3158

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 8, AUGUST 2013

Fast SIFT Design for Real-Time Visual
Feature Extraction

Liang-Chi Chiu, Tian-Sheuan Chang, Senior Member, IEEE, Jiun-Yen Chen, and Nelson Yen-Chung Chang

Abstract— Visual feature extraction with scale invariant
feature transform (SIFT) is widely used for object recognition.
However, its real-time implementation suffers from long latency,
heavy computation, and high memory storage because of its
frame level computation with iterated Gaussian blur operations.
Thus, this paper proposes a layer parallel SIFT (LPSIFT) with
integral image, and its parallel hardware design with an on-the-
fly feature extraction flow for real-time application needs. Com-
pared with the original SIFT algorithm, the proposed approach
reduces the computational amount by 90% and memory usage
by 95%. The final implementation uses 580-K gate count with 90-
nm CMOS technology, and offers 6000 feature points/frame for
VGA images at 30 frames/s and ~2000 feature points/frame for
1920 x 1080 images at 30 frames/s at the clock rate of 100 MHz.

Index Terms— Feature extraction, SIFT, VLSI design.

I. INTRODUCTION

ISUAL feature extraction is a key technology of com-
V puter vision for intelligent video processing. Among
extraction techniques, scale invariant feature transform
(SIFT) [1] is the most widely adopted approach that provides
stable visual feature points for reliable object detection. SIFT
detects and describes local feature points in images for object
detection in different scenes or different angles. These fea-
ture points describe the strength and direction of the object,
which resists the frame distortion such as zooming, rotation,
movement, perspective change, shading and noise. To provide
these stable points, SIFT computation involves the image
convolution with Gaussian filters at different scales, and local
maximum or minimum of the difference of Gaussians (DoG)
blurred images at multiple scales. However, the real time
implementation of this algorithm faces the challenges of heavy
computation, large memory storage and long computational
latency because of its frame level computation with iterated
Gaussian blur operations on images and the frame difference
operations on blurred images for feature extraction. Thus, a
fast algorithm and its VLSI design are demanded.

Manuscript received November 5, 2012; revised February 19, 2013;
accepted April 19, 2013. Date of publication April 24, 2013; date of current
version June 4, 2013. This work was supported in part by the Industrial
Technology Research Institute under Grant A301AR3710. The associate editor
coordinating the review of this manuscript and approving it for publication
was Prof. Mark H.-Y. Liao.

L.-C. Chiu is with PixelArt Technology, Hsinchu 78229, Taiwan (e-mail:
oboe.chu@gmail.com).

T.-S. Chang is with the Dept. Electronics Engineering, National Chiao Tung
University, Hsinchu 300, Taiwan (e-mail: tschang@twins.ee.nctu.edu.tw).

J. Y. Chen and N. Y. C. Chang are with the Industrial Technology
Research Institute, Hsinchu 31040, Taiwan (e-mail: itri990075 @itri.org.tw;
NelsonChang @itri.org.tw).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2013.2259841

Previous implementations of SIFT can be classified into
following categories: multi-core, GPU, or FPGA based
approaches. The multi-core [3], [4] or GPU approaches [5]-[8]
used massive parallel computing resource to speed up the com-
putation. Works [9]-[12] based on the FPGA platform used
parallel FPGA resources to speed up the Gaussian blurring
in SIFT. However, the corresponding feature point calculation
was still computed by the processor, which results in heavy
data bus congestion and reduces the performance. Beyond
above implementations, the fast algorithm like SURF [2] used
the integral image concept to speed up the Gaussian blur
computation, which was followed by several works [13]-[15].
Integral image reduces the computation significantly. However,
all these approaches still need iterations of Gaussian blur,
which hinders their real time applications on larger frame size
and increasing number of features points.

To solve above issues, this paper proposed a layer parallel
SIFT (LPSIFT) with integral image and its parallel hardware
design for real time application needs. First, to avoid the
long latency due to the frame level computation, we adopted
the layer parallel restructured box kernel to replace iterated
Gaussian blur operations. The computation of box kernel was
further simplified by the integral image approach with reuse
of sub-kernel sum. With this, the latency of the first feature
point was reduced to several image lines (depending on the
location of that feature point) from several frames. For the
keypoint localization, we simplified the complex low contrast
analysis to be a low brightness test. For hardware design, we
adopted the on-the-fly feature extraction flow so that only
partial temporal results have to be stored. Furthermore, the
costly inverse square root and divider in keypoint localization
were implemented by a low cost universal operation unit with
precision equivalent cycles (PECs) to reduce the gate count.
With above methods, SIFT can be implemented with low
hardware cost for real time high definition videos.

