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1. Introduction

An American option is an option that can be exercised at any
time prior to its expiration. For anAmerican call option (written
on an underlying stock without dividends) with a finite expi-
ration time, Merton (1973) obtained that the price coincides
with the price of the corresponding European option. However,
the American put option (even without dividends) presents a
difficult problem. No explicit pricing formulas exist and the
optimal exercise boundaries are unknown. One exception is
the perpetual American put option, which is an American put
option with infinite expiration time. McKean (1965) solved
the perpetual American put problem by applying the Black–
Scholes model. Boyarchenko and Levendorskiĭ (2002b) de-
rived a closed formula for prices of perpetualAmerican put and
call options using Lévy-based models and the theory of pseudo-
differential operators. Mordecki and Salminen (2002) utilized
probabilistic techniques to obtain explicit formulas based on
the assumption of mixed-exponentially distributed and arbi-

*Corresponding author. Email: sheu@math.nctu.edu.tw

trary negative jumps for the call options, and negative mixed-
exponentially distributed and arbitrary positive jumps for put
options. For related work, see Boyarchenko and Levendorskiĭ
(2002a), Asmussen et al. (2004) and references therein.

Mathematically, the problem of pricing perpetual American
contracts using Lévy-based models is equivalent to the optimal
stopping problem of the form

V (x) = sup
τ∈T

Ex (e
−rτ g(Xτ )), (1)

where X = {Xt : t ≥ 0} under the chosen risk-neutral
probability measure, and Px is a Lévy process that starts at
X0 = x . Additionally, g is the non-negative continuous reward
function that corresponds to a contract, r ≥ 0 is a constant,
and T is a family of stopping times with respect to the natural
filtration F generated by X . (Here we define, on {τ = ∞},
e−rτ g(Xτ ) = 0.) The object is to find the value function
V (x) and the optimal stopping time τ ∗ such that V (x) =
Ex (e−rτ∗

g(Xτ∗)). The free boundary approach is based on the
observation that, under suitable conditions, the value function
V (x) that solves the optimal stopping problem (1) is a solution
to the free boundary (or Stephan) problem

© 2013 Taylor & Francis
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1150 Feature{
(LX − r)V (x) = 0, in C,
V (x) = g(x), on D,

(2)

where C = {x ∈ R, V (x) > g(x)} (continuation region),
D = {x ∈ R, V (x) = g(x)} (stopping region) and LX is the
infinitesimal operator of X . Many authors have also observed
that the boundary of the stopping region D is determined by
imposing the smooth pasting condition on the value function.
Then, the optimal stopping problem (1) can be solved merely by
solving the above free boundary problem with suitable pasting
conditions and proving a verification theorem which implies
that solving the free boundary problem with a smooth pasting
condition (or related conditions) allows explicit solutions of
the optimal stopping problem to be established. This approach
yields the optimal exercise times τ ∗ and the rational prices
V (x) for perpetual American contracts. For further details and
topics related to the optimal stopping and free boundary prob-
lem, refer to the monograph of Peskir and Shiryaev (2006).

This study considers the problem of pricing perpetual Amer-
ican strangles, which is a combination of a put and a call
that are written on the same security. The log-price of the
underlying asset is modeled by the hyper-exponential jump-
diffusion model (HEJD), which is a jump-diffusion process
with the mixture-exponential jump density function (which
was introduced by Levendorskiĭ (2004)). Pricing this particular
perpetualAmerican contract requires solving the free boundary
problem (2) with a two-sided reward function g. (Notably, the
reward functions that are most often considered in the literature
are of the American put-type or American call-type. See, for
example, Kyprianou and Surya (2005); Novikov and Shiryaev
(2007) and Surya (2007).) This investigation proves that, if
g is the reward function for a perpetual American strangle
option, then the solution of the free boundary problem that was
obtained by Boyarchenko (2006) is, indeed, the solution to the
optimal stopping problem (see theorem 3.2). (This finding veri-
fies a conjecture posed by Boyarchenko (2006).) Accordingly,
using the risk-neutral pricing formula, the optimal exercise
boundaries and the prices of the perpetual American strangles
are obtained.

