82 0.07 0.81 0.09 1.03 0.08 0.84 0.07 0.81 0.08 1.03 0.07

0.75 0.25 0.82 0.05 0.37 0.01 2.17 0.34 0.83 0.05 0.37 0.01 2.47 0.43
0.50 0.95 0.06 0.46 0.02 3.12 0.43 0.95 0.06 0.50 0.03 3.39 0.46
0.75 1.22 0.22 0.75 0.10 2.42 0.33 1.23 0.22 0.80 0.12 2.42 0.33

W.-C. Lee et al. / Applied Mathematics and Computation 219 (2013) 10831–10841 10839
algorithm was less than 0.5% for all the tested cases, thus, it was recommended as the ultimate algorithm since all the SA can
be easily implemented.

The last part of the computational experiments was used to test the performance of the proposed SA algorithm when the
number of jobs is large. We tested two job sizes, i.e., n = 100 and 200. We randomly generated 100 instances for each situ-
ation and we reported the results in Table 9. We recorded the mean and standard deviation of the relative deviation percent-
age (RDP). For instance, the RDP of the solution produced by SAPI

EDDþSPT is calculated as



10840 W.-C. Lee et al. / Applied Mathematics and Computation 219 (2013) 10831–10841
VPI
EDDþSPT � V�

� �
=V� � 100%
where VPI
EDDþSPT is the value of the weighted combination of the completion time and the maximum tardiness of jobs from the

first agent generated by SAPI
EDDþSPT and V� is the minimum value obtained from the six algorithms. In addition, we recorded

the number of times (nT ) it yields the minimum value. The result was presented in Table 9. We also recorded the mean and
standard deviation of the execution time (in seconds) in Table 10. It was seen from Table 9 that SAPI

EDDþEDD has the best per-
formance in terms of mean RDP and the number of times it yields the minimum value. However, it did not perform well for
all the cases. For instance, the mean RDP and nT of SAPI

EDDþEDD were 2.75% and 3 when ðn; s;R; PÞ ¼ ð200;0:25;0:5;0:5Þ, in this
case SAEFSR

EDDþSPT is the best with a mean RDP of 0.16% and nT ¼ 83. Moreover, it was seen from Table 10 that the execution time
of the algorithms was only a few seconds. Thus, the combined simulated annealing algorithm is recommended when the
number of jobs is large.

6. Conclusions

In this paper we studied a two-agent single-machine scheduling problem where the objective is to minimize the
weighted combination of the completion time and maximum tardiness of the jobs of the first agent, given that no tardy jobs
are allowed for the second agent. We proposed a branch-and-bound algorithm to solve the problem, and a combined sim-
ulated annealing algorithm to find near-optimal solutions. We conducted computational experiments to evaluate the perfor-
mance of the proposed algorithms. The computational results showed that the branch-and-bound algorithm can solve
problems with up to 24 jobs in a reasonable amount of time. It also showed that the performance of the combined SA algo-
rithm is very good, yielding an average error percentage error of less than 0.5% for all the tested cases.

Acknowledgements

The authors are grateful to the editor and the referees, whose constructive comments have led to a substantial improve-
ment in the presentation of the paper. This work was supported by the NSC of Taiwan, under NSC 101-2221-E-035-021.

References

[1] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, second ed., Prentice Hall, New Jersey, 2002.
[2] B. Naderi, S.M.T. Fatemi Ghomi, M. Aminnayeri, M. Zandieh, Scheduling open shops with parallel machines to minimize total completion time, J.

Comput. Appl. Math. 235 (2011) 1275–1287.
[3] J.B. Wang, C.M. Wei, Parallel machine scheduling with a deteriorating maintenance activity and total absolute differences penalties, Appl. Math.

Comput. 217 (2011) 8093–8099.
[4] R. Rudek, The strong NP-hardness of the maximum lateness minimization scheduling problem with the processing-time based aging effect, Appl. Math.

Comput. 218 (2012) 6498–6510.
[5] Y.Y. Xiao, R.Q. Zhang, Q.H. Zhao, I. Kaku, Permutation flow shop scheduling with order acceptance and weighted tardiness, Appl. Math. Comput. 218

(2012) 7911–7916.
[6] W.C. Lee, Z.S. Lu, Group scheduling with deteriorating jobs to minimize the total weighted number of late jobs, Appl. Math. Comput. 218 (2012) 8750–

8757.
[7] J.M. Peha, Heterogeneous-criteria scheduling: minimizing weighted number of tardy jobs and weighted completion time, Comput. Oper. Res. 22 (1995)

1089–1100.
[8] K. Kim, B.C. Paulson, C.J. Petrie, V.R. Lesser, Compensatory negotiation for agent-based schedule coordination, CIFE working paper #55, Stanford

University, Stanford, CA, 1999.
[9] M.A. Kubzin, V.A. Strusevich, Planning machine maintenance in two-machine shop scheduling, Oper. Res. 54 (2006) 789–800.