The rest of the paper is organized as follows. In Section II,
we will briefly describe the operation of SIFT. In Section III,
we will present the proposed algorithm. Its corresponding
hardware design is shown in Section IV. Then, in Section IV,
we will show the implementation results and comparison.
Finally, a conclusion will be made in Section V.

II. OVERVIEW OF SIFT

Fig. 1 shows the overall algorithm flow of SIFT [1],
which consists of scale space extrema detection, accurate
keypoint localization, orientation assignment and the local
image descriptor.

1057-7149/$31.00 © 2013 IEEE

CHIU et al.: FAST SIFT DESIGN

—
—
Y -d
> -
”

Gaussiaf Difference of Gauspian (DoG)

|
| Scale
radients Keypoint Descriptor

Taylor expansion
Eliminating Edge Responses

’,7‘ i3
N

ﬁg%

Fig. 1. SIFT algorithm: (1) scale-space extrema detection, (2) accurate
keypoint localization, (3) orientation assignment, and (4) the local image
descriptor.

Image Gradients

The first step, scale space extrema detection, identifies
keypoint candidates. It first convolves the image Sy with
Gaussian filters GF (x, y, ko) at different scale ko to build a
pyramid of Gaussian blurred images. In which,

Sk =S(x,y,ko) = GF(x, y, ko) * Sp—1 (1)

where for k = 1, Sx—1 = So = I (x, y) is the input image, and
2,2

_()c +y
GF (x,y,ko) = (%n(ka)z)e 2w)

The convolved images are grouped by octave (an octave
corresponds to doubling the value of ¢), and the value of k is
selected for a fixed number of convolved images per octave.
The frame at the highest scale per octave is downsampled by
four as the input frame for next octave, as depicted in Fig. 1.
In this paper, we denote the frame in a pyramid of Gaussian
blurred images by its octave and scale, G[Octave, Scale]. With
this, the Gaussian pyramid can be defined as follows:

G[0,0] = I(x,y): the original frame 3)
G[0,1]1=GF (x,y,0)*G[0,0] “)
G[m,kl = GF (x,y,ko)*xG[m,k—1] form, k>0 (5)
where G [m,0] is obtained by downsampling G[m — 1,

maximum k in a octave] by four.
Then, we can compute the DoG blurred images by

DoG[m,k] = G[m,k 4+ 1] — G [m, k] (6)

with DoG, we can find the local maximum or minimum in a
3 x 3 window as the keypoint candidates by comparing the
pixels at neighboring scales.

Among the candidates, stable keypoints are localized by
rejecting some bad keypoints in the keypoint localization step

3159

with a low contrast and edge detection test. The low contrast
test rejects the unstable extrema location, defined by

. 3’DoG™ "\ [4DoG
X=- @)
ox2 ox
with a low contrast threshold derived from the Taylor expan-
sion of DoG [m, k]
DoG (£) = DoG + 1(9DoGT o (8)
B 2\ ox '
Edge detection is decided by
Tr(H)? (r+1)° ©)
Det (H) r

where r is a coefficient to adapt the sharpness of object edge,
and Tr (H) and Det (H) are the trace and determinant of 2 x 2
Hessian matrix

DoGyx DoGyy
H = ’DOGX) DoGy,y (10)
Tr (H) = DoGy, 4+ DoGyy = a + f8 (11)
Det (H) = DoG,;DoGyy — DoGyy? = af. (12)

Based on above test, if the candidate is verified to be a feature
point, SIFT begins to calculate its orientation assignment.

In the orientation assignment step, each keypoint is assigned
one or more orientations based on local image gradient
directions to achieve invariance to rotation. In which, SIFT
selects the largest vector, S-vector, to represent the orientation
assignment. These steps ensure invariance to image location,
scale and rotation. Finally, in the local image detector step, a
descriptor vector for each keypoint is computed such that it is
highly distinctive and partially invariant to other variations.

III. SIFT ANALYSIS AND PROPOSED LPSIFT DESIGN
A. Design Analysis of SIFT

Table I shows the design analysis of SIFT for parameters
[octave,scale] = [2, 4]. In this table, A is the number of pixels
in a frame and its first level down sampled frame defined as

A:WH—{—%WH:l%WH, (13)
where W and H are width and height of the original frame.
B represents the number of feature points.

From this table, we can find that the scale-space extrema
detection and the keypoint localization contribute to most of
overall computation, and require a lot of memory to save inter-
mediate data frames. In addition, the keypoint localization,
orientation assignment, and the local frame descriptor calcu-
lation use a lot of dividers to compute Taylor expansion and
normalization. This causes hardware implementation difficult.
Thus, how to solve these problems is an important issue for
SIFT hardware design.