The rest of the paper is organized as follows. Section 2 in-
troduces the jump-diffusion setting and presents a verification
lemma for the optimal stopping problem (1) with a general
two-sided reward function. This general result is itself of in-
terest. It can be used to price other exotic perpetual American
options (such as chooser options and vertical spread options).
Section 3 considers the perpetual American strangles under
a geometric hyper-exponential jump-diffusion process. The
optimal stopping problem that corresponds to the perpetual
American strangles is solved. Section 4 presents the algorithm
of Boyarchenko (2006) for finding the optimal exercise bound-
aries. Some numerical results obtained using this algorithm are
presented. Section 5 draws conclusions.

2. Preliminaries

Throughout this paper, on a probability space (�,F ,P), we
consider a jump-diffusion process X of the form

Xt = ct + σ Bt +
Nt∑

n=1

Yn, (3)

where c ∈ R, σ > 0, B = (Bt , t ≥ 0) is a standard Brownian
motion, and (Nt ; t ≥ 0) is a Poisson process with rate λ > 0.
Also, Y = (Yn, n ≥ 0) is a sequence of independent random
variables with identical piecewise continuous density functions
f . Assume further that B, Nt and Y are mutually independent.

A jump-diffusion process that starts from x is simply defined
as x + Xt for t ≥ 0 and the governing law is denoted by Px . For
convenience, P is written in place of P0. Also, Ex denotes the
expectation with respect to the probability measure Px . Under
these model assumptions, E(ez Xt ) = etψ(z), z ∈ iR, where ψ
is called the characteristic exponent of X and is given by the
formula

ψ(z) = σ 2

2
u2 + cz + λ

∫
ezy f (y) dy − λ. (4)

The generalized infinitesimal generator of X is defined by the
formula

LX h(x) = 1

2
σ 2h′′(x)+ ch′(x)

+ λ

∫
h(x + y) f (y) dy − λh(x), (5)

for all functions h on R such that h′, h′′ and the integral in
equation (5) exist at x .

Given a jump-diffusion process X as in (3), this section
considers the optimal stopping problem (1) with the continuous
reward function g given by the formula

g(x) = g1(x)1{x≤l1} + g2(x)1{x≥l2}, (6)

for some −∞ < l1 ≤ l2 < ∞. Here, g1(x) is a strictly positive
C∞ function on (−∞, l1) and g2(x) is a strictly positive C∞
function on (l2,∞). Assume further that g1 is continuous at l1
with g1(l1) = 0, g2 is continuous at l2 with g2(h2) = 0, and
Ex [supt≥0 e−r t g(Xt )] < ∞ for all x ∈ R. For any set I in R,
we write τI = inf {t ≥ 0 | Xt ∈ I } and set

VI (x) = Ex [e−rτI g(XτI )], x ∈ R. (7)

With the special features of the reward function g, the value
function of the optimal stopping problem (1) is of the form
V (x) = VI (x) for some I = (h1, h2)

c with −∞ < h1 < l1 ≤
l2 < h2 < ∞. The following proposition characterizes the
function VI in terms of solutions to a boundary value problem.
(It is a special case of the Feynman–Kac theorem. See, for
example, Heath and Schweizer (2001) for the diffusion case or
Boyarchenko and Levendorskiĭ (2002a,b) for Lévy processes
that satisfy the ACP condition.)

Proposition 2.1 Assume that g1 is bounded on (−∞, l1) and
the function

∫∞
0 g2(x + y) f (y) dy, x ≥ l2, is locally bounded.

Consider the interval I = (h1, h2)
c for some −∞ < h1 <

l1 ≤ l2 < h2 < ∞. If Ṽ is a solution of the boundary value
problem

{
(LX − r)Ṽ (x) = 0, x ∈ (h1, h2),

Ṽ (x) = g(x), x ∈ I,
(8)

and Ṽ is in C2(h1, h2)∩ C[h1, h2], then Ṽ (x) = VI (x) for all
x ∈ R.