[10] H. Balasubramanian, J.W. Fowler, A.B. Keha, M.E. Pfund, Scheduling interfering job sets on parallel machines, Eur. J. Oper. Res. 199 (2009) 55–67.
[11] A. Agnetis, P.B. Mirchandani, D. Pacciarelli, A. Pacifici, Scheduling problems with two competing agents, Oper. Res. 52 (2004) 229–242.
[12] K.R. Baker, J.C. Smith, A multiple-criterion model for machine scheduling, J. Sched. 6 (2003) 7–16.
[13] J.J. Yuan, W.P. Shang, Q. Feng, A note on the scheduling with two families of jobs, J. Sched. 8 (2005) 537–542.
[14] T.C.E. Cheng, C.T. Ng, J.J. Yuan, Multi-agent scheduling on a single machine to minimize total weighted number of tardy jobs, Theor. Comput. Sci. 362

(2006) 273–281.
[15] C.T. Ng, T.C.E. Cheng, J.J. Yuan, A note on the complexity of the problem of two-agent scheduling on a single machine, J. Comb. Optim. 12 (2006) 387–

394.
[16] A. Agnetis, D. Pacciarelli, A. Pacifici, Multi-agent single machine scheduling, Ann. Oper. Res. 150 (2007) 3–15.
[17] T.C.E. Cheng, C.T. Ng, J.J. Yuan, Multi-agent scheduling on a single machine with max-form criteria, European Journal of Operational Research 188

(2008) 603–609.
[18] K.B. Lee, B.C. Choi, J.Y.T. Leung, M.L. Pinedo, Approximation algorithms for multi-agent scheduling to minimize total weighted completion time, Inf.

Process. Lett. 109 (2009) 913–917.
[19] A. Agnetis, G. Pascale, D. Pacciarelli, A Lagrangian approach to single-machine scheduling problems with two competing agents, J. Sched. 12 (2009)

401–415.
[20] J.Y.T. Leung, M. Pinedo, G.H. Wan, Competitive two agents scheduling and its applications, Oper. Res. 58 (2010) 458–469.
[21] G.H. Wan, S.R. Vakati, J.Y.T. Leung, M. Pinedo, Scheduling two agents with controllable processing times, Eur. J. Oper. Res. 205 (2010) 528–539.
[22] P. Liu, L. Tang, X. Zhou, Two-agent group scheduling with deteriorating jobs on a single machine, Int. J. Adv. Manuf. Technol. 47 (2010) 657–664.
[23] P. Liu, X. Zhou, L. Tang, Two-agent single-machine scheduling with position- dependent processing times, Int. J. Adv. Manuf. Technol. 48 (2010) 325–

331.
[24] W.C. Lee, W.J. Wang, Y.R. Shiau, C.C. Wu, A single-machine scheduling problem with two-agent and deteriorating jobs, Appl. Math. Modell. 34 (2010)

3098–3107.
[25] C.C. Wu, S.K. Huang, W.C. Lee, Two-agent scheduling with learning consideration, Comput. Ind. Eng. 61 (2011) 1324–1335.
[26] W.C. Lee, S.K. Chen, C.C. Wu, Branch-and-bound and simulated annealing algorithms for a two-agent scheduling problem, Expert Syst. Appl. 37 (2010)

6594–6601.

http://refhub.elsevier.com/S0096-3003(13)00545-6/h0005
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0005
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0010
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0010
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0015
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0015
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0020
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0020
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0025
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0025
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0030
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0030
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0035
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0035
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0045
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0050
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0055
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0060
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0065
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0070
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0070
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0075
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0075
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0080
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0085
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0085
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0090
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0090
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0095
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0095
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0100
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0105
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0110
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0115
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0115
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0120
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0120
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0125
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0130
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0130


W.-C. Lee et al. / Applied Mathematics and Computation 219 (2013) 10831–10841 10841
[27] T.C.E. Cheng, W.H. Wu, S.R. Cheng, C.C. Wu, Two-agent scheduling with position-based deteriorating jobs and learning effects, Appl. Math. Comput. 217
(2011) 8804–8824.

[28] A. Agnetis, Combinatorial models for multi-agent scheduling problems, in: Proceedings of the 12th International Conference Devoted to Project
Management and Scheduling, Tours, France, 2010, pp. 37–40.

[29] C.H. Liu, Using genetic algorithms for the coordinated scheduling problem of a batching machine and two-stage transportation, Appl. Math. Comput.
217 (2011) 10095–10104.

[30] T.M. Gwizdałła, The role of crossover operator in the genetic optimization of magnetic models, Appl. Math. Comput. 217 (2011) 9368–9379.
[31] R. Thangaraj, M. Pant, A. Abraham, P. Bouvry, Particle swarm optimization: hybridization perspectives and experimental illustrations, Appl. Math.

Comput. 217 (2011) 5208–5226.
[32] C.Y. Low, C.J. Hsu, C.T. Su, A modified particle swarm optimization algorithm for a single-machine scheduling problem with periodic maintenance,

Expert Syst. Appl. 37 (2010) 6429–6643.
[33] A. Azadeh, M.S. Sangari, A.S. Amiri, A particle swarm algorithm for inspection optimization in serial multi-stage processes, Appl. Math. Modell. 36

(2012) 1455–1464.
[34] S. Kirkpatrick, C. Gelatt, M. Vecchi, Optimization by simulated annealing, Science 220 (1983) 671–680.
[35] D. Ben-Arieh, O. Maimon, Annealing method for PCB assembly scheduling on two sequential machines, Int. J. Comput. Integr. Manuf. 5 (1992) 361–367.

http://refhub.elsevier.com/S0096-3003(13)00545-6/h0135
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0135
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0145
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0145
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0150
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0155
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0155
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0160
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0160
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0165
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0165
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0170
http://refhub.elsevier.com/S0096-3003(13)00545-6/h0175

	A single-machine bi-criterion scheduling problem with two agents
	1 Introduction
	2 Problem description
	3 A branch-and-bound algorithm
	3.1 Dominance properties
	3.2 A lower bound
	3.3 Description of the branch-and-bound algorithm

	4 The simulated annealing algorithm
	5 Computational experiments
	6 Conclusions
	Acknowledgements
	References