Another problem for SIFT hardware is its highly data depen-
dent computational structure. In the data flow of SIFT, a new
scale image has to wait for the completion of the previous scale
image in the Gaussian pyramid. Thus, different scale images
are computed sequentially. This results in long latency and
prohibits the following DoG computation in parallel that needs

3160

oise 00 g
H (l
Layer Parallel
Calculation
DiTTere alo 3
Yes 0
Qrig o
No
No (] : -
Respo -
Yes
Orie on A g =
BJ= Dto
Dutp B =
Fig. 2. Algorithm flow of the proposed LPSIFT.

at least three scale images at the same time to calculate the
candidates of features points. Thus, these intermediate scale
images have to be stored until completing DoG computations,
which results in large memory storage.

B. Proposed LPSIFT Algorithm

Fig. 2 shows the proposed LPSIFT algorithm, which is
based on SIFT with three major modifications: fast scale space
extreme detection with layer parallel Gaussian pyramid and
integral image, and simplified keypoint localization with a
brightness threshold.

In this flow, we propose a layer parallel algorithm to
solve the data dependency problem, which not only calculate
Gaussian pyramid and DoG pyramid at the same time but
also calculate keypoint candidates simultaneously. This par-
allel computation reduces storage and latency from multiple
whole images to several image rows. To assist this parallel
computation while reduce the computational complexity, we
use the integral image approach to create a box kernel with
the response similar to that of the Gaussian filter so as to
keep the feature matching performance as close as that of
SIFT but without complex Gaussian filters. By adopting the
integral image approach for multiple box kernels in each scale,
we reduce computational complexity significantly and enable
parallel computation for all scales.

Another problem is the high complexity of Taylor expan-
sion. We propose a low brightness method instead of the low
contrast method to reduce complexity.

1) Fast Scale Space Extreme Detection With Layer Parallel
Gaussian Pyramid and Integral Image: Fig. 3 shows the
concept of the layer parallel Gaussian pyramid. In the original
Gaussian pyramid, each new pyramid level depends on its

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 8, AUGUST 2013

Scale

GF(x, v, 3) GF(x, v, 3) =GF(x, y, 3) * GF(x v, 2) % GF(x,y, 1)

GF(xy,2) ®p GF(xy, 2)=GF(xy, 2) * GF(x y,1)
GF(x, v, 1) GF(x v, 1) = GF(x, y, 1)
Fig. 3. Concept of the layer parallel Gaussian pyramid.

previous level. To eliminate such dependency, we can fully
expand the pyramid level and merge the multiple kernels into
one

G[m,kl = GF (x,y,ko) *G[m, k — 1]
= (GF(x,y,ko)*GF(x,y,(k—1)g)---
GF(x,y,0)) G [m,0]
= GF' (x,y,k) * G[m, 0]

for positive integer m, and k. (14)

With this independent Gaussian filtering, we can compute
all scale layers in parallel and generate the DoG images on
demand.

However, the merged kernel will become larger with more
kernels merged as shown in Fig. 3, which will demand high
computational complexity and storage. To solve this, we use
the integral image concept that can compute this large kernel
with constant time. By using integral image, no matter what
the kernel size is, we need only four points of information
and three additions, and reduce a lot of computation. With
this simple computation, we can compute all scale layers in
parallel without worry about the heavy complexity and storage
due to layer parallel computation.

The integral image works best for the box kernel, but the
box kernel results in inferior matching performance. Thus, we
use restructured box kernels to approach the performance by
the Gaussian filter. Take the first scale 5 x 5 box kernel in
Fig. 4(c) as an example. We modify this simple kernel to be the
kernel in Fig. 4(d) to approach the performance of Gaussian
filter. Its computation with integral image can be very simple
as shown in Fig. 4(b). In this paper, we select the size of box
kernels as 5 x 5, 7 x 7, and 3 x 3 to construct the filters for
different scales with appropriate modifications as the example
illustrated in Fig. 4.

2) Simplified Keypoint Localization With a Brightness
Threshold: SIFT uses Taylor expansion to exclude the low
contrast candidates, but Taylor expansion needs complex com-
putation. In practical, the low contrast candidates almost have
low brightness, too. Therefore, low brightness candidates can
be excluded according to this threshold

thresholdpey = (2Precision of DoG _ 1y coefficientpyight.

In which, Coefficientprign is a ratio of the gray level luminance
in the DoG image with the default value 0.04. This simplifi-
cation has similar performance as that by Taylor expansion
according to our simulation, but this method saves a lot of
calculation and is more suitable for hardware computation.