Remark 1 The conclusion of proposition 2.1 still holds if the
functions g1 and g2 are C∞ (not necessarily strictly positive)
and they satisfy the conditions in proposition 2.1.
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Feature 1151

To verify the optimality of the function VI , the following ver-
ification lemma is required. (For a proof, see Mordecki (1999)
for the setting used here or Boyarchenko and Levendorskiĭ
(2002a) for a much larger class of Lévy processes.)

Theorem 2.2 (verification lemma) Given I = (h1, h2)
c

where −∞ < h1 < l1 ≤ l2 < h2 < ∞, assume that the
function VI (x) in (7) satisfies the following conditions:

(a) VI (x) is the difference of two convex functions;
(b) VI (x) is a twice continuously differentiable func-

tion except possibly at h1 and h2;
(c) the limits V ′′

I (hi±) = limh→hi ± V ′′
I (h), i = 1, 2,

exist and are finite;
(d) (LX − r)VI (x) ≤ 0 for all x except possibly at

h1 and h2;
(e) VI (x) ≥ g(x) for all x ∈ (h1, h2).

Then VI (x) is the value function of the optimal stopping
problem (1) with the reward function g given in equation (6).

The most difficult application of the verification lemma is to
confirm the conditions (d) and (e). Next, under some additional
conditions on the candidate function, the candidate is shown
to satisfy condition (e) of theorem 2.2 for a class of two-sided
reward functions.

Proposition 2.3 Assume that g1 and g′
1 are bounded on

(−∞, l1) and the functions
∫∞

0 g2(x + y) f (y) dy and
∫∞

0 g′
2

(x + y) f (y) dy, x ≥ l2, are locally bounded. Assume further
that g1(x) − g′

1(x) is positive and increasing on (−∞, l1),
g2(x) − g′

2(x) is negative and decreasing on (l2,∞) and Ex

[supt≥0 e−r t |g′(Xt )|] < ∞ for all x. Let I = (h1, h2)
c for

some −∞ < h1 < l1 ≤ l2 < h2 < ∞ and consider
Ṽ (x) = VI (x) for all x ∈ R. Assume further that Ṽ (x) satisfies
the following conditions:

(a) (d/dx)
∫

Ṽ (x + y) f (y) dy = ∫
Ṽ ′(x + y) f (y) dy, ∀x ∈

(h1, h2);
(b) Ṽ is continuous at h1 and h2 and Ṽ ′(hi ), i = 1, 2, exist

and are continuous there.

Then Ṽ (x) ≥ g(x) for all x ∈ (h1, h2).

Proof Note that (LX − r)Ṽ (x) = 0 for x ∈ (h1, h2), and by
the standard theorems for ODE and the iterating technique, Ṽ
is in C∞[h1, h2] can be shown. Also, for x ∈ (h1, h2),

0 = d

dx
(LX − r)Ṽ (x) = 1

2σ
2Ṽ ′′′(x)+ cṼ ′′(x)

−(λ+ r)Ṽ ′(x)+ λ
∫

Ṽ ′(x + y) f (y) dy,

which implies that (LX − r)Ṽ ′(x) = 0 for x ∈ (h1, h2).
By condition (b), Ṽ ′ ∈ C[h1, h2], and by proposition 2.1,
Ṽ ′(x) = Ex [e−rτI g′(XτI )]. This result implies that Ṽ (x)
satisfies the ODE Ṽ ′(x) − Ṽ (x) = F(x), where F(x) =
Ex [e−rτI (g′(XτI )− g(XτI ))]. Note that Ṽ (x) = VI (x) ≥ 0 =
g(x) for l1 ≤ x ≤ l2. First, consider the case in which h1 ≤
x ≤ l1. By the ODE theory and application of the boundary
conditions, Ṽ (x) = ex (

∫ x
h1

e−t F(t) dt + g1(h1) e−h1). Set
H(x) ≡ e−x (Ṽ (x) − g(x)). Now, H(x) = ∫ x

h1
e−t F(t) dt +

g1(h1) e−h1 −g1(x) e−x and

H ′(x) = e−x F(x)+ g1(x) e−x −g′
1(x) e−x

= e−x {Ex [e−rτI (g′(XτI )− g(XτI ))] + g1(x)