CHIU et al.: FAST SIFT DESIGN

3161

TABLE 1
COMPUTATIONAL COMPLEXITY AND MEMORY STORAGE ANALYSIS OF SIFT

Memory (byte) Multiplication Division Addition
Smoothing A 81 A 0 80 A
Scale-space extrema 4 A 2916 A 0 2933 A
Keypoint localization 3A 59 A 50 A 132 B
Orientation assignment 0 450 B 225 B 673 B
The local frame descriptor 0 450 B 225 B 705 B
Total 8 A 3056 A +900B | 50 A+ 450B | 3013 A+ 1510 B
1 0 0 0 0 1 1 0 0 0 0 1
NOng : Low Orientation &
a 0] 0] 0 0 0 0 1 0 0 il 0 Smoothing brightness 8 Gradients Assignment 1”
& '
0 U} 0 0 0 0 0 0 Q 0 0 0] Edge Output
Response Buffer
0 0 0 0 0 0 0 0 0 0] 0] 0
Gaussian (CENESED] DeEeH
o 0 0 0 o 0 0 1 0 0 1 0 p— Mask escriptors
1 0 0 0 0 1 1 0 0 0 0 1
(a) (b) . , .
Fig. 5. Proposed architecture diagram.
1 1 1 1 1 1 1 1 1 1
r 1 1 1 1 11212124 One frame (480 rows) - >
3.33x 106 cycle e
ijala|aja 1|l2|2|2 |4 o ———
Uinitial Stagel Stage2 Stagel Stage?
1 1 1 1 1 1 2 2 2 1 One row (640 pixels) 19¢cycle ,Ntsclz : sznsvcle M(‘y{le 7 Slﬂ(gytle
1 1 1 1 1 1 1 1 1 1 6.94% 10* cycle |

(c) (d)

Fig. 4. Mask for 5 x 5 box kernel, its integral image representation of
(a) original one (b) and modified one, and the corresponding pixel domain of
(c) original one, (d) and modified one.

Table II shows the complexity analysis of our proposed
algorithm for parameters [octave,scale] = [2,4], with the
comparison of VGA and full HD images in Table III. In
Table II, C is the number of frame width in a group of down
sample twice (C = W + (1/4)W = 1(1/4)W), and W is the
width of the original frame. In the first three steps, computation
with integral image only uses additions to eliminate all mul-
tiplications and data dependent computation. In the keypoint
localization, divisions to compute Taylor expansion are also
eliminated. Beyond above computation reduction, we only
need a few rows of the integral image for the box kernel based
computation instead the whole integral image. In summary,
the proposed algorithm can reduce a lot of computation and
memory usage, which are useful for the following hardware
implementation.

IV. PROPOSED ARCHITECTURE

Fig. 5 shows the proposed architecture that consists of two
stages: scale-space extrema detection and keypoint localization
in the stage one, and orientation assignment and the local
frame descriptor in the stage two. In the stage one, we adopt
the proposed LPSIFT with integral image to reduce the com-
putation significantly, and further reduce the required integral

Pipeline of stage 1

1cycle unit Elj h *'h

Orientation Normalization Descriptor
Computing feature point (Stage 2) deycle Weycle 286 cycle

> >
520 cycle > > >

BB cosonrvoric W oeciion

BLEN Noise Smoothing

Fig. 6. Scheduling for a VGA image.

image buffer by the on-the-fly computation scheduling. In
the stage two, we adopt the proposed brightness threshold
to simplify computation and implement the normalization in
keypoint localization with a low cost universal operation unit
with precision equivalent cycles (PEC).

Fig. 6 shows the proposed scheduling for a VGA image,
operated row by row. Our proposed design specification is
[octave, scale] = [2, 4], and supports more than 1000 feature
points in one VGA frame with 30 frames per second at
100MHz. Each row spends 19 cycles to calculate the initial
information in the beginning. After that we find the feature
point candidates of the stage one. If a candidate is a feature
point, the stage two starts to compute the required information
of that feature point. When the former step completes, oper-
ation is back to the stage one. In summary, the computation
time of the stage one is not fixed until a feature point is found,
while the stage 2 takes 520 cycles.

3162

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 8, AUGUST 2013

TABLE II
COMPUTATION COMPLEXITY OF PROPOSED ALGORITHM

Memory (byte) | Multiplication | Division Addition
Smoothing 7C 0 0 58A
Integral image 80 C 0 0 3A
Scale-space extrema 893 0 0 383 A
Keypoint localization 27 27 A 0 12 A
Orientation assignment 256 450 B 225 B 673 B
The local frame descriptor 0 450 B 225 B 705 B
Total 87 C + 1176 27 A + 900 B 450 B 456 A + 1378 B
TABLE III
COMPARISON OF PROPOSED AND SIFT ALGORITHM
VGA Size Full HD Size
Mem. (byte) Mul. Div. Add. Mem. (byte) Mul. Div. Add.
SIFT 3.07 E+06 1.17 E+09 | 1.97 E+07 | 1.16 E+09 2.07 E+07 7.92 E+09 | 1.30 E+08 | 7.81 E+09
Proposed 7.08 E+04 1.13 E+07 | 4.50 E+05 | 1.76 E+08 2.10 E+05 7.09 E+07 | 4.50 E+05 | 1.18 E+09
Saving (%) 97.7 99.0 97.7 84.8 99.0 99.1 99.7 84.9