− g′
1(x)} = e−x {Ex [e−rτ+

I (g′
2(XτI )− g2(XτI ));

{τI = τ+
I }] + Ex [e−rτ−

I (g′
1(XτI )− g1(XτI ));

{τI = τ−
I }] + g1(x)− g′

1(x)}
≥ e−x

Ex [e−rτ+
I (g′

2(XτI )− g2(XτI )); {τI = τ+
I }]

+ e−x (g1(x)− g′
1(x))(1 − Ex [e−rτ−

I ; {τI = τ−
I }],

where τ+
I = inf {t ≥ 0 | Xt ≥ h2} and τ−

I = inf {t ≥ 0 |
Xt ≤ h1}. With respect to the last inequality, the fact that
g1(x) − g′

1(x) is increasing, therefore g1(Xτ−
I
) − g′

1(Xτ−
I
) ≤

g1(h1) − g′
1(h1) ≤ g1(x) − g′

1(x) is utilized. Since g2(x) −
g′

2(x) is negative and g1(x)− g′
1(x) is positive, H ′(x) ≥ 0 is

obtained, implying that H(x) is increasing. Therefore, H(x) ≥
H(h1) = 0 and so Ṽ (x) ≥ g(x). By a similar argument, we
obtain Ṽ (x) ≥ g(x) for l2 ≤ x ≤ h2. The proof is complete.
�

To prove the optimality of the candidate Ṽ , the fact that the
candidate function satisfies condition (d) of the verification
lemma remains to be checked. In fact, this part of the optimal
stopping problem is the most challenging. To do so, the reward
functions for the perpetual American strangles are considered
and the process X is assumed to follow the hyper-exponential
jump-diffusion model introduced by Levendorskiĭ (2004).

3. Perpetual American strangles and straddles

A strangle is a financial instrument whose reward function is a
combination of a put with strike price K1 and a call with strike
price K2 written on the same security, where K1 ≤ K2. If K1 =
K2, then the strangle is a straddle. The price of the underlying
security under the chosen risk-neutral measure is modeled
using a geometric jump-diffusion: St = exp{Xt }, where X is
a hyper-exponential jump-diffusion process (HEJD). Accord-
ingly, the jump density function f is a mixture of exponential
distributions

f (x) =
N+∑
i=1

piη
+
i e−η+

i x 1{x>0}

+
N−∑
j=1

q j (−η−
j ) e−η−

j x 1{x<0}, (9)

where η−
1 < · · · < η−

N− < 0 < η+
1 < · · · < η+

N+ , and pi

and q j are positive with
∑N+

i=1 pi + ∑N−
j=1 q j = 1. (A Lévy

model involves infinitely many equivalent risk-neutral mea-
sures and, for pricing purposes, one of them is typically selected
using the so-called Esscher transform. Notably, this transform
preserves the above jump-diffusion structure. For details, see
Levendorskiĭ (2004) and the appendix of Asmussen et al.
(2004).) The characteristic exponent of this jump-diffusion
process X is given by the formula

ψ(z) = 1

2
σ 2z2 + cz + λ

⎛⎝ N+∑
i=1

piη
+
i

η+
i − z

+
N−∑
j=1

q jη
−
j

η−
j − z

⎞⎠− λ.

To guarantee that E[eX1 ] < ∞, assume that η+
i > 1 for

i = 1, 2, . . . , N+. Also, assume that ψ(1) < r (such that
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1152 Feature

Figure 1. Relationship between η−
i , 1 ≤ i ≤ N−, η+

j , 1 ≤ j ≤ N+, and βn , 1 ≤ n ≤ N + 2.

the underlying asset pays dividends continually). (Notably, if
E[eX1 ] < er and 0 ≤ g(x) ≤ A + B ex for some constants
A and B, then E[supt≥0 e−r t g(Xt )] < ∞. For details, see
lemma 4.1 of Mordecki and Salminen (2002).) (figure 1)

The rational price for the perpetual American strangle is the
value function that solves the optimal stopping problem (1)
with the reward function g, which is given by the formula

g(x)= (K1 − ex )+ + (ex −K2)
+ = g1(x)1{x≤l1}

+ g2(x)1{x≥l2}, (10)

where l1 = ln K1, l2 = ln K2, g1(x)= K1 − ex and g2(x)=
ex −K2. Denote by {βn}N+2

n=1 the set of all roots to the
polynomial

φ(x) =
N+∏
i=1
(η+

i − x)
N−∏
j=1
(η−

j − x)

[
1
2σ

2x2 + cx

− (λ+ r)+ λ

(
N+∑
i=1

piη
+
i

η+
i −x

+
N−∑
j=1

q jη
−
j

η−
j −x

)]
.