Gaussian Pyramid Scale 0

Ill Gaussian Pyramid Scale 1 II
I Gaussian Pyramid Scale 2 I

Gaussian Pyramid Scale 3

DoG Scale 0

Noise Integral

Image

DoG Scale 1

Smoothing

DoG Scale 2

Fig. 7. Architecture of the stage one.

A. Stage One With On-the-Fly Computation Scheduling

Fig. 7 shows the architecture of the stage one, which
applies the noise smoothing to the input image and builds
the integral image for following filtering operations. With
enough rows of integral image, we begin to compute scale
images and corresponding DoG images to find feature point
candidates at the same time as shown in Fig. 8, called on-the-
fly computation. In which, when we calculate the last frame in
the first layer (GO0, 3]), we will downsample this frame to the
first frame of next layer (G[1, 0]) simultaneously. Therefore,
we not only compute different scales in an octave at the same
time but also compute different octaves at the same time. With
this on-the-fly computation, we need only a few rows of buffer
cost instead of multiple frames due to the Gaussian pyramid
and DoG pyramid.

B. Architecture of the Stage Two

Fig. 9 shows the design of the keypoint localization after
obtaining the DoG. We can compute the feature point can-
didate by examining conditions such as the local maximum
and minimum value, low brightness and edge detection. Since
all these conditions are independent to each other, we can
compute each condition simultaneously with a flag bit to
denote if it matches the feature point criteria. If all flag bits
are zeros, that indicates the candidate is approved to be a new
feature point.

Scale
(Octave 0}
Gaussian Difference of Gaussian (DoG)
Fig. 8. Parallel computation of the Gaussian pyramid, and DoG pyramid to

find feature points.

5{27]

brightness Threshold

Edge Responses =

5[25]
DoG (1,1,1) > DaG (0,0,0)

.
wn

5[24]
DoG (1,1,1) > DoG (0,0,1) ,

5{23]
DoG (1,1,1) > DoG (0,0,2)

-
]

0]

s
DoG (1,1,1) > DoG (2,2,2)

Fig. 9. Hardware architecture of the keypoint localization.

Fig. 10 shows the design of the orientation assignment. In
this design, 19 x 19 pixels of integral image will be fetched
again to re-compute 15 x 15 information of scale 1 since
no scale image is stored. In this recomputation step, we will

CHIU et al.: FAST SIFT DESIGN

Gradient
Magnitude

' Column00 |

| Column01 |
Integral ———
Image |

Select
Orientation
Assignment

- Orientation
. Column02

Controller Column 14

Fig. 10. Hardware architecture of the orientation assignment.

Y[n—-1:0]=2"1

Fig. 11.
cycle.

Flow chart of the universal operation with precision equivalent

compute one row at a time, and store the results at the buffer.
With three rows of data, we can compute the gradient magni-
tude and orientation. However, these computations involve the
square root, inverse trigonometric and inverse square root.

To avoid high cost of single cycle design, we design a shared
multi-cycle component for the inverse square root and division,
and implement the inverse trigonometric function with a look-
up table and the multi-cycle component.

Fig. 11 shows the flow chart to implement the inverse square
root, Y = 1/./x with one cycle per quotient bit, and n is
the precision of Y. The operation is as follows. First, above
equation can be rewritten as XY = 1, where X is a known
input and Y is the desired answer. Assume Y is the maximum
value at its accuracy now. If X?Y > 1, it implies that ¥
is too large. Thus, we change the current bit of Y with 0,
and compute it again. If X?Y < 1, it implies that ¥ is too
small. Thus, we will add one to this bit and compute it again.
Repeat above steps to reach the lowest bit of Y, and finish
the calculation. For division, we need to replace X with X 2,
Similar derivation can be applied to the square root opera-
tion. The total cycle number is equal to the precision of Y.
This feature meets the precision limited hardware design
because the fixed cycle latency eases the overall scheduling
and controller design.

V. SIMULATION AND IMPLEMENTATION RESULTS
A. Simulation Results

Fig. 12 and Fig. 13 show the training patterns for threshold
decision and test patterns used in this paper. The first part
is mainly monotonous indoor frames with few objects, which

3163

(@)

Fig. 12. The training patterns, (a) desktop, (b) photocopier, (c) iron cabinet,
(d) meeting room, (e) books, (f) FPGA board.