(Notably, N = N− + N+, β1 < η−
1 < β2 < η−

2 < · · · <
βN− < η−

N− < βN−+1 < 0 < βN−+2 < η+
1 < · · · <

βN+1 < η+
N+ < βN+2 and βN−+2 > 1. For details, see

the investigations of Levendorskiĭ (2004) and Boyarchenko
(2006).) To find a candidate for the corresponding value func-
tion, first consider the function V (x) = VI (x) in (7) for some
interval I = (h1, h2) with −∞ < h1 < l1 ≤ l2 < h2 < ∞.
Boyarchenko (2006) obtained that Wiener–Hopf factorizations
yield a function of the form

V (x) =
{∑N+2

n=1 Cn eβn x , if x ∈ (h1, h2),

g(x), if x ∈ (h1, h2)
c,

(11)

where Cn are constants depending on h1 and h2. (For the ex-
plicit formula for Cn , see theorem 3.2 of Boyarchenko (2006).
For an ODE approach, see Chang et al. (2013).) The function
V (x) will be shown to be the value function of the optimal
stopping problem (1) under the smooth pasting conditions.
Doing so requires the following lemma.

Lemma 3.1 (a)Assume that V (x) satisfies the smooth pasting
condition at x = h2 and V (x) ≥ ex −K2 in (h2 − ε, h2) for
some ε > 0, then V ′′(h2−) ≥ eh2 .
(b) Assume that V (x) satisfies the smooth pasting condition at
x = h1 and V (x) ≥ K1 − ex in (h1, h1 + ε) for some ε > 0,
then V ′′(h1+) ≥ − eh1 .

Proof Let F(x) = ∑N+2
n=1 Cn eβn x −(ex −K2). Then F(x)

∈ C∞. Since V (x) satisfies the continuity condition and the
smooth pasting condition at x = h2, F(h2) = F ′(h2) = 0. By
Taylor’s theorem, there exists θn ∈ (h2 − (1/n), h2) such that

F

(
h2 − 1

n

)
−F(h2) = F ′(h2)

(
−1

n

)
+1

2
F ′′(θn)

(
−1

n

)2

. (12)

Consider 1/n < ε. Equation (12) implies that F ′′(θn) ≥ 0.
As n approaches ∞, F ′′(h2−) ≥ 0, so the proof of part (a) is
complete. The proof of part (b) is similar to that of part (a) and
is omitted. �
Theorem 3.2 Given an interval (h1, h2) with −∞ < h1 <

ln K1 ≤ ln K2 < h2 < ∞, set V (x) = VI (x). Assume that
V (x) satisfies the smooth pasting condition on the boundaries
h1 and h2, such that V ′(h1) = − eh1 and V ′(h2) = eh2 . Then
V (x) = Ex [e−rτ(h1,h2)

c g(Xτ(h1,h2)
c )] is the value function of

the optimal stopping problem and so τ(h1,h2)
c is an optimal

stopping time for the optimal stopping problem (1).