TABLE IV
TEST CONDITIONS USED IN THE SIMULATION

Unit Best Normal Worst
Case Case Case
Light (Mean, (10, 10) (10, 30) (10, 50)
variance)
Focus o 1 1 3
Rotation Angle 3 10 40
Stretch Ratio 0.98 0.8 0.6
Movement (x-axis, y-axis) (—10, (-30, (—60,
-5) -30) —60)

is difficult to find feature points. The second part selects the
monotonous, regular, short personal distance, indoor, outdoor
and crowd images for test.

The simulation emphasizes on the following conditions:
movement toward random directions, the change of lights in
scenes light, focus, rotation in different angles and stretch.
Table IV shows the test conditions and their parameters. The
best case will be like images taken by the burst mode shooting.
The normal case will be like images taken by two persons
on the same scene but with some relative motion. The worst
case will be like images taken casually by two persons, which
is rarely occurred in feature extraction applications. Fig. 14
shows the matching results and images for different cases.

The performance is measured by the accuracy defined as

Number of Correct Match Points
Number of Match Points

Accuracy =

3164

Fig. 13. The test patterns, (a) Dandelion, (b) shoes, (c) person, (d) cafe,
(e) road row, (f) temple.

(a) (d)

Fig. 14. (a) Matching point for normal case. Test images at (b) the best
case, (c) the normal case, (d) the worst case.

where match points means that feature points in two different
frames have the same local image descriptors, and correct
match points mean that two feature points with the identical
information have the same coordinates after the transformation
of the golden pattern. If their coordinates are different, the
match point is incorrect.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 8, AUGUST 2013

TABLE V
RESULTS OF THE NORMAL CASE FOR TRAINING PATTERNS

Pattern Feature | Feature Match | Correct | Accuracy
Points Points on | Point Match (%)
on Conver- Point
Orig- sion Frame
inal
Frame

Desktop 956 1447 66 55 83.33

Photocopier 936 1525 43 33 76.74

Cabinet 254 839 36 31 86.11

Whiteboard 455 1159 51 43 84.31

Books 708 1245 33 25 75.76

FPGA board | 476 543 39 33 84.62

TABLE VI

ACCURACY COMPARISON WITH SIFT FOR TRAINING PATTERNS

Best Case Normal Case Worst Case

Pattern SIFT Ours SIFT Ours SIFT Ours
Desktop 97.41 90.00 89.80 83.33 100.00 | 71.93
Photocopier | 96.32 88.65 95.30 76.74 97.96 70.91
Cabinet 98.23 96.70 97.85 86.11 100.00 | 74.19
Whiteboard | 93.94 84.78 96.00 84.31 91.67 81.82
Books 98.98 96.88 93.33 75.76 97.22 70.97
FPGA 98.80 96.09 96.08 84.62 97.30 54.55
board

Average 97.28 92.18 94.73 81.81 97.36 70.73

TABLE VII

ACCURACY COMPARISON WITH SIFT FOR TEST PATTERNS

Best Case Normal Case Worst Case
Pattern SIFT Ours SIFT Ours SIFT Ours
Dandelion 99.02 92.62 94.48 87.23 97.37 64.10
Shoes 96.75 91.73 91.39 83.33 92.47 64.71
Person 99.07 95.24 99.44 89.47 100.00 | 68.75
Café 96.25 81.58 92.31 88.89 80.95 88.89
Road row 99.35 97.22 98.33 88.89 97.58 50.00
Temple 98.48 88.41 98.95 100.00 | 98.72 64.29
Average 98.15 91.13 95.82 89.64 94.52 66.79

The simulation result shows that the average accuracy for
training pattern is 71%, 82%, and 92% for worst, normal and
best cases respectively, 63%, 92% and 98% for test patterns
at worst, normal and best cases respectively. Table V shows
the detailed results of the normal case for training patterns.
Tables VI and VII shows the accuracy comparisons with
SIFT. The SIFT accuracy is more than 90 % but also much
complex. In contrast, our proposed algorithm has much lower
complexity and approaches to the accuracy of original SIFT at
the best case and normal case. The lower performance of the
worst case is because our design cannot handle images with
dramatic change of focus and stretch very well. The reason
for that is that the proposed approach adopts integer instead
of floating point format and only two octaves instead of more
octaves. Fig. 15 shows the matching result of the image cafe
for different cases.

CHIU et al.: FAST SIFT DESIGN

(b)

©

Fig. 15. Matching result for (a) best case (b) normal case (c) worst case.

B. Implementation Results

Table VIII shows the comparison of FPGA implementations.
Our design supports about 6000 feature points per frame at
VGA 30 frames/sec and about 2000 feature points per frame

3165

N\ pi—
\ | Festrearocton o rotopetiosue

B

Fig. 16. Prototype of the FPGA-based real-time feature extraction system.

TABLE VIII
COMPARISON OF FPGA IMPLEMENTATIONS

[11] [15] Proposed
. VGA/
Frame size QVGA VGA HD1080p
Altera Stratix Xilinx V-5 Xilinx V-6
FPGA it ML507 ML605
LUT 43366 35889 57598
Registers 19100 19529 24988
Block RAM
(Kbits) 1350 3240 1206/2286
Others 64 DSP blocks 97 DSP48E 8DSP48E1

at HD1080p 30 frames/sec, which is due to the proposed layer
parallel scheme. Although we spend more LUTs and registers
to compute LPSIFT with integral image, our design only uses
8 DSP48Els and less Block RAM at the same frame size.

Table IX shows the comparisons of ASIC implementations.
Our design can easily support HD1080p30 with 2000 feature
points at 100MHz and saves 56% gate count and 90.4%
memory cost when compared to the previous design for the
VGA image. This high throughput and lower cost is due to
the layer parallel scheme and related hardware implementation
techniques.

Fig. 16 illustrates the prototype of the realtime feature
extraction system based on the FPGA implementation. The
system captured VGA-sized live video from a Panasonic CCD
camera, extracted features, and displayed the captured video
and extracted features on a screen in realtime. The features
were drawn as small red crosses on the screen. We have

3166

TABLE IX

COMPARISON OF ASIC IMPLEMENTATIONS

[17] Proposed Proposed
Technology 180 nm 90 nm 90 nm
Frequency 100 MHz 100 MHz 227 MHz
Frame size VGA30fps HD1080p30 HD1080p30
Feature 890 6000 (VGA) 11000
point/frame 2000 (HD1080)

(HD1080)

Gate count 1320 K 580 K 704 K
Memory 5.729 Mb 553 Kbit 553 Kbit

verified the features extracted from this prototype with the
result of our feature extraction software. A video recording of
the prototype system running feature extraction can be found
on Youtube (http://youtu.be/NDDBkVQugp0).

VI. CONCLUSION

This paper presents a real time SIFT based feature extrac-
tion engine that is capable to compute 2000 feature points
for HD1080p30 at 100 MHz. The proposed design adopts
the layer parallel restructured box kernel to replace iterated
Gaussian blur operations for simple and parallel computation.
This also reduces the latency to a few image lines instead
of several frames. The final flow uses the on-the-fly feature
extraction flow so that only partial intermediate results have
to be stored. With these techniques, the presented design easily
achieves the real time demand with significantly lower cost,
which saves 56% gate count and 90.4% memory cost when
compared to the previous design.

REFERENCES

[1] D. G. Lowe, “Distinctive image feautres from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.

[2] H. Bay, T. Tuytelaars, and L. J. V. Gool, “SURF: Speeded up robust
features,” in Proc. Eur. Conf. Comput. Vis., 2008, pp. 404—417.

[3] Q. Zhang, Y. Chen, Y. Zhang, and Y. Xu, “SIFT implementation and

optimization for multi-core systems,” in Proc. IEEE Int. Parallel Distrib.

Process., Apr. 2008, pp. 1-8.

H. Feng, E. Li, Y. Chen, and Y. Zhang, “Parallelization and characteriza-

tion of SIFT on multi-core systems,” in Proc. IEEE Int. Symp. Workload

Characterizat., Sep. 2008, pp. 14-23.

[5] S.N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc, “GPU-based video
feature tracking and matching,” in Proc. Workshop Edge Comput. Using
New Commod. Archit., 2006, pp. 1-15.

[6] S.Heymann, K. Miiller, A. Smolic, B. Froehlich, and T. Wiegand, “SIFT

implementation and optimization for general-purpose GPU,” in Proc.

Int. Conf. Central Eur. Comput. Graph., Visualizat. Comput. Vis., 2007,

pp. 144-159.

N. Cornelis and L. Van Gool, “Fast scale invariant feature detection and

matching on programmable graphics hardware,” in Proc. IEEE Com-

put. Soc. Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2008,

pp. 1-8.

T. Terriberry, L. French, and J. Helmsen, “GPU accelerating speeded-up

robust features,” in Proc. 4th Int. Symp. 3D Data Process., Visualizat.

Transmiss., 2008, pp. 1-8.

[9] D. Kim, K. Kim, J. Y. Kim, S. Lee, S. J. Lee, H. J. Yoo,
“81.6 GOPS object recognition processor based on a memory-centric
NoC,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 3,
pp. 370-382, Mar. 2009.