Proof Since VI is of the form of (11) for some constants Cn ,
clearly V (x) satisfies conditions (b) and (c) of theorem 2.2.
Notably, VI ∈ C1 and V ′′

I (x) exists and is continuous except
possibly at x = h1 and x = h2. Additionally, limx→hi ± V ′′

I (x)
exists for i = 1, 2. Therefore, VI (x) is the difference of two
convex functions (see problem 6.24 of Karatzas and Shreve
(1991), p. 215). By direct calculation, V can easily be verified
also to satisfy condition (a) of proposition 2.3. On (−∞, l1),
g1(x)−g′

1(x) = K1 is positive and increasing, and on (l2,∞),
g2(x)− g′

2(x) = −K2 is negative and decreasing. By proposi-
tion 2.3, V (x) ≥ g(x) for all x ∈ (h1, h2). That V (x) satisfies
condition (d) of theorem 2.2 remains to be verified. Direct
calculation reveals that, for x > h2,

(LX − r)V (x)= (ψ(1)− r)(ex − K2)+ λ
N−∑
j = 1

q j (−η−
j ) eη

−
j x
∫ h1

−∞
(K1 + K2 − 2 ey) e−η−

j y dy

+ λ
N−∑
j=1

q j (−η−
j ) eη

−
j x

×
∫ h2

h1

(
N+2∑
n=1

Cn eβn y − ey +K2

)
(e−η−

j y
) dy,

and hence

d

dx
(LX − r)V (x) = (ψ(1)− r) ex −λ

N−∑
j=1

q j (η
−
j )

2 eη j x

∫ h1

−∞
(K1 + K2 − 2 ey) e−η−

j y dy

− λ
N−∑
j=1

q j (η
−
j )

2 eη
−
j x

×
∫ h2

h1

⎛⎝N+2∑
n=1

Cn eβn y−ey+K2

⎞⎠ (e−η−
j y
) dy.

Notably, ψ(1) < r , K1 + K2 − 2 ey > 0 for y ≤ h1 and∑N+2
n=1 Cn eβn x = V (x) ≥ g(x) ≥ (ex −K2)

+ ≥ ex −K2
for x ∈ (h1, h2). Therefore, (d/dx)(LX − r)V (x) ≤ 0 and
(LX −r)V (x) is decreasing on (h2,∞). Similarly, for x < h1,
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Feature 1153

(LX − r)V (x) = (ψ(1)− r)(K1 − ex )+ λ

N+∑
i=1

piη
+
i eη

+
i x

×
∫ ∞

h2

(2 ey −K1 − K2) e−η+
j y dy

+ λ
N−∑
i=1

piη
+
i eη

+
i x
∫ h2

h1

×
(

N+2∑
n=1

Cn eβn y −K1 + ey

)
e−η+

i y dy,

and therefore

d

dx
(LX − r)V (x) = − (ψ(1)− r) ex +λ

N+∑
i=1

pi (η
+
i )

2 eη
+
i x

×
∫ ∞

h2

(2 ey −K1 − K2) e−η+
j y dy

+ λ
N−∑
i=1

pi (η
+
i )

2 eη
+
i x
∫ h2

h1

×
(

N+2∑
n=1

Cn eβn y −K1 + ey

)
e−η+

i y dy.

Notably, 2 ey −K1 − K2 > 0 for y ≥ h2 and
∑N+2

n=1 Cn eβn x

= V (x) ≥ g(x) ≥ (K1 − ex )+ ≥ K1 − ex for x ∈ (h1, h2).
Therefore, (d/dx)(LX − r)V (x) ≥ 0 and so (LX − r)V (x) is
increasing on (−∞, h1).

Notably, (LX − r)V (x) = 0 for x ∈ (h1, h2). Since V (x)
satisfies the continuity condition and the smooth pasting condi-
tion at x = h2 and V (x) ≥ ex −K2 in (h1, h2), by lemma 3.1(a),

(LX − r)V (h2+) = (LX − r)V (h2+)− (LX − r)V (h2−)
= 1

2
σ 2(eh2 −V ′′(h2−)) ≤ 0.

The fact that (LX − r)V (x) is decreasing on (h2,∞) implies
that (LX −r)V (x) ≤ 0 on (h2,∞). Similarly, since V (x) satis-
fies the continuous condition and the smooth pasting condition
at x = h1 and V (x) ≥ K1 − ex in (h1, h2), by lemma 3.1(b),

(LX − r)V (h1−) = (LX − r)V (h1−)− (LX − r)V (h1+)
= 1

2
σ 2(− eh1 −V ′′(h1+)) ≤ 0.