[4

=

[7

—

[8

[t}

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 8, AUGUST 2013

[10] D. Kim, K. Kim, J. Y. Kim, S. Lee, S. J. Lee, and H. J. Yoo,
“Vision platfrom for mobile intelligent robot based on 81.6 GOPS object
recognition processor,” in Proc. 45th ACM/IEEE Design Autom. Conf.,
Jun. 2008, pp. 96-101.

V. Bonato, E. Marques, and G. A. Constantinides, “A parallel hardware
architecture for scale and rotation invariant feature detection,” IEEE
Trans. Circuits Syst. Video Technol., vol. 18, no. 12, pp. 1703-1712,
Dec. 2008.

N. Sawasaki, M. Nakao, Y. Yamato, and K. Okabayahi, “Embedded
vision system for mobile robot navigation,” in Proc. Int. Conf. Robot
Autom., 2006, pp. 2693-2698.

M. Grabner, H. Grabner, and H. Bischof, “Fast approximated SIFT,” in
Proc. Asian Conf. Comput. Vis., 2006, pp. 918-927.

K. G. Derpanis, E. T. Leung, and M. Sizintsev, “Fast scale-space feature
representations by generalized integral images,” in Proc. IEEE Int. Conf.
Image Process., Sep.—Oct. 2007, pp. 521-524.

L. Yao, H. Feng, Y. Zhu, Z. Jiang, D. Zhao, and W. Feng, “An architec-
ture of optimised SIFT feature detection for an FPGA implementation
of an image matcher,” in Proc. Int. Conf. Field-Program. Technol., 2009,
pp. 30-37.

P. H. Hsu, Y. C. Tseng, and T. S. Chang, “ Low memory cost bilateral
filtering using stripe-based sliding integral histogram,” in Proc. IEEE
Int. Symp. Circuits Syst., May—Jun. 2010, pp. 3120-3123.

F. C. Huang, S. Y. Huang, J. W. Ker, and Y. C. Chen, “High-performance
SIFT hardware accelerator for real-Time image feature extraction,”
IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 3, pp. 340-351,
Mar. 2012.

(11]

[12]

[13]

(14]

[15]

[16]

(17]

Liang-Chi Chiu received the B.S. and M.S. degrees
in electronic engineering from National Chiao-Tung
University (NCTU), Hsinchu, Taiwan, in 2009 and
2011, respectively. He is currently an Engineer with
PixelArt Technology, Hsinchu. His current research
interests include system-on-a-chip design, VLSI sig-
nal processing, and computer architecture.

Tian-Sheuan Chang (S’93-M’06-SM’07) received
the B.S., M.S., and Ph.D. degrees in electronic
engineering from National Chiao-Tung University
(NCTU), Hsinchu, Taiwan, in 1993, 1995, and 1999,
respectively.

He was a Deputy Manager with Global Unichip
Corporation, Hsinchu, from 2000 to 2004. In 2004,
he joined the Department of Electronics Engineer-
ing, NCTU, where he is currently a Professor. In
2009, he was a Visiting Scholar in IMEC, Hever-
lee, Belgium. His current research interests include
system-on-a-chip design, VLSI signal processing, and computer architecture.

Dr. Chang was a recipient of the Excellent Young Electrical Engineer from
Chinese Institute of Electrical Engineering in 2007, and the Outstanding
Young Scholar from Taiwan IC Design Society in 2010. He has been actively
involved in many international conferences as an organizing committee or
technical program committee member. He is currently an Editorial Board
Member of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR
VIDEO TECHNOLOGY.

CHIU et al.: FAST SIFT DESIGN

Jiun-Yen Chen received the M.S. degree in electri-
cal engineering from the National Yunlin University
of Science and Technology, Yunlin, Taiwan, in 2006.
He was an Associate Engineer with the Mechanical
and Systems Research Laboratories (MSL), Indus-
trial Technology Research Institute (ITRI), Hsinchu,
Taiwan, from 2010 to 2013.

(22

¥ menl L]
.
==

3167

Nelson Yen-Chung Chang (S’06) received the B.S.
degree in electrical engineering from National Tsing-
Hua University, Hsinchu, Taiwan, in 2000, and the
M.S. and Ph.D. degrees in electronic engineering
from National Chiao-Tung University, Hsinchu, in
2002 and 2009, respectively.

He is currently an R&D Manager with the Division
of Intelligent Robotics Technology, Mechanical and
Systems Research Laboratories, Industrial Technol-
ogy Research Institute, Hsinchu, Taiwan. His current
research interests include real-time vision system,

robot vision, advanced robotic embedded systems, and vision algorithms.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