The fact that (LX −r)V (x) is increasing on (−∞, h1) implies
that (LX −r)V (x) ≤ 0 on (−∞, h1). Therefore, condition (d)
of theorem 2.2 is verified. The proof is complete. �
Remark 2 In the case σ = 0, the continuous pasting
condition plays exactly the same role as the smooth pasting
condition in the case σ > 0. Therefore, other methods are
used to solve the optimal stopping problems. See, for exam-
ple, Boyarchenko and Levendorskiĭ (2002a,b) and Peskir and
Shiryaev (2006).

4. Numerical results

In this section, the results of Boyarchenko (2006) are first
quoted to find the optimal boundaries h1 and h2. Let �h be a
positive solution of the equation detB(h) = 0, where B(h) is
an (N + 2)× (N + 2) matrix that is defined by the formula

B(h) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
β1−η−1

· · · 1
βN+2−η−1

.

.

.
. . .

.

.

.

1
β1−η−

N−
· · · 1

βN+2−η−
N−

1
β1−η+1

eβ1h · · · 1
βN+2−η+1

eβN+2h

.

.

.
. . .

.

.

.

1
β1−η+

N+
eβ1h · · · 1

βN+2−η+
N+

eβN+2h

1
β1
(1 + K1

K2
eβ1h) · · · 1

βN+2
(1 + K1

K2
eβN+2h)

1
β1−1 (1 + e(β1−1)h) · · · 1

βN+2−1 (1 + e(βN+2−1)h)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

Boyarchenko (2006) observed that the optimal boundaries h1
and h2 are given by the formulas h1 = ln det A1 − ln det A2
and h2 = h1 +�h. Here

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
β1−η−

1
· · · 1

βN+2−η−
1

...
. . .

...

1
β1−η−

N−
· · · 1

βN+2−η−
N−

1
β1−η+

1
eβ1�h · · · 1

βN+2−η+
1

eβN+2�h

...
. . .

...

1
β1−η+

N+
eβ1�h · · · 1

βN+2−η+
N+

eβN+2�h

1
β1
(1 + K1

K2
eβ1�h) · · · 1

βN+2
(1 + K1

K2
eβN+2�h)

1
β1−1 · · · 1

βN+2−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
β1−η−

1
· · · 1

βN+2−η−
1

...
. . .

...

1
β1−η−

N−
· · · 1

βN+2−η−
N−

1
β1−η+

1
eβ1�h · · · 1

βN+2−η+
1

eβN+2�h

...
. . .

...

1
β1−η+

N+
eβ1�h · · · 1

βN+2−η+
N+

eβN+2�h

1
β1
(1 + K1

K2
eβ1�h) · · · 1

βN+2
(1 + K1

K2
eβN+2�h)

1
β1 K1

· · · 1
βN+2 K1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For details, see Boyarchenko (2006). This optimal interval
(h1, h2), together with theorem 3.2 of Boyarchenko (2006),
yields explicit formulas for the value function (rational price)
of the strangle options.

Example 4.1 Consider the case in which N+ = N− = 1.
Additionally, as in Boyarchenko (2006), set c = −0.105,
σ = 0.25, r = 0.06, η+ = 1/0.4, η− = −1/0.7, λ = 3/5,
p = q = 0.5 and the strike prices K1 = 50 and K2 =
100. Then, the value function is V (x) = ∑4

n=1 Cn eβn x in
(h∗

1, h∗
2), where (h∗

1, h∗
2) = (2.1992, 6.1953), {β1, β2, β3, β4}

= {−3.4812,−0.2322, 1.1995, 6.953} and {C1,C2,C3,C4}
= {2519.533, 61.2124, 0.2183, 1.4624 × 10−18}. Further-
more, if we take N+ = N− = 0 (which is the diffusion case),
then V (x) = ∑2

n=1 Cn eβn x in (h∗
1, h∗

2), where (h∗
1, h∗

2) =
(3.4151, 4.859), {β1, β2} = {−1.5607, 4.9207} and {C1,C2}
= {4037.8534, 1.1088 × 10−9} (figure 2).
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Figure 2. The solid line is the value function V (x) for the jump-
diffusion model with N+ = N− = 1 and the dashed line is that for
the diffusion model, that is N+ = N− = 0. The optimal boundaries
are marked by circles for the jump-diffusion model, and by triangles
for the diffusion model.

Figure 3. A graph of the determinant B(h) for finding the length�h
of the optimal interval. It shows that there is only one zero for the
determinant.

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

200

400

600

800

1000

1200 Payoff Function of Call Option
Payoff Function of Put Option
Value Function For Jump Diffusion Case With N+=N−=1
Value Function For Jump Diffusion Case with N+=N−=2

Figure 4. The solid line is the value function V (x) for the jump-
diffusion model with N+ = N− = 2 and the dashed line is that for
the model with N+ = N− = 1. The optimal boundaries for the case
N+ = N− = 2 are marked by circles and by triangles for the case
N− = N+ = 1.

Interestingly, in the jump-diffusion model, the optimal in-
terval (h∗

1, h∗
2) is much wider than that in the diffusion case.

Figure 3 plots the determinant of B(h) against h. The zero of
the determinant (this is�h) is observed to be unique. The graph
descends sharply close to this zero of the determinant, implying

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−5

−4

−3

−2

−1

0

1

2
x 1019 Determinant of B(h)

Figure 5. A graph of the determinant for finding the length of the
optimal interval for the case N− = N+ = 2. The figure has similar
properties as for the case N− = N+ = 1. In particular, there is only
one zero for the determinant.

that the numerical result for�h can be obtained accurately and
fast.

Example 4.2 Consider the jump-diffusion model with N− =
N+ = 2 and let c = −0.105, σ = 0.25, r = 0.06, η+

1 =
1/0.5, η+

2 = 1/0.25, η−
1 = −1/2.4, η−

2 = −7.5, λ = 3/5,
p1 = p2 = q1 = q2 = 0.25 and the strike prices K1 = 50
and K2 = 100. In this model, the expected value E[eX1 ]
is the same as that with N− = N+ = 1 in example 4.1.
The value function is V (x) = ∑6

n=1 Cn eβn x in (h∗
1, h∗

2),
where (h∗

1, h∗
2) = (2.1153, 6.3801), {β1, β2, β3, β4, β5, β6}

= {−7.997,−1.9409,−0.1155, 1.1642, 3.2421, 7.0931} and
{C1,C2,C3,C4,C5,C6} = {735,200.1029, 240.6048,
44.1297, 0.2679, 8.8413 × 10−9, 2.4671 × 10−19} (figures 4
and 5).

5. Concluding remarks

American option contracts are more difficult to analyse than
their European counterparts, because an American option can
be exercised at any time prior to its expiration. Mathemat-
ically, therefore, the optimal stopping problem of the form
of (1) must be solved. Unlike the corresponding PDEs for the
European counterparts, such problems always lead to so-called
free boundary value problems, which are not easy to solve. No
explicit formulas exist for relevant value functions and the
optimal exercise boundaries are unknown.

American call and put options are the simplest American
contracts. The problem of pricing these options has been
extensively studied and generalized since the work of
McKean (1965) and Merton (1973). Recent studies on
Lévy-model settings include Boyarchenko and Levendorskiĭ
(2002a,b); Mordecki and Salminen (2002), Asmussen et al.
(2004), Levendorskiĭ (2004), and the references therein.

This paper considers the perpetual American strangle and
straddle options, each of which is a combination of a put
and a call written on a single security. As in the studies of
Asmussen et al. (2004) and many others, we consider the prob-
lems of pricing these options under a jump-diffusion model.
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The free boundary problem approach and the work of
Boyarchenko (2006) are utilized to solve the corresponding op-
timal stopping problems and thereby find the optimal exercise
boundaries and the rational prices of the perpetual American
strangle and straddle options. The present work was inspired
by Boyarchenko (2006) and Boyarchenko and Boyarchenko
(2011). In fact, Boyarchenko (2006) studied the same pricing
problems and posed the verification of the smooth pasting
principle for the value functions as an open problem. This
study solves this open problem in theorem 3.2. The method
presented here together with the general results in section 2
may provide an alternative method for computing the prices of
other exotic options in jump-diffusion models. We leave such
computations for future research.
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